

Instantaneous Frequency and Amplitude Estimation in Multi-Component Signals Using EM-based Algorithm

Quentin Legros

November 10, 2023

Collaborative work

• Dominique Fourer

• Sylvain Meignen

• Marcelo A. Colominas

Introduction

• Focus on multi-component signals (MCS).

$$x(n) = \sum_{k=1}^{K} x_k(n)$$
, with $x_k(n) = \alpha_k(n)e^{j2\pi\phi_k(n)}$

MCS

- Mixture of K superimposed components.
- $a_k(n)$ and $\phi_k(n)$ the time-varying amplitude and phase of component k.

Objectives

- IF and IA estimation.
- Robust to noise and modes overlapping.
- Acceptable computational time.

Plan

2 Prior models

3 Estimation strategy

A Results

Plan

Prior models

3 Estimation strategy

A Results

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in [0, N-1]$.
- Bayesian framework.

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in [0, N-1]$.

•
$$g(m) = \frac{2\sqrt{\pi}L}{M}e^{-\left(\frac{2\pi mL}{M}\right)^2}$$
.

- m: frequency in [0, M 1].
- L : time spread of the analysis window
- Known Gaussian analysis window.
- Expected signal shape at given time indexes.
- Sinusoidal components only.

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in [0, N-1]$.

Requirements

- Each ridges has to be modelled.
- Solution : a distribution for each ridge.
- Mixture model.
- Different positions and amplitudes.
- Instantaneous frequency (IF).
- Instantaneous amplitude (IA).

Observation model

Motivation

- Spectrogram : squared modulus of the STFT.
- Model vertical spectrogram slices.
- 1D signal observed for a fixed time instant $n \in [0, N-1]$.

Requirements

- Noise has to be considered in the model.
- Additive noise modeling.

Limits

- Components interference.
- Multiplicative noise.

Observation model

Mixture model

- Mixture of Gaussian distributions plus a uniform term.
- K Gaussian distributions to model the K signal components.
- A single uniform term to model arbitrary distributed noise.

$$p(s_{n,m}|\boldsymbol{w}_n,\boldsymbol{m}_n) = \sum_{k=1}^{K} w_{n,k}g(m-m_{n,k}) + \frac{\left(1-\sum_{k=1}^{K} w_{n,k}\right)}{M}$$

- Spectrogram columns as $\boldsymbol{s}_n = [\boldsymbol{s}_{n,0}, \ldots, \boldsymbol{s}_{n,M-1}]^\top$.
- Ridge positions $\boldsymbol{m}_n = [m_{n,1}, \dots, m_{n,K}]^\top$ associated with $\boldsymbol{\phi}'_n = \{\frac{d\phi_k}{dn}(n)\}_{k=1}^K$
- Mixture weight $\boldsymbol{w}_n = [w_{n,1}, \dots, w_{n,K}]^\top$.

Observation model

Mixture weight

- $w_{n,k}$ is the probability to observe the kth component in s_n .
- $1 \sum_{k=1}^{K} w_{n,k}$ is the probability to observe noise in s_n .

$$w_{n,k} = \frac{a_{n,k}}{\sum\limits_{k=1}^{K} a_{n,k} + Mb_n}$$

- b_n : average noise amplitude at time n.
- $\boldsymbol{w}_n = [w_{n,1}, \dots, w_{n,K}]^\top$ belongs to $[0,1]^K$ and $\sum_k w_{n,k} \leq 1$.

• Joint likelihood function :

$$p(\boldsymbol{S}|\boldsymbol{W},\boldsymbol{M}) = \prod_{n} p(\mathbf{s}_{n}|\boldsymbol{w}_{n},\boldsymbol{m}_{n})$$

• with $S = \{s_n\}_{n=0}^{N-1}$, $W = \{w_n\}_{n=0}^{N-1}$ and $M = \{m_n\}_{n=0}^{N-1}$.

Plan

2 Prior models

3 Estimation strategy

A Results

Prior model : Total variation

- Need of prior distributions to complete the Bayesian model.
- A weak uniform prior model is assigned to the mixture weights W.
- Models the lack of prior information.
- Need a prior model for *M*.

