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@ Focus on multi-component signals (MCS).

x(n) = ZXk(n), with xx(n) = ak(,,)ei27r¢k(n)

k=1

@ Mixture of K superimposed components.

@ ai(n) and ¢k(n) the time-varying amplitude and phase of component k.

o IF and IA estimation.

@ Robust to noise and modes overlapping.
@ Acceptable computational time.
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@ Spectrogram : squared modulus of the STFT.

@ Model vertical spectrogram slices.
o 1D signal observed for a fixed time instant n € [0, N — 1].

@ Bayesian framework.
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Observation model

Motivation
@ Spectrogram : squared modulus of the STFT.
@ Model vertical spectrogram slices.
@ 1D signal observed for a fixed time instant n € [0, N — 1].
V.
Observed signal spectrogram 2
0.5 _ 27l _— 2wmL
e g(m) = =Yi-e ()",
> e m: frequency in [0, M — 1].
c
2 @ L : time spread of the analysis
£ window
© 0.25 v
8
[
£ @ Known Gaussian analysis window.
= {[Modeled observation . .
o Expected signal shape at given
ol L time indexes.
50 100 150 200 250 300 350 400 450 500
Time index @ Sinusoidal components only. )
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Observation model

Motivation

@ Spectrogram :

squared modulus of the STFT.

@ Model vertical spectrogram slices.

@ 1D signal observed for a fixed time instant n € [0, N — 1].

Normalized frequency

0.5

0.25

{
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Time index

Requirements

Each ridges has to be modelled.

Solution : a distribution for each

ridge.
Mixture model.

Different positions and
amplitudes.

Instantaneous frequency (IF).

Instantaneous amplitude (IA).
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@ Spectrogram : squared modulus of the STFT.

@ Model vertical spectrogram slices.
@ 1D signal observed for a fixed time instant n € [0, N — 1].

0.5 —~— -
’ s

- ‘Requirements

- {- @ Noise has to be considered in the

- o model.

o Additive noise modeling.

“f—ﬂ_ o Components interference.

- @ Multiplicative noise.

Normalized frequency
o
o

100 200 300 400 500

Time index 9/4
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Observation model

Mixture model
@ Mixture of Gaussian distributions plus a uniform term.
@ K Gaussian distributions to model the K signal components.

@ A single uniform term to model arbitrary distributed noise.

p(sn,m‘wm mn) = Z Wn,kg(m - mn,k) +

k=1

K

K (1 - Wn,k)
k=1
M

@ Spectrogram columns as s, = [sn.0,...,Snm_1] -
o Ridge positions m, = [my1,...,ma k] associated with ¢, = {92 (n)}K_,
o Mixture weight w, = [Wa 1, ..., W,,,K]T.
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Wi,k is the probability to observe the kth component in s,.

1 — 31, Wa is the probability to observe noise in s,.

_ an, k
Wn k = K

Z an,k + Mbn
k=1
@ b, : average noise amplitude at time n.
Wn = [Wai,- -, w,,,K]T belongs to [0, 1]K and >, whk < 1.

Joint likelihood function :

P(sl w, M) = H p(sl"'Wna mn)

with § = {s,}M W = {w,}M and M = {m,,}"; J
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@ Need of prior distributions to complete the Bayesian model.

@ A weak uniform prior model is assigned to the mixture weights W.

@ Models the lack of prior information.

@ Need a prior model for M.
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Prior model : Total variation

Ridges can be split or destroyed in the presence of noise.

— Enforcing spatial smoothness between successive IF estimates.

— Constraining the derivative of the estimates

Markov random field (MRF) Total variation (TV) prior model on M to
preserve sharp edges’.

K
p(Mle) x exp —ez ||A1m,,kH1

k=1

o with A®. denoting the first order finite difference.
e m_y the k-th row of M.

@ ¢ an arbitrary fixed user-defined hyper-parameter.

3L. 1. Rudin and S. Osher and E. Fatemi, Nonlinear total variation based noise removal
algorithms, 1992.
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SNR = 10dB SNR = -5dB
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@ Spectrograms of a signal made of two portions of noisy sinusoidal waves
@ Enables the estimates to make sharp transitions when the ridges are split
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Prior model : Laplacian

Motivation

Other choice: constraining the mean curvature of estimated ridges.

Bound IFs second derivatives.

e MRF Laplacian prior model on M to ensure smooth estimation?.

PR
p(M|X) o exp 752 HAzm.,kHi
k=1

with A? denoting the second order finite difference.

L2-norm penalization

A an arbitrary fixed user-defined hyper-parameter.

4X. Wang, Laplacian Operator-Based Edge Detectors, 2007.
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o Results

© Conclusion
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@ Assumed independence between W and M.

o Clarity: hyper-parameters are omitted in the sequel.

