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Introduction

Focus on multi-component signals (MCS).

x(n) =
K∑

k=1

xk(n), with xk(n) = αk(n)e
j2πϕk (n)

MCS

Mixture of K superimposed components.

ak(n) and ϕk(n) the time-varying amplitude and phase of component k.

Objectives

IF and IA estimation.

Robust to noise and modes overlapping.

Acceptable computational time.
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Observation model

Motivation

Spectrogram : squared modulus of the STFT.

Model vertical spectrogram slices.

1D signal observed for a fixed time instant n ∈ [0,N − 1].

Bayesian framework.
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Observation model

Motivation

Spectrogram : squared modulus of the STFT.

Model vertical spectrogram slices.

1D signal observed for a fixed time instant n ∈ [0,N − 1].

g(m) = 2
√

πL
M

e−(
2πmL
M )2 .

m : frequency in [0,M − 1].

L : time spread of the analysis
window

Known Gaussian analysis window.

Expected signal shape at given
time indexes.

Sinusoidal components only.

7/49



Observation model
Prior models

Estimation strategy
Results

Conclusion

Observation model

Motivation

Spectrogram : squared modulus of the STFT.

Model vertical spectrogram slices.

1D signal observed for a fixed time instant n ∈ [0,N − 1].

Requirements

Each ridges has to be modelled.

Solution : a distribution for each
ridge.

Mixture model.

Different positions and
amplitudes.

Instantaneous frequency (IF).

Instantaneous amplitude (IA).
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Observation model

Motivation

Spectrogram : squared modulus of the STFT.

Model vertical spectrogram slices.

1D signal observed for a fixed time instant n ∈ [0,N − 1].

Requirements

Noise has to be considered in the
model.

Additive noise modeling.

Limits

Components interference.

Multiplicative noise.
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Observation model

Mixture model

Mixture of Gaussian distributions plus a uniform term.

K Gaussian distributions to model the K signal components.

A single uniform term to model arbitrary distributed noise.

p(sn,m|w n,mn) =
K∑

k=1

wn,kg(m −mn,k) +

(
1 −

K∑
k=1

wn,k

)
M

Spectrogram columns as sn = [sn,0, . . . , sn,M−1]
⊤.

Ridge positions mn = [mn,1, . . . ,mn,K ]
⊤ associated with ϕ′

n = { dϕk
dn

(n)}Kk=1

Mixture weight w n = [wn,1, . . . ,wn,K ]
⊤.
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Observation model

Mixture weight

wn,k is the probability to observe the kth component in sn.
1 −

∑K
k=1 wn,k is the probability to observe noise in sn.

wn,k =
an,k

K∑
k=1

an,k +Mbn

bn : average noise amplitude at time n.

w n = [wn,1, . . . ,wn,K ]
⊤ belongs to [0, 1]K and

∑
k wn,k ≤ 1.

Joint likelihood function :

p(S |W ,M) =
∏
n

p(sn|w n,mn)

with S = {sn}N−1
n=0 , W = {w n}N−1

n=0 and M = {mn}N−1
n=0 .
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Prior model : Total variation

Need of prior distributions to complete the Bayesian model.

A weak uniform prior model is assigned to the mixture weights W .

Models the lack of prior information.

Need a prior model for M .
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Prior model : Total variation

Ridges can be split or destroyed in the presence of noise.

→ Enforcing spatial smoothness between successive IF estimates.

→ Constraining the derivative of the estimates

Markov random field (MRF) Total variation (TV) prior model on M to
preserve sharp edges1.

p(M |ϵ) ∝ exp

[
−ϵ

K∑
k=1

∥∥∆1m.,k

∥∥
1

]

with ∆1. denoting the first order finite difference.

m.,k the k-th row of M .

ϵ an arbitrary fixed user-defined hyper-parameter.

3L. I. Rudin and S. Osher and E. Fatemi, Nonlinear total variation based noise removal
algorithms, 1992.
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Results

SNR = 10dB
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SNR = -5dB
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Observation

Spectrograms of a signal made of two portions of noisy sinusoidal waves

Enables the estimates to make sharp transitions when the ridges are split
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Prior model : Laplacian

Motivation

Other choice: constraining the mean curvature of estimated ridges.

Bound IFs second derivatives.

MRF Laplacian prior model on M to ensure smooth estimation2.

p(M |λ) ∝ exp

[
−λ

2

K∑
k=1

∣∣∣∣∆2m.,k

∣∣∣∣2
2

]

with ∆2 denoting the second order finite difference.

L2-norm penalization

λ an arbitrary fixed user-defined hyper-parameter.

4X. Wang, Laplacian Operator-Based Edge Detectors, 2007.
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Estimation strategy

Posterior distribution

Assumed independence between W and M .

Clarity: hyper-parameters are omitted in the sequel.

Bayes rule to compute the joint posterior distribution.

p(W ,M |S) ∝ p(S |W ,M)p(M)p(W )

Limitations

Challenging joint estimation of (W ,M).