Prior model : Total variation

- Ridges can be split or destroyed in the presence of noise.
- $\bullet \rightarrow$ Enforcing spatial smoothness between successive IF estimates.
- $\bullet\,\rightarrow\, {\rm Constraining}$ the derivative of the estimates
- Markov random field (MRF) Total variation (TV) prior model on *M* to preserve sharp edges¹.

$$p(\boldsymbol{M}|\epsilon) \propto \exp\left[-\epsilon\sum_{k=1}^{K}\left\|\Delta^{1}\boldsymbol{m}_{.,k}\right\|_{1}
ight]$$

- with Δ^1 . denoting the first order finite difference.
- $\boldsymbol{m}_{.,k}$ the *k*-th row of \boldsymbol{M} .
- ϵ an arbitrary fixed user-defined hyper-parameter.

³L. I. Rudin and S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, 1992.

Results

- Spectrograms of a signal made of two portions of noisy sinusoidal waves
- Enables the estimates to make sharp transitions when the ridges are split

Prior model : Laplacian

Motivation

- Other choice: constraining the mean curvature of estimated ridges.
- Bound IFs second derivatives.
- MRF Laplacian prior model on M to ensure smooth estimation².

$$p(\boldsymbol{M}|\lambda) \propto \exp\left[-rac{\lambda}{2}\sum_{k=1}^{K}\left|\left|\Delta^{2}\boldsymbol{m}_{\cdot,k}\right|\right|_{2}^{2}
ight]$$

- \bullet with Δ^2 denoting the second order finite difference.
- L²-norm penalization
- λ an arbitrary fixed user-defined hyper-parameter.

⁴X. Wang, Laplacian Operator-Based Edge Detectors, 2007.

Plan

2 Prior models

3 Estimation strategy

A Results

Estimation strategy

Posterior distribution

- Assumed independence between *W* and *M*.
- Clarity: hyper-parameters are omitted in the sequel.
- Bayes rule to compute the joint posterior distribution.

$$p(W, M|S) \propto p(S|W, M)p(M)p(W)$$

Limitations

- Challenging joint estimation of (*W*, *M*).
- Multimodal likelihood w.r.t. M.
- Presence of multiple ridges.

Estimation strategy

EM algorithm

- Challenging joint estimation of (*W*, *M*).
- Due to the unobserved variable *M*.
- EM algorithms³ are particularly adapted to address this problem.
- The shape of the observation model is well suited for such methods.
- \rightarrow Marginalizing over the hidden parameter M.

Marginal maximum a posteriori estimation

$$\hat{W}_{MMAP} = \underset{W}{\operatorname{argmax}} \sum_{M} p(W, M|S) = \underset{W}{\operatorname{argmax}} p(W|S)$$

⁵G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.

Estimation strategy

EM algorithm

- \bullet Unobserved variables \rightarrow compute iteratively MMAP estimates.
- At each iteration, two main steps are performed.
- At each iteration of the algorithm, two main steps are performed.
- Given $W^{(i)}$ the current estimation of W at iteration *i*.

EM-steps

$$Q(\boldsymbol{W}|\boldsymbol{W}^{(i)}) = E_{\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S}}[\log(p(\boldsymbol{W},\boldsymbol{M}|\boldsymbol{S}))]$$

$$\boldsymbol{W}^{(i+1)} = \operatorname*{argmax}_{\boldsymbol{W}} \quad \boldsymbol{Q}(\boldsymbol{W}|\boldsymbol{W}^{(i)}).$$

Estimation strategy

Stochastic approach

- Intractable expectation due to the MRF prior models.
- Solution : Stochastic EM algorithm.
- Multimodal conditional distribution $p(\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S})$ and overlapping components would require long simulation steps.
- Instead we adopt a strategy similar to mean field-like approximations⁶

⁶G. Celeux and F. Forbes and N. Peyrard, EM procedures using mean field-like approximations for Markov model-based image segmentation, 2003.

