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Motivation : non stationary multicomponent signals are everywhere...
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ASTRES project (ANR-13-BS03-0002) 2013-2017

Consolidate, unify, extend and apply Reassignment, Synchosqueezing and EMD
methods for :

Computing efficient and meaningful signal representations

Disentangling the elementary components of multicomponent signals

Developing and applying tools for high-level processing (e.g. signal
restoration, information extraction, modeling and regression, etc.)
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The new ASCETE project

Goals : Combining deterministic and stochastic approaches to extend the
proposed techniques to more complex signals

Deterministic models combined with machine learning (e.g. deep neural networks)

Difficult cases for mode recovery (e.g. overlapping components, noisy signals,
etc.)

Combining synchrosqueezing with Non-negative Matrix Factorization (NMF)

Generalization to high dimension signals (images, tensors, etc.)

New practical applications (perception, biomedicine, astronomy, etc.)

Project tasks :

Objective 1 : New approaches for the study of MCSs with synchrosqueezing
transforms

Objective 2 : Improving signal representations using data-driven and machine
learning approaches

Objective 3 : Combining non negative matrix factorization and SST, Phase
retrieval

Objective 4 : Applications and software developments
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The reassignment method
Synchrosqueezing in a nutshell

The reassignment method [Kodera et al. 1978] [Auger & Flandrin 1995]

TF reassignment improves the energy concentration (readability) of any bilinear
distribution by reassigning its energy to new locations closer to real signal
support.
Considering a time-frequency representation (TFR) of a signal x expressed in
terms of the Wigner-Ville distribution as :

TFRx(t, ω) =

∫∫
R2

WVx(τ,Ω)Φ(t − τ, ω − Ω)dτdΩ

Method description

Computation of the reassignment operators :

t̂(t, ω) =

∫∫
R2
τWVx (τ, Ω)Φ(t − τ, ω − Ω)dτdΩ∫∫

R2
WVx (τ, Ω)Φ(t − τ, ω − Ω)dτdΩ

(1)

ω̂(t, ω) =

∫∫
R2

ΩWVx (τ, Ω)Φ(t − τ, ω − Ω)dτdΩ∫∫
R2

WVx (τ, Ω)Φ(t − τ, ω − Ω)dτdΩ

. (2)

Computation of the reassigned time-frequency representation :

RTFRx (t, ω) =

∫∫
R2

TFRx (τ, Ω)δ(t − t̂(τ, Ω))δ(ω − ω̂(τ, Ω)) dτdΩ (3)
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The reassignment method
Synchrosqueezing in a nutshell

Example : the reassigned spectrogram
Xh (t, ω) =

∫
R x(τ)h(τ − t)∗ e−jωτ dτ being the STFT of a signal x using a differentiable analysis window h.

t̂(t, ω) = −
∂Φh

x
∂ω

(t, ω) = t + Re

XTh (t, ω)

Xh (t, ω)

 ,with Th(t) = t h(t) (4)

ω̂(t, ω) = ω +
∂Φh

x
∂t

(t, ω) = ω + Im

XDh (t, ω)

Xh (t, ω)

 ,with Dh(t) =
dh

dt
(t) (5)

Rx (t, ω) =

∫∫
R2

∣∣∣∣Xh (τ, Ω)

∣∣∣∣2 δ(t − t̂(τ, Ω))δ(ω − ω̂(τ, Ω)) dτ
dΩ

2π
(6)

(a) |Xh(t, ω)|2 (b) |Rh
x (t, ω)|2
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The reassignment method
Synchrosqueezing in a nutshell

Synchrosqueezing

Can be viewed as a particular reassignment method which allows to compute
sharpen and reversible TFRs [Daubechies 1996, 2011] [Thakur 2011].
Computation of the synchrosqueezed STFT and of its signal reconstruction
formula :

Sx (t, ω) =
1

h(0)

∫
R

Xh (t, Ω)δ(ω − ω̂(t, Ω))
dΩ

2π
(7)

x̂(t) =

∫
suppΩ(x)

Sx (t, Ω)dΩ (8)

(c) |Xh(t, ω)|2 (d) |Sx (t, ω)|2
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The reassignment method
Synchrosqueezing in a nutshell

Recent advances for reassignment/synchrosqueezing

Levenberg-Marquardt reassignment [Auger, et al., 2012]
Second-order vertical and oblique synchrosqueezing [Oberlin, et al., 2015]
Recursive Levenberg-Marquardt reassignment and synchrosqueezing [Fourer, et
al., 2016]
Chirp demodulation [Meignen et al., 2017]
Higher-order synchrosqueezing [Pham, Meignen et al., 2017]
Synchro-extracting transform [Yu et al., 2017]
Horizontal (time-reassigned) synchrosqueezing [He et al., 2019]
High-order chirp demodulation [Pham, Meignen et al., 2019]
Second-order horizontal synchrosqueezing [Fourer, Auger, 2019]
...

The (already outdated) TFTB and ASTRES toolbox

F. Auger, P. Flandrin, P. Gonçalvès and O. Lemoine. "Time-frequency toolbox, CNRS/Rice University,

France.", 1995.

http://tftb.nongnu.org

D. Fourer, J. Harmouche, J. Schmitt, T. Oberlin, S. Meignen, F. Auger and P. Flandrin. The ASTRES

Toolbox for Mode Extraction of Non-Stationary Multicomponent Signals. Proc. EUSIPCO 2017, Aug. 2017.

