Instantaneous Frequency and Amplitude Estimation in Multi-Component Signals Using EM-based Algorithm

Quentin Legros

November 10, 2023

Observation model
 Prior models Estimation strategy Results
 Conclusion

Collaborative work

- Dominique Fourer
- Sylvain Meignen
- Marcelo A. Colominas

Introduction

- Focus on multi-component signals (MCS).

$$
x(n)=\sum_{k=1}^{K} x_{k}(n), \quad \text { with } x_{k}(n)=\alpha_{k}(n) e^{j 2 \pi \phi_{k}(n)}
$$

MCS

- Mixture of K superimposed components.
- $a_{k}(n)$ and $\phi_{k}(n)$ the time-varying amplitude and phase of component k.

Objectives

- IF and IA estimation.
- Robust to noise and modes overlapping.
- Acceptable computational time.

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy
(4) Results
(5) Conclusion

Observation mode

Prior models
Estimation strategy
Results
Conclusion

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy
(4) Results
(5) Conclusion

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in[0, N-1]$.
- Bayesian framework.

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in[0, N-1]$.

- $g(m)=\frac{2 \sqrt{\pi} L}{M} e^{-\left(\frac{2 \pi m L}{M}\right)^{2}}$.
- m : frequency in $[0, M-1]$.
- L : time spread of the analysis window
- Known Gaussian analysis window.
- Expected signal shape at given time indexes.
- Sinusoidal components only.

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in[0, N-1]$.

Requirements

- Each ridges has to be modelled.
- Solution : a distribution for each ridge.
- Mixture model.
- Different positions and amplitudes.
- Instantaneous frequency (IF).
- Instantaneous amplitude (IA).

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in[0, N-1]$.

Requirements

- Noise has to be considered in the model.
- Additive noise modeling.

Limits

- Components interference.
- Multiplicative noise.

Observation model

Mixture model

- Mixture of Gaussian distributions plus a uniform term.
- K Gaussian distributions to model the K signal components.
- A single uniform term to model arbitrary distributed noise.

$$
p\left(s_{n, m} \mid \boldsymbol{w}_{n}, \boldsymbol{m}_{n}\right)=\sum_{k=1}^{K} w_{n, k} g\left(m-m_{n, k}\right)+\frac{\left(1-\sum_{k=1}^{K} w_{n, k}\right)}{M}
$$

- Spectrogram columns as $\boldsymbol{s}_{n}=\left[s_{n, 0}, \ldots, s_{n, M-1}\right]^{\top}$.
- Ridge positions $\boldsymbol{m}_{n}=\left[m_{n, 1}, \ldots, m_{n, K}\right]^{\top}$ associated with $\boldsymbol{\phi}_{n}^{\prime}=\left\{\frac{d \phi_{k}}{d n}(n)\right\}_{k=1}^{K}$
- Mixture weight $\boldsymbol{w}_{n}=\left[w_{n, 1}, \ldots, w_{n, k}\right]^{\top}$.

Observation model

Mixture weight

- $w_{n, k}$ is the probability to observe the k th component in s_{n}.
- $1-\sum_{k=1}^{K} w_{n, k}$ is the probability to observe noise in \boldsymbol{s}_{n}.

$$
w_{n, k}=\frac{a_{n, k}}{\sum_{k=1}^{K} a_{n, k}+M b_{n}}
$$

- b_{n} : average noise amplitude at time n.
- $\boldsymbol{w}_{n}=\left[w_{n, 1}, \ldots, w_{n, K}\right]^{\top}$ belongs to $[0,1]^{K}$ and $\sum_{k} w_{n, k} \leq 1$.
- Joint likelihood function:

$$
p(\boldsymbol{S} \mid \boldsymbol{W}, \boldsymbol{M})=\prod_{n} p\left(\mathrm{~s}_{n} \mid \boldsymbol{w}_{n}, \boldsymbol{m}_{n}\right)
$$

- with $\boldsymbol{S}=\left\{\boldsymbol{s}_{n}\right\}_{n=0}^{N-1}, \boldsymbol{W}=\left\{\boldsymbol{w}_{n}\right\}_{n=0}^{N-1}$ and $\boldsymbol{M}=\left\{\boldsymbol{m}_{n}\right\}_{n=0}^{N-1}$.