Estimation strategy

Approximating distribution

• The idea is to replace $p(M|W^{(i)}, S)$ to make the expectation tractable.

$$Q(\boldsymbol{W}|\boldsymbol{W}^{(i)}) = \sum_{n,k} \sum_{m=0}^{M-1} p(\boldsymbol{m}_{n,k} = m|\boldsymbol{s}_n, \boldsymbol{w}_n^{(i)}) \log(p(\boldsymbol{s}_n, \hat{\boldsymbol{m}}_{n,k} = m|\boldsymbol{w}_n))$$

- First, we compute an approximation $\tilde{p}(M|\bar{M})$ of p(M).
- Auxiliary random sample : \bar{M}
- Using a hot-started 2-step Gibbs sampler.
- Bayes rule $\tilde{p}(\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S}) = \frac{p(\boldsymbol{S}|\boldsymbol{W}^{(i)},\boldsymbol{M})\tilde{p}(\boldsymbol{M}|\boldsymbol{\bar{M}})}{p(\boldsymbol{S})}$.

Estimation strategy

Sequential MMAP

• Current estimation of **M** from $\tilde{p}(\mathbf{M}|\mathbf{W}^{(i)}, \mathbf{S})$ through sequential MMAP estimation.

Simplified M-step

• Current estimate *M*, denoted by *M*^(*i*+1), is used at each iteration to simplify the M-step.

$$oldsymbol{W}^{(i+1)} = rgmax_{oldsymbol{W}} Q(oldsymbol{W} | oldsymbol{W}^{(i)}) pprox rgmax_{oldsymbol{W}} \log \left(
ho(oldsymbol{S} | oldsymbol{W}, oldsymbol{M}^{(i+1)})
ight) + C,$$

- where $C \sim \log(p(M)p(W))$ is a constant.
- \bullet The final estimate is denoted as $\hat{\pmb{W}}$

Estimation strategy

Sequential MMAP estimation

- At each EM iteration, \boldsymbol{M} is estimated from $\tilde{p}(\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S})$.
- But it is multimodal.
- Sequential approach selecting most likely spaced estimates.
 - First Estimate through MAP estimation from $\tilde{p}(\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S})$.
 - Propagate the estimation in a neighborhood of size v.
 - Once a ridge is estimated : discard
 - Set $\tilde{p}(\boldsymbol{M}|\boldsymbol{W}^{(i)},\boldsymbol{S})$ in a neighborhood of size v_r around the ridge to zeros.
 - Iterate K times.

Estimation strategy

Estimation strategy

- Our method depends on two parameters
 - The frequency radius v centered around the previous estimate.
 - The radius vr of discarded frequencies.
- Need assumptions to automatize ridge estimation.
- v_r is set to three standard deviations (three-sigma rule of thumb) of the data distribution.
- More difficult for v : balance between two conflicting aspects:
 - Successive IF estimates have to be close to each other (small v)
 - v needs to be greater than v_r to jump over discarded values.
- We set $v = 4v_r$, which enables jumps over removed regions of overlap.

Estimation strategy

Post-processing

- Detection of overlapping regions (close IF).
- Polynomial interpolation of remaining pieces.

Estimation strategy

Figure: Spectrograms of a MCS merged with additive white Gaussian noise (SNR = 10 dB). Left: with post-processing. Right : without post-processing.

Estimation strategy

Amplitude estimation

- Amplitude estimation after the estimation of W and M.
- The relation between $w_{n,k}$, the signal amplitude $\alpha_k(n)$ and the analysis window θ can be expressed as

$$w_{n,k} = rac{lpha_k^2(n) \|F_{ heta}\|_2^2}{\sum\limits_{k=1}^K lpha_k^2(n) \|F_{ heta}\|_2^2 + Mb_n},$$

- with $F_{\theta} = \frac{M}{2L\sqrt{\pi}}$ the Fourier transform of the analysis window θ .
- The amplitude can not be directly estimated.

