

A Novel Pseudo-Bayesian Approach for Robust Multi-Ridge Detection and Mode Retrieval

Quentin Legros ¹ Dominique Fourer ²

¹LTCI, Télécom Paris ²Laboratoire IBISC, Université d'Évry-Val-d'Essonne

July 7, 2021

Introduction

• Focus on multi-component signals (MCS).

$$x(t) = \sum_{k=1}^{K} x_k(t) \quad \text{, with } x_k(t) = a_k(t) e^{j\phi_k(t)}, \tag{1}$$

Investigated approaches

- Mixture of K superimposed components.
- $a_k(t)$ and $\phi_k(t)$ the time-varying amplitude and frequency of component k.
- Amplitude and frequency modulated.

Introduction

Motivation

- Variety of application.
- Audio, medical, astronomical, echolocation,...

Introduction

Context of this work

- Time-frequency representation (TFR).
- Well design representation for our objective.
- Allows to observe the instantaneous frequency (IF) trajectory of each mode as a ridge.

Subject of research: ASCETE project

- New ridge extraction technique.
- Modes extraction and demodulation.

Challenge

- Large variety of real signals.
- Need for a general extraction approach.
- Presence of external spurious noise.

Plan

2 Estimation strategy

2 Estimation strategy

Observation model

Our model

$$p(z|\bar{m}_n)=g(z-\bar{m}_n),$$

- z: frequency in [0, M-1].
- \bar{m}_n : ridge position in the *n*-th time bin.

•
$$g(m) = \frac{2\sqrt{\pi}L}{M} e^{-\left(\frac{2\pi mL}{M}\right)^2}$$

Observation model

Our model

$$p(z|\bar{m}_n)=g(z-\bar{m}_n),$$

Limitations

- Simple model.
- Computationally attractive.
- Presence of noise neglected.
- Assumes for the presence of a single component.

Observation model

Limitations

- Lack of generality of the postulated model.
- Discrepancies with noisy observations.
- Or in the presence of multiple components.
- Inefficiency of maximum likelihood estimation (MLE).

Proposed approach

- Estimation performance does not only depend on the model quality.
- Modification of the similarity measure¹.

¹Q. Legros, S. McLaughlin,Y. Altmann, S. Meignen and M. E. Davies. Robust depth imaging in adverse scenarios using single-photon Lidar and beta-divergences, 2020.

Estimation strategy

Note that

- Performing MLE ⇔ minimizing Kullback-Leibler(KL) divergence between model and observations.
- KL divergence not suitable when the postulated model is inaccurate.
- Implies model mismatch.
 - In the presence of external spurious noise.
 - When observing multicomponent signals.

Alternative variational objective

- KL divergence replaced by the Rényi and β divergences.
- Allow respectively for mode seeking character and robustness.

Estimation strategy

Alternative inference

- Variational inference based on alternative divergences.
- Need for the divergences cross entropy².

Cross entropy

For the
$$\beta$$
-divergence (β -d), $\beta > 0$

$$CE_{\beta}(\bar{m}_n) = -\frac{1+\beta}{\beta} \sum_{m} p(s_{n,m}|\bar{m}_n)^{\beta} + \int p(z|\bar{m}_n)^{1+\beta} dz.$$
(3)

• For the Rényi divergence (R-d), $\alpha > 0, \alpha \neq 1$

$$CE_{\alpha}(\bar{m}_n) = \frac{1}{\alpha - 1} \log \left(\sum_m s_{n,m}^{\alpha} p(s_{n,m} | \bar{m}_n)^{1 + \alpha} \right).$$
(4)

²F. Futami, I. Sato, M. Sugiyama. Variational Inference based on Robust Divergences, 2018.

Estimation strategy

Pseudo-Bayesian estimation

• Approximate posterior distribution obtained by maximizing the evidence lower-bound (ELBO)²

$$p(\bar{m}_n|\boldsymbol{s}_n) \propto e^{-M \operatorname{CE}(\bar{m}_n)} p(\bar{m}_n). \tag{5}$$

- Spatial prior model $p(\bar{m}_n)$ discussed hereafter.
- Plug cross entropy for alternative objectives.
- Ridge position estimated by minimum mean squared error(MMSE).

²F. Futami, I. Sato, M. Sugiyama. Variational Inference based on Robust Divergences, 2018.

Estimation strategy

Online estimation

- Ridge extraction.
- Iterating on time axis.
- Sequential propagation of the information.
- Spatial prior : Gaussian random walk.
- Complexity: Variational inference.
- Accuracy: Backward correction.

Estimation strategy

Sequential demodulation

- Extraction of a ridge.
- Update of the data.
- Removing energy associated with the estimated component.
- Stopping criterion: method of choice³.

³V. Sucic and N. Saulig and B. Boashash. Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy, 2011.

Results - examples 1

Numerical experiments

- Single linear chirp component.
- SNR = -15dB.
- Rényi divergence, $\alpha = 0.2$.

Results - examples 2

Numerical experiments

- Single linear chirp component.
- SNR = -15dB.
- Rényi divergence, $\alpha = 0.2$.

Plan

Observation model

2 Estimation strategy

Results

Numerical experiments

- Reconstruction of a single sinusoidal component merged in a with Gaussian noise.
- Comparison to Brevdo approach⁴

- Comparison using several variational objectives.
- RMSE: Relative mean square error (in dB).
- Better estimation using the proposed method.
- Distinct working regions.

⁴E. Brevdo, N. S. Fuckar, G. Thakur and H-T Wu. The synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.

Results

Numerical experiments

- Reconstruction performance of a MCS.
- Reconstruction quality factor: $RQF = 10 \log_{10} \left(\frac{||x||^2}{||x \hat{x}||^2} \right)$.
- Assessment: Component-wise RQF.

Three components

- Sinusoidal frequency modulated (FM).
- Linear chirp.
- Sinusoid.

Figure: Spectrogram of the analyzed multicomponent signal.

Results

Table: RQF of each components (averaged over 100 realizations) for the different competing approaches for a SNR = 10 dB.

	Sinusoid	Linear chirp	Sin. FM chirp	Average
Brevdo	16.10	15.46	2.86	11.47
Brevdo-Synchrosqueezing	16.43	15.34	5.24	12.34
Proposed β -d, $\beta = 0.5$	16.71	15.22	9.13	13.69
Proposed β -d, $\beta = 0.8$	16.45	14.92	5.49	12.29
Proposed-KL	2.46	2.65	1.18	2.10
Proposed R-d, $\alpha = 0.5$	16.59	15.24	9.57	13.80
Proposed R-d, $\alpha = 0.8$	15.44	15.22	7.84	12.83

Numerical experiments

- Our method obtains the best averaged RQF using R-d ($\alpha = 0.5$).
- Efficient recovery of the sinusoidally FM chirp.
- Alternative divergences circumvent the lack of generality of our model.

Plan

Observation model

2 Estimation strategy

3 Results

Conclusions and perspectives

Conclusions

- A novel pseudo-Bayesian estimation procedure to demodulate MCS.
- An adaptive approach accounting to the presence of arbitrary external noise.
- Efficient extraction of modulated frequency components.

Future works

- Consideration of overlapping ridges.
- Generalizing the variational objective ($\alpha\beta$ -divergence).
- Estimation of divergences hyperparameters.

Thanks for your attention !

quentin.legros@telecom-paris.fr