@ Bayes rule to compute the joint posterior distribution.

p(W,M|S) o p(S|W, M)p(M)p(W)

@ Challenging joint estimation of (W, M).
o Multimodal likelihood w.r.t. M.

@ Presence of multiple ridges.
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Estimation strategy

EM algorithm

o Challenging joint estimation of (W, M).
@ Due to the unobserved variable M.
°

EM algorithms>are particularly adapted to address this problem.

— Marginalizing over the hidden parameter M.

The shape of the observation model is well suited for such methods.

Marginal maximum a posteriori estimation

Wwumap = argmax Z p(W, M|S) = argmax p(W|S)
w = w

5G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.
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@ Unobserved variables — compute iteratively MMAP estimates.

@ At each iteration, two main steps are performed.
@ At each iteration of the algorithm, two main steps are performed.

e Given W) the current estimation of W at iteration i.

QUWIW) = Eyyw s llog(p(W, M|S))]

W = argmax Q(W|wW").
w
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Estimation strategy

Stochastic approach

@ Intractable expectation due to the MRF prior models.
@ Solution : Stochastic EM algorithm.

e Multimodal conditional distribution p(M|W(")7 S) and overlapping
components would require long simulation steps.

o Instead we adopt a strategy similar to mean field-like approximations®

8G. Celeux and F. Forbes and N. Peyrard, EM procedures using mean field-like
approximations for Markov model-based image segmentation, 2003.
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Estimation strategy

Approximating distribution
o The idea is to replace p(M|W(), S) to make the expectation tractable.

M—1
QWIW®) =37 37 p(mii = mlsy, w?) 1og(p(sn, e = miwy)
n,k m=0
o First, we compute an approximation (M|M) of p(M).
o Auxiliary random sample : M

o Using a hot-started 2-step Gibbs sampler.

. (i =M
e Bayes rule p(M|W©) S) = w.
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o Current estimation of M from p(M|W), S) through sequential MMAP
estimation.

o Current estimate M, denoted by M) is used at each iteration to
simplify the M-step.

Wt = argmax Q(W|W")) ~ argmax log (p(S|W, M(i+1))) +C,
w w

@ where C ~ log (p(M)p(W)) is a constant. J

@ The final estimate is denoted as W
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Estimation strategy

Sequential MMAP estimation
o At each EM iteration, M is estimated from p(M|W© ).

e But it is multimodal.
@ Sequential approach selecting most likely spaced estimates.

o First Estimate through MAP estimation from p(M|W() §).
e Propagate the estimation in a neighborhood of size v.

e Once a ridge is estimated : discard

e Set ﬁ(M|W(f),S) in a neighborhood of size v, around the ridge to zeros.

o Iterate K times.
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Estimation strategy

Our method depends on two parameters

o The frequency radius v centered around the previous estimate.
o The radius v, of discarded frequencies.

@ Need assumptions to automatize ridge estimation.

@ v, is set to three standard deviations (three-sigma rule of thumb) of the
data distribution.

More difficult for v : balance between two conflicting aspects:

o Successive IF estimates have to be close to each other (small v)
e v needs to be greater than v, to jump over discarded values.

o We set v = 4v,, which enables jumps over removed regions of overlap.
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Without post-processing

0.5

@ Discard : creates gap on
overlapping regions.

Normalized
Frequency
&

o Need to refine the ridges.

100 200 300 400 500
Time index

@ Detection of overlapping regions (close IF).

@ Polynomial interpolation of remaining pieces.

27/49



With post

Normalized
>
B

Frequency

100 200 300 400 500
Time index

With post-processing

Normalized
Frequency
>

—

100 200 300 400 500
Time index

Figure: Spectrograms of a MCS merged with additive white Gaussian noise (SNR
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Estimation strategy

Amplitude estimation
o Amplitude estimation after the estimation of W and M.

@ The relation between w,, «, the signal amplitude ax(n) and the analysis
window 6 can be expressed as

ak(m)|Foll3

Whn k = K )
> ag(n)lIFell3 + Mb,
k=1
e with Fp = the Fourier transform of the analysis window 6.

@ The amphtude can not be directly estimated.

Solution
@ We propose to approximate the denominator by setting §, = EZ o Sn,m as
Snlanvmmbn [Sn] - Zak ||F9H2 + Mb”
k=1
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Estimation strategy

Amplitude estimation

@ We propose to approximate the denominator by setting §, = Zgz_ol Sn,m as

K
Es,\an,mn.b, [$n] = Zai(”)”FGHg + Mb,
k=1

@ Allows to approximate the denominator by the expected values of 5,.
o It directly follows that az(n) = Wﬂ#ﬁ‘[i"].
2

@ This assumes §, to be a good approximation of E[S,].

Amplitude estimation

@ The final amplitude estimate thus reads:
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Results

Experiments

o IF estimation performance.

e Comparison with different approaches 78:°.

Proposed approach using either TV or Laplacian prior models.

@ White Gaussian noise with various Signal-to-noise ratio (SNR).

