Deep learning for phase retrieval in propagationbased X-ray phase contrast imaging

Kannara Mom, Bruno Sixou, Max Langer

Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France

max.langer@univ-grenoble-alpes.fr

Quantitative X-ray tomography through the scales

In-line X-ray phase contrast imaging

In-line X-ray phase contrast imaging

In-line X-ray phase contrast imaging

Wave-Object Interaction

- Object described by 3D complex refractive index $n(x, y, z) = 1 \delta(x, y, z) + i\beta(x, y, z)$
- Wave-object interaction described by a transmittance function: $u_0(\mathbf{x}) = T(\mathbf{x})u_{inc}(\mathbf{x})$, $\mathbf{x} = (x, y)$
- Induces amplitude (absorption) and phase modulation: $T(\mathbf{x}) = A(\mathbf{x})e^{i\varphi(\mathbf{x})}$
- Both amplitude and phase modulation are given by projections through n(x, y, z)

Amplitude $A(\mathbf{x}) = e^{-\frac{2\pi}{\lambda}\int \beta(x,y,z)dz} = e^{-\frac{1}{2}\int \mu(x,y,z)dz}$ Phase $\varphi(\mathbf{x}) = \varphi_0 - \frac{2\pi}{\lambda}\int \delta(x,y,z)dz$

- Propagation over finite D is described by Fresnel diffraction
- Propagation is a linear system w.r.t. the wave (Fresnel transform)
 - Convolution of wave $u_D(\mathbf{x}) = (P_D * u_0)(\mathbf{x})$ with propagator $P_D(\mathbf{x}) = \frac{-i}{\lambda D} \exp\left(\frac{i\pi}{\lambda D} |\mathbf{x}|^2\right)$
 - Fourier domain: Multiplication with propagator $\tilde{P}_D(\mathbf{f}) = \exp(-i\pi\lambda D|\mathbf{f}|^2)$
- Non-linear w.r.t intensity: squared modulus of wave: $I_D(\mathbf{x}) = |u_0(\mathbf{x})|^2$
- Fourier transform of intensity: $\tilde{I}_D(\mathbf{x}) = \iint T(\mathbf{x} \frac{\lambda D \mathbf{f}}{2})T^*(\mathbf{x} + \frac{\lambda D \mathbf{f}}{2})\exp(-i2\pi \mathbf{x} \cdot \mathbf{f}) d\mathbf{x}$

High resolution phase contrast imaging

• With X-ray focusing optics : allows high resolution imaging.

Absorption & Phase retrieval : Estimating $B \& \varphi$ from recorded intensity

Phase Retrieval

- Quantitative, non-linear relationship between phase shift and contrast $I_D(\mathbf{x}) = \left| \operatorname{Fr}_{D,\lambda}[\operatorname{T}_{A,\varphi}(\mathbf{x})] \right|^2$
- Phase retrieval: inverse problem of calculating phase shift from phase contrast images at different distances

$$\varphi(\mathbf{x}) = \underset{\varphi}{\operatorname{argmin}} \left\| \left| \operatorname{Fr}_{D,\lambda}[\operatorname{T}_{A,\varphi}(\mathbf{x})] \right|^2 - I_D(\mathbf{x}) \right\|^2$$

Phase Tomography

- Phase shift is projection through refractive index
- Refractive index can be reconstructed by tomography
- Phase tomography is usually divided into a two-step process
 - Phase retrieval (2D)
 - Repeated for each projection angle, tomography (3D)
- Refractive index proportional to electron density
 - I.e. mass density for most materials

Phase nanotomography of bone

Compact Bone & Spongy (Cancellous Bone)

11

Phase nanotomography of bone

Phase Retrieval

• Low-frequency sensitivity

Regularisation, priors

Resolution

- Non-linear refinement
 - NLCG
 - Alternating projections

TIMC CREATIS

Direct reconstruction : Linearized solutions

- Transport-of-intensity equation (TIE)¹ for short distance.
- Contrast Transfer Function (CTF) method, if phase slowly varying & the absorption is weak :