Kos Island, Greece.

https://github.com/dfourer/ASTRES_toolbox
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The reassignment method
Synchrosqueezing in a nutshell

Limitations and current challenges

Robustness to noise
Overlapping components
Efficient Ridge estimation and mode extraction
Optimal hyperparameters tuning
Generalization to multidimensional signals
Perfect signal reconstruction from (synchrosqueezed or not) TFRs
Phase retrieval from real-valued TFRs (eg. spectrogram, scalogram, etc.)
...
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New proposed approach

Principle : regression of the reassignment operation using Convolutional Neural
Networks (CNN)

x X h

signal STFT CNN-based

operator
reassignment

Rh
x

reassigned
spectrogram

Figure : Proposed DNN-based reassignment method

Motivation

Reassignment can be viewed as an image post-processing operation

Capability to synthesize the ideal time-frequency representation of a given
signal model allowing to generate a simulated training datasets

Consideration of noisy signals to improve the robustness of the trained
model
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Deep neural network architecture

conv2Dinput TFR reassigned TFRconv2D conv2D conv2D
5× 5M × N

dropout

batch norm.

32
M × N5× 5

dropout

batch norm.

64
5× 5

dropout

batch norm.

32
5× 5

dropout

batch norm.

1

Figure : Proposed architecture based on 2D CNN.

Uses 2D convolutional neurons with a 5× 5 kernel

Activation function : REctified Linear Unit (RELU)

Dropout : Randomly discard 10% of the computed coefficients

Optimizer : RMSProp 1

1. Bengio, Yoshua. "Rmsprop and equilibrated adaptive learning rates for nonconvex optimi-
zation." corr abs/1502.04390 (2015).
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Sinusoidal signal model

Time-domain expression :

x(t) = ax(t) ej(φx +ωx (t)t) (9)

with ax(t), ωx(t) the instantaneous amplitude and instantaneous
frequency. φx is the initial phase.
Ideal time-frequency representation :

ITFRx(t, ω) =

{
ax(t) if ω = ωx(t),

0 otherwise
(10)
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Impulse signal model

Time-domain expression :

x(t) = axδ(t − t0) (11)

Ideal time-frequency representation :

ITFRx(t, ω) =

{
ax if t = t0,∀ω
0 otherwise

(12)

L=25.00
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Mixture signal model :

Time-domain expression :

x(t) =
I∑

i=1

si (t) (13)

where si denotes an elementary signal component.
Ideal time-frequency representation :

ITFRx (t, ω) =
I∑

i=1

ITFRsi (t, ω) (14)
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Figure : Spectrogram of an electric piano.
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Implementation

Training

We compute for each signal x its magnitude |X h| (X h being the STFT of
x) and its ideal time-frequency representation Y .

We train the CNN to minimize the Mean Squared Error (MSE) between
the estimated TFR Ŷ and the ideal TFR :

L(Y , Ŷ ) =
1

NM

N∑
n=1

M∑
m=1

|Y [n,m]− Ŷ [n,m]|2 (15)

DNN-based reassignment

The trained DNN operator is applied on |X h| to estimate Ŷ .
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Experiment

We consider 3 datasets made of 3,000 randomly (uniformly sampled) generated
multicomponent signals (I ∈ [1; 10]) merged with a white Gaussian noise
(SNR ∈ [5, 2545]dB) :

Sinusoidal dataset such as x(t) =
∑I

i=1 exp
(∑P

p=0 cptp
)
with cp ∈ C and

P ≤ 2
Impulse dataset such as x(t) =

∑I
i=1 ai δ(t − ti ) with ai , ti ∈ R+

Sinusoid + impulses dataset : merging of the two previously proposed datasets
The 3 datasets lead to 3 distinct DNN models : DNN1, DNN2 and DNN3.

Figure : Spectrogram of an electric piano.
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Unitary test on a sinusoidal signal 1/2

Figure : Comparison between |Xh|, ITFR, DNN1 estimation and classical reassigned
spectrogram.
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Unitary test on a sinusoidal signal 2/2

Figure : Comparison between |Xh|, ITFR, DNN1 estimation and classical reassigned
spectrogram at a given time instant n = 50.
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Unitary test on an impulse signal 1/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.

18/27



Introduction
State of the art

DNN-based reassignment method
Numerical results

Conclusion and future work

Unitary test on an impulse signal 2/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram at a given normalized frequency λ = 0.3.
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Noisy signal (SNR=5dB)

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.
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Noisy signal (SNR=5dB)

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram at a given normalized frequency λ = 0.3.

21/27



Introduction
State of the art

DNN-based reassignment method
Numerical results

Conclusion and future work

Multi-component noisy signal 1/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.

22/27



Introduction
State of the art

DNN-based reassignment method
Numerical results

Conclusion and future work

Multi-component noisy signal 2/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.
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Overlapping components 1/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.
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Overlapping components 2/2

Figure : Comparison between |Xh|, ITFR, DNN2 estimation and classical reassigned
spectrogram.
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Summary

Contributions

A new proposed DNN-based reassignment operator

A slight improvement in presence of noise when compared to classical
reassignment

Deals with overlapping components

Limitations

Computed TFRs are non invertible (for the moment)

Reassignment operators parameters (IF and IGd ) are not explicited

Requires more investigation on real-world signals
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Future work directions

Figure : Comparison between DNN3 and classical reassignment.

Increasing the database size and the number of DNN parameters

Applications on real-world data (audio, biomedicine, etc.)

A more complete comparative investigation and evaluation

Modification of the architecture to estimate the reassignment operators (IF and
IGd )

Application to DNN-based ridge estimation
27/27
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