Multimodal likelihood w.r.t. M .

Presence of multiple ridges.
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Estimation strategy

EM algorithm

Challenging joint estimation of (W ,M).

Due to the unobserved variable M .

EM algorithms3are particularly adapted to address this problem.

The shape of the observation model is well suited for such methods.

→ Marginalizing over the hidden parameter M .

Marginal maximum a posteriori estimation

Ŵ MMAP = argmax
W

∑
M

p(W ,M |S) = argmax
W

p(W |S)

5G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.
19/49



Observation model
Prior models

Estimation strategy
Results

Conclusion

Estimation strategy

EM algorithm

Unobserved variables → compute iteratively MMAP estimates.

At each iteration, two main steps are performed.

At each iteration of the algorithm, two main steps are performed.

Given W (i) the current estimation of W at iteration i .

EM-steps

Q(W |W (i)) = EM|W (i),S [log(p(W ,M |S))]

W (i+1) = argmax
W

Q(W |W (i)).
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Estimation strategy

Stochastic approach

Intractable expectation due to the MRF prior models.

Solution : Stochastic EM algorithm.

Multimodal conditional distribution p(M |W (i),S) and overlapping
components would require long simulation steps.

Instead we adopt a strategy similar to mean field-like approximations6

6G. Celeux and F. Forbes and N. Peyrard, EM procedures using mean field-like
approximations for Markov model-based image segmentation, 2003.
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Estimation strategy

Approximating distribution

The idea is to replace p(M |W (i),S) to make the expectation tractable.

Q(W |W (i)) =
∑
n,k

M−1∑
m=0

p(mn,k = m|sn,w (i)
n ) log(p(sn, m̂n,k = m|w n))

First, we compute an approximation p̃(M |M̄) of p(M).

Auxiliary random sample : M̄
Using a hot-started 2-step Gibbs sampler.

Bayes rule p̃(M |W (i),S) = p(S|W (i),M)p̃(M|M̄)
p(S) .
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Estimation strategy

Sequential MMAP

Current estimation of M from p̃(M |W (i),S) through sequential MMAP
estimation.

Simplified M-step

Current estimate M , denoted by M (i+1), is used at each iteration to
simplify the M-step.

W (i+1) = argmax
W

Q(W |W (i)) ≈ argmax
W

log
(
p(S |W ,M (i+1))

)
+ C ,

where C ∼ log (p(M)p(W )) is a constant.

The final estimate is denoted as Ŵ
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Estimation strategy

Sequential MMAP estimation

At each EM iteration, M is estimated from p̃(M |W (i),S).
But it is multimodal.
Sequential approach selecting most likely spaced estimates.

First Estimate through MAP estimation from p̃(M|W (i),S).

Propagate the estimation in a neighborhood of size v .

Once a ridge is estimated : discard

Set p̃(M|W (i),S) in a neighborhood of size vr around the ridge to zeros.

Iterate K times.
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Estimation strategy

Our method depends on two parameters
The frequency radius v centered around the previous estimate.
The radius vr of discarded frequencies.

Need assumptions to automatize ridge estimation.

vr is set to three standard deviations (three-sigma rule of thumb) of the
data distribution.

More difficult for v : balance between two conflicting aspects:
Successive IF estimates have to be close to each other (small v)
v needs to be greater than vr to jump over discarded values.

We set v = 4vr , which enables jumps over removed regions of overlap.
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Estimation strategy

Limitation

Discard : creates gap on
overlapping regions.

Need to refine the ridges.

Without post-processing
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Post-processing

Detection of overlapping regions (close IF).

Polynomial interpolation of remaining pieces.
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With post-processing
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Without post-processing

100 200 300 400 500

Time index

0

0.25

0.5

N
o

rm
a

li
z
e

d

F
re

q
u

e
n

c
y

With post-processing
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Without post-processing
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Figure: Spectrograms of a MCS merged with additive white Gaussian noise (SNR
= 10 dB). Left: with post-processing. Right : without post-processing.
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Amplitude estimation

Amplitude estimation after the estimation of W and M .

The relation between wn,k , the signal amplitude αk(n) and the analysis
window θ can be expressed as

wn,k =
α2
k(n)∥Fθ∥2

2
K∑

k=1
α2
k(n)∥Fθ∥2

2 +Mbn

,

with Fθ = M
2L

√
π

the Fourier transform of the analysis window θ.

The amplitude can not be directly estimated.

Solution

We propose to approximate the denominator by setting s̄n =
∑M−1

m=0 sn,m as

Esn|an,mn,bn [s̄n] =
K∑

k=1

α2
k(n)∥Fθ∥2

2 +Mbn
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Estimation strategy

Amplitude estimation

We propose to approximate the denominator by setting s̄n =
∑M−1

m=0 sn,m as

Esn|an,mn,bn [s̄n] =
K∑

k=1

α2
k(n)∥Fθ∥2

2 +Mbn

Allows to approximate the denominator by the expected values of s̄n.