 $\widehat{I}_D(\mathbf{f}) = \delta(\mathbf{f}) - 2\cos(D\pi\lambda|\mathbf{f}|^2)\widehat{B}(\mathbf{f}) + 2\sin(D\pi\lambda|\mathbf{f}|^2)\widehat{\varphi}(\mathbf{f})$

The CTF-linearized ² forward model :

$$\mathbf{F}_{D}^{\text{CTF}}(B,\varphi) = \left\{ \mathscr{F}^{-1}\left(-2\cos(\pi\lambda D |\mathbf{f}|^{2}); 2\sin(\pi\lambda D |\mathbf{f}|^{2})\right) \mathscr{F} \right\} (B,\varphi)$$

+ Fast	 Valid only for certain imaging conditions
	- Loss of nonlinear contribution
	 Single distance only if homogeneous assumption

PAGANIN et al., "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object".
 ZABLER et al., "Optimization of phase contrast imaging using hard x rays".

TIMC CREATIS

State of the art : Non-linear algorithms

Iteratively regularized Gauss-Newton (IRGN) method ³, with $f = -B + i\varphi$:

$$f_{k+1} = \underset{f}{\operatorname{argmin}} \left\{ \left\| \left\| \mathbf{F}_{D}(f_{k}) + \mathbf{F}_{D}'(f_{k})^{*} (f - f_{k}) - \mathbf{I}_{D}^{\operatorname{obs}} \right\|_{2}^{2} + \alpha_{k} \left\| f - f_{0} \right\|_{X}^{2} \right\}$$

where :

- $\alpha_k > 0$ regularization parameter
- $\mathbf{F}'_{D}(f_{k})^{*}$ is the adjoint of Fréchet dérivative at f_{k}
- $||f||_X = \left| \left| (1+\xi^2)^{\frac{s}{2}} \mathscr{F}(f)(\xi) \right| \right|_2 (s=\frac{1}{2})$

$$f_{k+1} = f_k + \left[\mathbf{F}'_D(f_k)^* \mathbf{F}'_D(f_k) + \alpha_k \right]^{-1} \left\{ \mathbf{F}'_D(f_k)^* \left[\mathbf{I}_D^{\text{obs}} - \mathbf{F}_D(f_k) \right] - \alpha_k f_k \right\}$$

• Costly, does not overcome all artefacts, and requires parameter selection

^{3.} MARETZKE et al., "Regularized Newton methods for X-ray phase contrast and general imaging problems".

-0.00

Phase retrieval using CNNs

• Direct reconstruction

Inputs Paired training dataset Random projections of random compositions of ellipsoids

Architectures used for phase retrieval⁴

^{4.} JIN et al., "Deep convolutional neural network for inverse problems in imaging."; PELT, BATENBURG et SETHIAN, "Improving tomographic reconstruction from limited data using mixed-scale dense convolutional neural networks"; MOM, SIXOU et LANGER, "Mixed scale dense convolutional networks for X-ray phase-contrast imaging".

Results direct reconstruction - simulated data

Results of direct reconstruction - experimental data

Direct reconstructions

$+ \mathsf{Fast}$

- + Single distance without assumption on the object
- + Nonlinear contribution

- Doesn't generalize well to real data
- Depend on the quality of the training data
- Lack of physical knowledge

Direct reconstructions - what about the physics?

Learned regularization

$$(B^*, \varphi^*) = \underset{B, \varphi}{\operatorname{argmin}} \left\{ \frac{\left\| \mathbf{F}_D(B, \varphi) - \mathbf{I}_D^{\operatorname{obs}} \right\|_2^2}{\left\| \mathbf{F}_D(B, \varphi) - \mathbf{I}_D^{\operatorname{obs}} \right\|_2^2} + \frac{\mathbf{R}(B, \varphi)}{\left\| \mathbf{R}_D^* \right\|_2^2} \right\}$$

Regularization term

Instead of using choosing ${f R}$ a priori, is it better to learn ${f R}$ from training data ?