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy

4 Results
(5) Conclusion

Prior model : Total variation

- Need of prior distributions to complete the Bayesian model.
- A weak uniform prior model is assigned to the mixture weights W.
- Models the lack of prior information.
- Need a prior model for M.

Prior model : Total variation

- Ridges can be split or destroyed in the presence of noise.
- \rightarrow Enforcing spatial smoothness between successive IF estimates.
- \rightarrow Constraining the derivative of the estimates
- Markov random field (MRF) Total variation (TV) prior model on M to preserve sharp edges ${ }^{1}$.

$$
p(\boldsymbol{M} \mid \epsilon) \propto \exp \left[-\epsilon \sum_{k=1}^{K}\left\|\Delta^{1} \boldsymbol{m}_{\cdot, k}\right\|_{1}\right]
$$

- with Δ^{1}. denoting the first order finite difference.
- $\boldsymbol{m}_{\text {, }, k}$ the k-th row of M.
- ϵ an arbitrary fixed user-defined hyper-parameter.

[^0]
Results

Observation

- Spectrograms of a signal made of two portions of noisy sinusoidal waves
- Enables the estimates to make sharp transitions when the ridges are split

Prior model : Laplacian

Motivation

- Other choice: constraining the mean curvature of estimated ridges.
- Bound IFs second derivatives.
- MRF Laplacian prior model on \mathbf{M} to ensure smooth estimation ${ }^{2}$.

$$
p(\boldsymbol{M} \mid \lambda) \propto \exp \left[-\frac{\lambda}{2} \sum_{k=1}^{K}\left\|\Delta^{2} \boldsymbol{m}_{\cdot, k}\right\|_{2}^{2}\right]
$$

- with Δ^{2} denoting the second order finite difference.
- L^{2}-norm penalization
- λ an arbitrary fixed user-defined hyper-parameter.

[^1]
Observation model

Prior models

Estimation strategy

Conclusion

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy
(4) Results
(5) Conclusion

Estimation strategy

Posterior distribution

- Assumed independence between W and M.
- Clarity: hyper-parameters are omitted in the sequel.
- Bayes rule to compute the joint posterior distribution.

$$
p(\boldsymbol{W}, \boldsymbol{M} \mid \boldsymbol{S}) \propto p(\boldsymbol{S} \mid \boldsymbol{W}, \boldsymbol{M}) p(\boldsymbol{M}) p(\boldsymbol{W})
$$

Limitations

- Challenging joint estimation of ($\boldsymbol{W}, \boldsymbol{M}$).
- Multimodal likelihood w.r.t. M.
- Presence of multiple ridges.

Estimation strategy

EM algorithm

- Challenging joint estimation of (W, M).
- Due to the unobserved variable M.
- EM algorithms ${ }^{3}$ are particularly adapted to address this problem.
- The shape of the observation model is well suited for such methods.
- \rightarrow Marginalizing over the hidden parameter M.

Marginal maximum a posteriori estimation

$$
\hat{\boldsymbol{W}}_{\text {MMAP }}=\underset{\boldsymbol{W}}{\operatorname{argmax}} \sum_{\boldsymbol{M}} p(\boldsymbol{W}, \boldsymbol{M} \mid \boldsymbol{S})=\underset{\boldsymbol{W}}{\operatorname{argmax}} p(\boldsymbol{W} \mid \boldsymbol{S})
$$

[^2]
Estimation strategy

EM algorithm

- Unobserved variables \rightarrow compute iteratively MMAP estimates.
- At each iteration, two main steps are performed.
- At each iteration of the algorithm, two main steps are performed.
- Given $\boldsymbol{W}^{(i)}$ the current estimation of \boldsymbol{W} at iteration i.