Simple cases first.

7Q. Legros and D. Fourer, A novel pseudo-Bayesian approach for robust multi-ridge
detection and mode retrieval, 2021.

8E. Brevdo and N. S. Fuckar and G. Thakur and H-T. Wu, The Synchrosqueezing
algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.

°N. Laurent and S. Meignen, A Novel Ridge Detector for Nonstationary Multicomponent
Signals: Development and Application to Robust Mode Retrieval, 2021.
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N—

o Relative mean squared error: RMSE = 1z > > (Mink — k)%
k: n=
)n

® Mnk (resp. rin ) is the actual (resp. estimated
component at the n-th time instant.

K 1

=1 0

ormalized IF of the k-th

0.5

Normalized frequency
°
N
B

100

200 300
Time index

400

500

e MCS with two components

@ Prior hyperparameters: € = 1072
and A =10"1.
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@ Similar behavior.

o RD slightly better at high SNR.
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@ Similar experiment but with overlapping components.

@ The RD method is no longer considered (not adapted).
o Use instead 3DRD method™

0.5

@ 3DRD : 3D separation and
estimation.

Normalized frequency
&

o Carmona method jump
parameters — set to v and v,.

100 200 300 400 500
Time index

10X, Zhu and H. Yang and Z. Zhang and J. Gao and N. Liu, Frequency-chirprate
reassignment, 2020.

35/49



-25

RMSE (dB)

-35 1

-45 1
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20

e Without post-processing.

@ Poor performances.

@ Oscillations in overlapping region.
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—— Carmona + pp
—*—PB-a=0.5
——3DRD
—o&—EM-Lap + pp
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-20

RMSE (dB)
8

-40
-50
-60
-20 -10 0 10 20
SNR (dB)

o With post-processing.
o EM and Carmona — best performances.
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o Amplitude modulated components.
@ Decreasing (resp. increasing) amplitude assigned to decreasing (resp.
increasing) chirp.
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@ EM is the most efficient method.
@ Carmona limited (does not insure smoothness of component amplitude)
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o With and without post-processing.
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Results
Amplitude
K—1N—1
o Relative mean absolute error RMAE = & >~ > |ak(n) — ax(n)|.
k=0 n=0

o ay(n) (resp. Ax(n)) is the actual (resp. estimated) amplitude.
e Comparison: PB'! and deterministic approach (Local)*?.

@ Oracle equivalent for each method (IF known).

@ Laplacian prior only.

11Q. Legros, D. Fourer, Pseudo-Bayesian Approach for Robust Mode Detection and
Extraction Based on the STFT, 2022.

12D Fourer and F. Auger and G. Peeters, Local AM/FM parameters estimation: application
to sinusoidal modeling and blind audio source separation, 2018.
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@ Pure tone and linear chirp signals.

@ Sinusoidal amplitude.

o slight frequency modulation.

500
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10*

@ Similar results at high SNR.
@ Local approach limited for negative SNR.

—>—EM
——Oracle EM
—PB

—*— Oracle PB
—&— Local
—8— Oracle Local

5
SN

0 5 10 15 20

R (dB)

10

—>—EM

—*—Oracle EM
-~ PB

—*—Oracle PB
—5— Loc:

—8—Oracle Local

5 0 5 10 15 20

-SNR (dB)

@ EM and PB similar to their Oracles — low impact of IF performances.
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@ Applied now on previous MCS.

@ One linear amplitude (from 2 to 0.5) and one Sinusoidal amplitude.

@ Best performance obtained with EM — PB limited at high SNR.
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@ Speech signal of Japanese native speakers®®
e Comparison with RD algorithm.

@ Many gaps, discontinuities and spurious local maxima.

13D, Fourer and T. Shochi and J-L. Rouas and A. Rilliard, Perception and manipulation of
Japanese attitudes, 2016.
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EM-Lap

Normalized
Frequency
Normalized
Frequency

o 75 150 225 300 375 0 75 150 225 300 375
Time index Time index

e Bat signal

o EM exhibit oscillations - RD provides smooth estimates centered around
the IF.

@ RD : troubles to estimate mode 3 perfectly.
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@ A new model for IF and IA estimation of MCS modes in the presence of
noise.

o Adapted to component overlap and low SNR scenarios.

@ Stochastic variant of the EM algorithm (low computational cost).
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o Consider the modulation rate'#.

@ Generalizing the estimation process (amplitude, hyperparameters).

e Extension to generalized EM algorithm?®.

14M. Colominas and S. Meignen and D. H. Pham, Time-Frequency Filtering Based on
Model Fitting in the Time-Frequency Plane, 2019.
15G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.
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Thanks for your attention |

Contact me
quentin.legros@univ-orleans.fr

Paper
https://arxiv.org/pdf/2203.16334.pdf

Code
https://github.com/QuentinLEGROS/TSP2023
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