Proximal Gradient Descent as example

$$[B^*, \varphi^*] = \operatorname*{argmin}_{B, \varphi} \left\{ \left\| \mathbf{F}_D(B, \varphi) - \mathbf{I}_D^{\mathrm{obs}} \right\|_2^2 + \mathbf{R}(B, \varphi) \right\}$$

Initialisation (B_0, φ_0) and step-size τ . for k = 1, ..., do $\mathsf{d}_{k} = (B_{k}, \varphi_{k}) - \tau \mathbf{F}'_{D} (B_{k}, \varphi_{k})^{*} (\mathbf{F}_{D} (B_{k}, \varphi_{k}) - \mathbf{I}_{D}^{\mathrm{obs}})$ $(B_{k+1},\varphi_{k+1}) = \operatorname{prox}_{\tau \mathbf{R}}(d_k)$

Data Consistency Denoising

end

Figure – Proximal Gradient Descent

Plug-and-Play approach

$$(B^*, \varphi^*) = \underset{B, \varphi}{\operatorname{argmin}} \left\{ \left\| \left| \mathbf{F}_D(B, \varphi) - \mathbf{I}_D^{\operatorname{obs}} \right| \right\|_2^2 + \mathbf{R}(B, \varphi) \right\}$$

Initialisation
$$(B_0, \varphi_0)$$
 and step-size τ .
for $k = 1, ..., do$
 $d_k = (B_k, \varphi_k) - \tau \mathbf{F}'_D(B_k, \varphi_k)^* (\mathbf{F}_D(B_k, \varphi_k) - \mathbf{I}_D^{\text{obs}})$
 $(B_{k+1}, \varphi_{k+1}) = \mathbf{CNN}(d_k)$

Data Consistency Denoising

end

Plug-and-Play for phase retrieval⁸ **CTF-Deep** $\underset{\mathbf{X}}{\operatorname{arg\,min}} f(\mathbf{X}) + R(\mathbf{X})$ $f(\mathbf{X}) = \|\mathbf{Y} - \mathbf{A}(\mathbf{X})\|_{2}^{2}$ $R(\mathbf{X}) = \eta \mathbf{X}^{\mathrm{T}} \big[\mathbf{X} - Dn(\mathbf{X}) \big]$ Noise CTF Recons-**Optimization problem** truction intensity matrix **DnCNN** network Output Input Conv+BN+ReLU Conv+ReLU

(b) CTF-TV (a) AI **PSNR=8.92** PSNR=14.51 Phase (rad) Phase (rad) Width (um) Width (um) (c) CTF-TV+BM3D (d) CTF-Deep PSNR=27.55 **PSNR=20.95** Phase (rad) Phase (rad) 50 50 O Width (um)

8. BAI et al., "Robust contrast-transfer-function phase retrieval via flexible deep learning networks".

Conv

consistency

Deep unrolling

• Unrolling : Fix number of iterations and transform iterations to sequence of CNNs

consistency

Train end-to-end

consistency

 (B_0, φ_0)

• Informed not only by physics but how to find solution

$$[B^*, \varphi^*) = \operatorname{argmin}_{B, \varphi} \left\{ \left\| \mathbf{F}_D(B, \varphi) - \mathbf{I}_D^{\text{obs}} \right\|_2^2 + \mathbf{R}(B, \varphi) \right\}$$

Initialisation
$$(B_0, \varphi_0)$$
 and step-size τ .
for $k = 1, ..., N$ do
 $d_k = (B_k, \varphi_k) - \tau \mathbf{F}'_D(B_k, \varphi_k)^* (\mathbf{F}_D(B_k, \varphi_k) - \mathbf{I}_D^{\text{obs}})$
 $(B_{k+1}, \varphi_{k+1}) = \mathbf{CNN}(d_k)$
end
 $(B_1, \varphi_1) = \frac{d_1}{d_1 + d_2} = \frac{d_1}{d_2} = \frac{d_2}{d_2} = \frac{d_2}{d_2}$

Unrolling in image and signal processing⁹

TABLE I

SUMMARY OF RECENT METHODS EMPLOYING ALGORITHM UNROLLING IN PRACTICAL SIGNAL PROCESSING AND IMAGING APPLICATIONS.