EM-steps

$$
\begin{gathered}
Q\left(\boldsymbol{W} \mid \boldsymbol{W}^{(i)}\right)=E_{\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}}[\log (p(\boldsymbol{W}, \boldsymbol{M} \mid \boldsymbol{S}))] \\
\boldsymbol{W}^{(i+1)}=\underset{\boldsymbol{W}}{\operatorname{argmax}} Q\left(\boldsymbol{W} \mid \boldsymbol{W}^{(i)}\right)
\end{gathered}
$$

Estimation strategy

Stochastic approach

- Intractable expectation due to the MRF prior models.
- Solution: Stochastic EM algorithm.
- Multimodal conditional distribution $p\left(\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)$ and overlapping components would require long simulation steps.
- Instead we adopt a strategy similar to mean field-like approximations ${ }^{6}$

[^3]
Estimation strategy

Approximating distribution

- The idea is to replace $p\left(M \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)$ to make the expectation tractable.

$$
Q\left(\boldsymbol{W} \mid \boldsymbol{W}^{(i)}\right)=\sum_{n, k} \sum_{m=0}^{M-1} p\left(m_{n, k}=m \mid \boldsymbol{s}_{n}, w_{n}^{(i)}\right) \log \left(p\left(\boldsymbol{s}_{n}, \hat{m}_{n, k}=m \mid \boldsymbol{w}_{n}\right)\right)
$$

- First, we compute an approximation $\tilde{p}(\boldsymbol{M} \mid \bar{M})$ of $p(\boldsymbol{M})$.
- Auxiliary random sample : \bar{M}
- Using a hot-started 2-step Gibbs sampler.
- Bayes rule $\tilde{p}\left(\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)=\frac{p\left(\boldsymbol{S} \mid \boldsymbol{W}^{(i)}, \boldsymbol{M}\right) \tilde{(}(\boldsymbol{M} \mid \bar{M})}{p(\boldsymbol{S})}$.

Estimation strategy

Sequential MMAP

- Current estimation of \boldsymbol{M} from $\tilde{p}\left(\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)$ through sequential MMAP estimation.

Simplified M-step

- Current estimate \boldsymbol{M}, denoted by $\boldsymbol{M}^{(i+1)}$, is used at each iteration to simplify the M -step.

$$
\boldsymbol{W}^{(i+1)}=\underset{\boldsymbol{W}}{\operatorname{argmax}} Q\left(\boldsymbol{W} \mid \boldsymbol{W}^{(i)}\right) \approx \underset{\boldsymbol{W}}{\operatorname{argmax}} \log \left(p\left(\boldsymbol{S} \mid \boldsymbol{W}, \boldsymbol{M}^{(i+1)}\right)\right)+C,
$$

- where $C \sim \log (p(M) p(W))$ is a constant.
- The final estimate is denoted as \hat{W}

Estimation strategy

Sequential MMAP estimation

- At each EM iteration, \boldsymbol{M} is estimated from $\tilde{p}\left(M \mid \boldsymbol{W}^{(i)}, S\right)$.
- But it is multimodal.
- Sequential approach selecting most likely spaced estimates.
- First Estimate through MAP estimation from $\tilde{p}\left(\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)$.
- Propagate the estimation in a neighborhood of size v.
- Once a ridge is estimated : discard
- Set $\tilde{p}\left(\boldsymbol{M} \mid \boldsymbol{W}^{(i)}, \boldsymbol{S}\right)$ in a neighborhood of size v_{r} around the ridge to zeros.
- Iterate K times.

Prior models

Estimation strategy

Results
Conclusion

Estimation strategy

Estimation strategy

- Our method depends on two parameters
- The frequency radius v centered around the previous estimate.
- The radius v_{r} of discarded frequencies.
- Need assumptions to automatize ridge estimation.
- v_{r} is set to three standard deviations (three-sigma rule of thumb) of the data distribution.
- More difficult for v : balance between two conflicting aspects:
- Successive IF estimates have to be close to each other (small v)
- v needs to be greater than v_{r} to jump over discarded values.
- We set $v=4 v_{r}$, which enables jumps over removed regions of overlap.

Observation model

Estimation strategy

Estimation strategy

Limitation

- Discard : creates gap on overlapping regions.
- Need to refine the ridges.

Post-processing

- Detection of overlapping regions (close IF).
- Polynomial interpolation of remaining pieces.

Observation model

Prior models

Estimation strategy

Results
Conclusion

Estimation strategy

Figure: Spectrograms of a MCS merged with additive white Gaussian noise (SNR $=10 \mathrm{~dB})$. Left: with post-processing. Right : without post-processing.