It directly follows that α2
k(n) =

wn,kE [s̄n ]
∥Fθ∥2

2
.

This assumes s̄n to be a good approximation of E [s̄n].

Amplitude estimation

The final amplitude estimate thus reads:

α̂k(n) =

√
ŵn,k s̄n
∥Fθ∥2

2
.
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Results

Experiments

IF estimation performance.

Comparison with different approaches 7,8,9.

Proposed approach using either TV or Laplacian prior models.

White Gaussian noise with various Signal-to-noise ratio (SNR).

Simple cases first.

7Q. Legros and D. Fourer, A novel pseudo-Bayesian approach for robust multi-ridge
detection and mode retrieval, 2021.

8E. Brevdo and N. S. Fuckar and G. Thakur and H-T. Wu, The Synchrosqueezing
algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.

9N. Laurent and S. Meignen, A Novel Ridge Detector for Nonstationary Multicomponent
Signals: Development and Application to Robust Mode Retrieval, 2021.
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Experiments

Relative mean squared error: RMSE = 1
NM2

K∑
k=1

N−1∑
n=0

(m̄n,k − m̂n,k)
2.

m̄n,k (resp. m̂n,k) is the actual (resp. estimated) normalized IF of the k-th
component at the n-th time instant.

100 200 300 400 500

Time index

0

0.25

0.5

N
o

rm
a
li
z
e
d

 f
re

q
u

e
n

c
y

Reconstruction

MCS with two components

Prior hyperparameters: ϵ = 10−2

and λ = 10−1.
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Observations

Similar behavior.

RD slightly better at high SNR.
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Results

Experiments

Similar experiment but with overlapping components.

The RD method is no longer considered (not adapted).

Use instead 3DRD method10
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Reconstruction

3DRD : 3D separation and
estimation.

Carmona method jump
parameters → set to v and vr .

10X. Zhu and H. Yang and Z. Zhang and J. Gao and N. Liu, Frequency-chirprate
reassignment, 2020.
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Results
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Observations

Without post-processing.

Poor performances.

Oscillations in overlapping region.
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Results
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Observations

With post-processing.

EM and Carmona → best performances.
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Results

Observations

Amplitude modulated components.

Decreasing (resp. increasing) amplitude assigned to decreasing (resp.
increasing) chirp.
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Results
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Experiments

EM is the most efficient method.

Carmona limited (does not insure smoothness of component amplitude)

With and without post-processing.
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Amplitude

Relative mean absolute error RMAE = 1
NK

K−1∑
k=0

N−1∑
n=0

|ᾱk(n)− α̂k(n)|.

ᾱk(n) (resp. α̂k(n)) is the actual (resp. estimated) amplitude.

Comparison: PB11 and deterministic approach (Local)12.

Oracle equivalent for each method (IF known).

Laplacian prior only.

11Q. Legros, D. Fourer, Pseudo-Bayesian Approach for Robust Mode Detection and
Extraction Based on the STFT, 2022.

12D. Fourer and F. Auger and G. Peeters, Local AM/FM parameters estimation: application
to sinusoidal modeling and blind audio source separation, 2018.
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Observations

Pure tone and linear chirp signals.

Sinusoidal amplitude.

slight frequency modulation.
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Observations

Similar results at high SNR.

Local approach limited for negative SNR.

EM and PB similar to their Oracles → low impact of IF performances.
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Observations

Applied now on previous MCS.

One linear amplitude (from 2 to 0.5) and one Sinusoidal amplitude.

Best performance obtained with EM → PB limited at high SNR.
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Observation

Speech signal of Japanese native speakers13

Comparison with RD algorithm.

Many gaps, discontinuities and spurious local maxima.

13D. Fourer and T. Shochi and J-L. Rouas and A. Rilliard, Perception and manipulation of
Japanese attitudes, 2016.
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Results
EM-Lap
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Observation

Bat signal

EM exhibit oscillations - RD provides smooth estimates centered around
the IF.

RD : troubles to estimate mode 3 perfectly.
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Conclusions and perspectives

Conclusions

A new model for IF and IA estimation of MCS modes in the presence of
noise.

Adapted to component overlap and low SNR scenarios.

Stochastic variant of the EM algorithm (low computational cost).
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Conclusions and perspectives

Future works

Consider the modulation rate14.

Generalizing the estimation process (amplitude, hyperparameters).

Extension to generalized EM algorithm15.

14M. Colominas and S. Meignen and D. H. Pham, Time-Frequency Filtering Based on
Model Fitting in the Time-Frequency Plane, 2019.

15G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.
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Thanks for your attention !

Contact me
quentin.legros@univ-orleans.fr

Paper
https://arxiv.org/pdf/2203.16334.pdf

Code
https://github.com/QuentinLEGROS/TSP2023
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