Reference	Year	Application domain	Topics	Underlying Iterative Algorithms		
Hershey et al. 30	2014	Speech Processing	Signal channel source separation	Non-negative matrix factorization		
Wang et al. 26	2015	Computational imaging	Image super-resolution	Coupled sparse coding with iterative shrink- age and thresholding		
Zheng et al. 31	2015	Vision and Recognition	Semantic image segmentation	Conditional random field with mean-field iteration		
Schuler et al. 32	2016	Computational imaging	Blind image deblurring	Alternating minimization		
Chen et al. 16	2017	Computational imaging	Image denoising, JPEG deblocking	Nonlinear diffusion		
Jin <i>et al.</i> [27]	2017	Medical Imaging	Sparse-view X-ray computed tomography	Iterative shrinkage and thresholding		
Liu et al. 33	2018	Vision and Recognition	Semantic image segmentation	Conditional random field with mean-field it- eration		
Solomon <i>et al.</i> 34	2018	Medical imaging	Clutter suppression	Generalized ISTA for robust principal component analysis		
Ding et al. 35	2018	Computational imaging	Rain removal	Alternating direction method of multipliers		
Wang et al. 36	2018	Speech processing	Source separation	Multiple input spectrogram inversion		
Adler et al. 37	2018	Medical Imaging	Computational tomography	Proximal dual hybrid gradient		
Wu et al. 38	2018	Medical Imaging	Lung nodule detection	Proximal dual hybrid gradient		
Yang <i>et al.</i> [14]	2019	Medical imaging	Medical resonance imaging, compressive imaging	Alternating direction method of multipliers		
Hosseini et al. 39	2019	Medical imaging	Medical resonance imaging	Proximal gradient descent		

9. MONGA, LI et ELDAR, "Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image Processing".

TIMC CREATIS

Deep Gauss-Newton (DGN)¹¹

11. MOM, LANGER et SIXOU, "Deep Gauss-Newton for phase retrieval".

Comparison with other unrolling schemes $^{13\,14}$

• Deep Gradient-Descent (DGD), Deep Primal-Dual (DPD)

HAUPTMANN et al., "Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography".
 ADLER et OKTEM, "Learned Primal-Dual Reconstruction".

Comparison with other unrolling schemes

Quantitative evaluation

• Average Quality over 1000 simulated images

	NMSE (in %)		FR	FRCM		Resolution (in nm)		#Parameters	Time (s)
Method	Absorption	Phase	Absorption	Phase		Absorption	Phase	-	
MS-D Net	13.6 (12.8)	10.6 (10.8)	48.8 (13.8)	47.8 (13.3)		102 (77.4)	98.5 (135)	45×10^3	2.60
U-Net	12.8 (17.4)	10.4 (15.9)	45.9 (17.9)	45.9 (18.0)		94.5 (91.7)	96.6 (158)	31×10^6	2.85
GD-TV [€]	37.5 (17.4)	36.4 (18.2)	61.8 (12.2)	57.7 (13.2)		214 (101)	139 (78)	_	145
IRGN	85.5 (40.7)	39.3 (15.0)	71.2 (9.95)	68.1 (5.45)		238 (136)	154 (43)	_	116
NL-PDHG	29.19 (14.8)	23.6 (12.6)	58.4 (9.08)	50.7 (8.28)		146 (85.2)	99.7 (26.5)	-	147
DGD	13.2 (17.3)	4.74 (6.99)	37.6 (13.2)	23.8 (15.7)		82.2 (116)	64.3 (62.6)	41×10^3	4.85
DPD	12.5 (15.5)	4.48 (6.2)	39.2 (14.4)	24.3 (16.5)		107 (138)	75.5 (66.7)	31×10^3	5.63
DGN	12.1 (13.5)	4.61 (6.20)	35.7 (15.7)	23.0 (16.6)		72.2 (55.2)	62.3 (37.0)	31×10^3	5.88

Table – Comparison of different methods applied on the test dataset containing 1 000 images, according to different metrics.