Estimation strategy

Amplitude estimation

- Amplitude estimation after the estimation of W and M.
- The relation between $w_{n, k}$, the signal amplitude $\alpha_{k}(n)$ and the analysis window θ can be expressed as

$$
w_{n, k}=\frac{\alpha_{k}^{2}(n)\left\|F_{\theta}\right\|_{2}^{2}}{\sum_{k=1}^{K} \alpha_{k}^{2}(n)\left\|F_{\theta}\right\|_{2}^{2}+M b_{n}},
$$

- with $F_{\theta}=\frac{M}{2 L \sqrt{\pi}}$ the Fourier transform of the analysis window θ.
- The amplitude can not be directly estimated.

Solution

- We propose to approximate the denominator by setting $\overline{\boldsymbol{s}}_{n}=\sum_{m=0}^{M-1} s_{n, m}$ as

$$
E_{s_{n} \mid a_{n}, \boldsymbol{m}_{n}, b_{n}}\left[\overline{\boldsymbol{s}}_{n}\right]=\sum_{k=1}^{K} \alpha_{k}^{2}(n)\left\|F_{\theta}\right\|_{2}^{2}+M b_{n}
$$

Estimation strategy

Amplitude estimation

- We propose to approximate the denominator by setting $\overline{\boldsymbol{s}}_{n}=\sum_{m=0}^{M-1} s_{n, m}$ as

$$
E_{s_{n} \mid a_{n}, m_{n}, b_{n}}\left[\bar{s}_{n}\right]=\sum_{k=1}^{K} \alpha_{k}^{2}(n)\left\|F_{\theta}\right\|_{2}^{2}+M b_{n}
$$

- Allows to approximate the denominator by the expected values of $\overline{\boldsymbol{s}}_{n}$.
- It directly follows that $\alpha_{k}^{2}(n)=\frac{w_{n, k} E\left[\bar{s}_{n}\right]}{\left\|F_{\theta}\right\|_{2}^{2}}$.
- This assumes $\overline{\boldsymbol{s}}_{n}$ to be a good approximation of $E\left[\overline{\boldsymbol{s}}_{n}\right]$.

Amplitude estimation

- The final amplitude estimate thus reads:

$$
\hat{\alpha}_{k}(n)=\sqrt{\frac{\hat{w}_{n, k} \overline{\boldsymbol{s}}_{n}}{\left\|F_{\theta}\right\|_{2}^{2}}} .
$$

Observation model

Prior models
Estimation strategy

Results

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy
(4) Results
(5) Conclusion

Results

Experiments

- IF estimation performance.
- Comparison with different approaches ${ }^{7,8,9}$.
- Proposed approach using either TV or Laplacian prior models.
- White Gaussian noise with various Signal-to-noise ratio (SNR).
- Simple cases first.

[^4]
Results

Experiments

- Relative mean squared error: $\mathrm{RMSE}=\frac{1}{N M^{2}} \sum_{k=1}^{K} \sum_{n=0}^{N-1}\left(\bar{m}_{n, k}-\hat{m}_{n, k}\right)^{2}$.
- $\bar{m}_{n, k}\left(\right.$ resp. $\left.\hat{m}_{n, k}\right)$ is the actual (resp. estimated) normalized IF of the k-th component at the n-th time instant.

Reconstruction

- MCS with two components
- Prior hyperparameters: $\epsilon=10^{-2}$ and $\lambda=10^{-1}$.

Observation model

Prior models Estimation strategy Results
Conclusion

Results

Observations

- Similar behavior.
- RD slightly better at high SNR.

Results

Experiments

- Similar experiment but with overlapping components.
- The RD method is no longer considered (not adapted).
- Use instead 3DRD method ${ }^{10}$

Reconstruction

- 3DRD : 3D separation and estimation.
- Carmona method jump parameters \rightarrow set to v and v_{r}.

[^5]
Results

Observations

- Without post-processing.
- Poor performances.
- Oscillations in overlapping region.

Observation model

Prior models Estimation strategy Results
Conclusion

Results

Observations

- With post-processing.
- EM and Carmona \rightarrow best performances.

Results

Observations

- Amplitude modulated components.
- Decreasing (resp. increasing) amplitude assigned to decreasing (resp. increasing) chirp.

Results

Experiments

- EM is the most efficient method.
- Carmona limited (does not insure smoothness of component amplitude)
- With and without post-processing.

Results

Amplitude

- Relative mean absolute error $\mathrm{RMAE}=\frac{1}{N K} \sum_{k=0}^{K-1} \sum_{n=0}^{N-1}\left|\bar{\alpha}_{k}(n)-\hat{\alpha}_{k}(n)\right|$.
- $\bar{\alpha}_{k}(n)\left(\right.$ resp. $\left.\hat{\alpha}_{k}(n)\right)$ is the actual (resp. estimated) amplitude.
- Comparison: PB^{11} and deterministic approach (Local) ${ }^{12}$.
- Oracle equivalent for each method (IF known).
- Laplacian prior only.

[^6]
Results

Observations

- Pure tone and linear chirp signals.
- Sinusoidal amplitude.
- slight frequency modulation.

Results

Observations

- Similar results at high SNR.
- Local approach limited for negative SNR.
- EM and PB similar to their Oracles \rightarrow low impact of IF performances.

Results

Observations

- Applied now on previous MCS.
- One linear amplitude (from 2 to 0.5) and one Sinusoidal amplitude.
- Best performance obtained with EM \rightarrow PB limited at high SNR.

Results

Observation

- Speech signal of Japanese native speakers ${ }^{13}$
- Comparison with RD algorithm.
- Many gaps, discontinuities and spurious local maxima.
${ }^{13}$ D. Fourer and T. Shochi and J-L. Rouas and A. Rilliard, Perception and manipulation of Japanese attitudes, 2016.

Results

Observation

- Bat signal
- EM exhibit oscillations - RD provides smooth estimates centered around the IF.
- RD : troubles to estimate mode 3 perfectly.

Plan

(1) Observation model
(2) Prior models
(3) Estimation strategy

4 Results
(5) Conclusion

Conclusions and perspectives

Conclusions

- A new model for IF and IA estimation of MCS modes in the presence of noise.
- Adapted to component overlap and low SNR scenarios.
- Stochastic variant of the EM algorithm (low computational cost).

Conclusions and perspectives

Future works

- Consider the modulation rate ${ }^{14}$.
- Generalizing the estimation process (amplitude, hyperparameters).
- Extension to generalized EM algorithm ${ }^{15}$.

[^7]
Thanks for your attention!

Contact me quentin.legros@univ-orleans.fr

Paper
https://arxiv.org/pdf/2203.16334.pdf

Code
https://github.com/QuentinLEGROS/TSP2023

[^0]: ${ }^{3}$ L. I. Rudin and S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, 1992.

[^1]: ${ }^{4}$ X. Wang, Laplacian Operator-Based Edge Detectors, 2007.

[^2]: ${ }^{5}$ G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.

[^3]: ${ }^{6}$ G. Celeux and F. Forbes and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, 2003.

[^4]: ${ }^{7}$ Q. Legros and D. Fourer, A novel pseudo-Bayesian approach for robust multi-ridge detection and mode retrieval, 2021.
 ${ }^{8}$ E. Brevdo and N. S. Fuckar and G. Thakur and H-T. Wu, The Synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.
 ${ }^{9}$ N. Laurent and S. Meignen, A Novel Ridge Detector for Nonstationary Multicomponent Signals: Development and Application to Robust Mode Retrieval, 2021.

[^5]: ${ }^{10}$ X. Zhu and H. Yang and Z. Zhang and J. Gao and N. Liu, Frequency-chirprate reassignment, 2020.

[^6]: ${ }^{11}$ Q. Legros, D. Fourer, Pseudo-Bayesian Approach for Robust Mode Detection and Extraction Based on the STFT, 2022.
 ${ }^{12}$ D. Fourer and F. Auger and G. Peeters, Local AM/FM parameters estimation: application to sinusoidal modeling and blind audio source separation, 2018.

[^7]: ${ }^{14}$ M. Colominas and S. Meignen and D. H. Pham, Time-Frequency Filtering Based on Model Fitting in the Time-Frequency Plane, 2019.
 ${ }^{15}$ G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.