Comparison with other unrolling schemes

$+ \mathsf{Fast}$

- $+\,$ Take knowledge of the physical model into account
- $+\,$ More robust and better generalization

- A lot of memory required
- Lack of convergence proof
- Model need to be accurate

PyPhase - a Python package for phase retrieval

- Motivation : facilitate access to phase retrieval codes and permit development, testing, comparison and deployment of different algorithms
- A library of phase retrieval algorithms
- High level of modularity to facilitate the integration of different functionality, e.g., registration, tomography, reading and writing data, and visualization.
- Tools for deployment on different computing infrastructures
- Tools for implementation and development of phase retrieval algorithms
- available on PyPI
- Repository : https ://gitlab.in2p3.fr/mlanger/pyPhase
- Publication Journal of Synchrotron Radiation (May 2021) : https://journals.iucr.org/s/issues/2021/04/00/gy5024/gy5024.pdf

Deep learning for phase retrieval in propagationbased X-ray phase contrast imaging

Kannara Mom, Bruno Sixou, Max Langer

Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France

max.langer@univ-grenoble-alpes.fr

Simulation of X-ray phase contrast using the Wigner Distribution Function

Emilie Pietersoone, Jean Michel Létang, Simon Rit, Emmanuel Brun, <u>Max Langer</u>

Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France

max.langer@univ-grenoble-alpes.fr

Simulation of phase contrast

[[]Nielsen, McMorrow (2011)]

Simulation of phase contrast

- Origin of artefacts LF problem due to scatter?
- Preparation of synchrotron experiments
- Training data for CNN methods
- Address validity of Fresnel/Fraunhofer model
- Combine contributions from "all" physical processes
- Idea: calculate interference at the exit plane instead of the detector plane using the Wigner Distribution Function (WDF)
 - Generate photon trajectories by sampling the WDF
 - Combine with MC simulation for incoherent effects
 - Simulate a coherent imaging system photon by photon

Wigner Distribution Function

• WDF:
$$W_f(x,\phi) = \int f\left(x+\frac{y}{2}\right) f^*\left(x-\frac{y}{2}\right) e^{i\frac{2\pi}{\lambda}x\phi}$$

- Quasi-probability (real but can be negative)
- Projection property

$$|f(x)|^2 = \int W_f(x,\phi) \, d\phi \quad \left|\tilde{f}(\phi)\right|^2 = \int W_f(x,\phi) \, dx$$

- Independent of (but related to) contrast model
 - Fraunhofer: rotation of WDF by $\pi/2$
 - Fresnel: shear of WDF by λD

T. Pfau, Phys. Today 1998

Proposed algorithm

• Generate a photon with random position x_n

- Simulate scattering through Monte Carlo particle transport
 - If scattered, ray-trace to detector and record a hit

- If not scattered, check absorption with $P(x_n) = \int |W_f(x_n, \phi)| d\phi$
- If not absorbed, get diffraction angle and sign according to $W_f(x_n, \phi)$
 - Ray-trace to detector.
 - If sign negative, increase negative potential +1
 - If sign positive, decrease negative potential and record a hit if <0
 - Signed particle formulation of quantum physics (Sellier 2018)

Proof of concept – Double-slit with scatterer

• Keep everything analytical to avoid numerical problems for now

$$\Psi(x) = B_1 \prod \left(\frac{x-a}{A}\right) + B_2 \prod \left(\frac{x+a}{A}\right)$$

$$W_{\Psi}(x,\theta) = 2AB_1 \wedge \left(\frac{x-a}{A/2}\right) \operatorname{sinc} \left([2A-4|x-a|]\frac{\theta}{\lambda}\right)$$

$$+2AB_2 \wedge \left(\frac{x+a}{A/2}\right) \operatorname{sinc} \left([2A-4|x+a|]\frac{\theta}{\lambda}\right)$$

$$+4 * A(B_1 * B_2) \wedge \left(\frac{x}{A/2}\right) \operatorname{sinc} \left([2A-4|x|]\frac{\theta}{\lambda}\right) \cos\left(\frac{2\pi}{\lambda}\theta[2a]\right)$$

 $W_f(x_n, \phi)$

Results No scattering Individual hits on the detector

Intensity

With scattering

0% scattering

50% scattering

Wigner Approach - conclusion

- Simple successful proof of concept, but...
- Numerical calculation of $P(x_n) = \int |W_f(x_n, \phi)| d\phi$ and $W_f(x_n, \phi)$

Simulation of X-ray phase contrast using the Wigner Distribution Function

Emilie Pietersoone, Jean Michel Létang, Simon Rit, Emmanuel Brun, <u>Max Langer</u>

Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000 Grenoble, France

max.langer@univ-grenoble-alpes.fr