Solution

• We propose to approximate the denominator by setting $\bar{s}_n = \sum_{m=0}^{M-1} s_{n,m}$ as

$$E_{\boldsymbol{s}_n|\boldsymbol{a}_n,\boldsymbol{m}_n,b_n}\left[\boldsymbol{\bar{s}}_n\right] = \sum_{k=1}^{K} \alpha_k^2(n) \|F_{\theta}\|_2^2 + Mb_n$$

Estimation strategy

Amplitude estimation

• We propose to approximate the denominator by setting $\bar{s}_n = \sum_{m=0}^{M-1} s_{n,m}$ as

$$E_{\boldsymbol{s}_n|\boldsymbol{a}_n,\boldsymbol{m}_n,\boldsymbol{b}_n}\left[\boldsymbol{\bar{s}}_n\right] = \sum_{k=1}^{K} \alpha_k^2(\boldsymbol{n}) \|F_{\theta}\|_2^2 + Mb_n$$

- Allows to approximate the denominator by the expected values of \bar{s}_n .
- It directly follows that $\alpha_k^2(n) = \frac{w_{n,k} E[\bar{s}_n]}{\|F_{\theta}\|_2^2}$.
- This assumes \bar{s}_n to be a good approximation of $E[\bar{s}_n]$.

Amplitude estimation

• The final amplitude estimate thus reads:

$$\hat{\alpha}_k(n) = \sqrt{\frac{\hat{w}_{n,k} \bar{\boldsymbol{s}}_n}{\|F_{\theta}\|_2^2}}$$

Plan

2 Prior models

3 Estimation strategy

Results

Experiments

- IF estimation performance.
- Comparison with different approaches ^{7,8,9}.
- Proposed approach using either TV or Laplacian prior models.
- White Gaussian noise with various Signal-to-noise ratio (SNR).
- Simple cases first.

 $^{^{7}\}mathrm{Q}.$ Legros and D. Fourer, A novel pseudo-Bayesian approach for robust multi-ridge detection and mode retrieval, 2021.

⁸E. Brevdo and N. S. Fuckar and G. Thakur and H-T. Wu, The Synchrosqueezing algorithm: a robust analysis tool for signals with time-varying spectrum, 2011.

⁹N. Laurent and S. Meignen, A Novel Ridge Detector for Nonstationary Multicomponent Signals: Development and Application to Robust Mode Retrieval, 2021.

Results

Experiments

- Relative mean squared error: RMSE = $\frac{1}{NM^2} \sum_{k=1}^{K} \sum_{n=0}^{N-1} (\bar{m}_{n,k} \hat{m}_{n,k})^2$.
- $\bar{m}_{n,k}$ (resp. $\hat{m}_{n,k}$) is the actual (resp. estimated) normalized IF of the *k*-th component at the *n*-th time instant.

Reconstruction

- MCS with two components
- Prior hyperparameters: $\epsilon = 10^{-2}$ and $\lambda = 10^{-1}$.

Results

- Similar behavior.
- RD slightly better at high SNR.

Results

Experiments

- Similar experiment but with overlapping components.
- The RD method is no longer considered (not adapted).
- Use instead 3DRD method¹⁰

Reconstruction

- 3DRD : 3D separation and estimation.
- Carmona method jump parameters \rightarrow set to v and v_r .

¹⁰X. Zhu and H. Yang and Z. Zhang and J. Gao and N. Liu, Frequency-chirprate reassignment, 2020.

Results

- Without post-processing.
- Poor performances.
- Oscillations in overlapping region.

Results

- With post-processing.
- $\bullet~$ EM and Carmona $\rightarrow~$ best performances.

Results

- Amplitude modulated components.
- Decreasing (resp. increasing) amplitude assigned to decreasing (resp. increasing) chirp.

Results

Experiments

- EM is the most efficient method.
- Carmona limited (does not insure smoothness of component amplitude)
- With and without post-processing.

Results

Amplitude

- Relative mean absolute error RMAE = $\frac{1}{NK} \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} |\bar{\alpha}_k(n) \hat{\alpha}_k(n)|.$
- $\bar{\alpha}_k(n)$ (resp. $\hat{\alpha}_k(n)$) is the actual (resp. estimated) amplitude.
- Comparison: PB¹¹ and deterministic approach (Local)¹².
- Oracle equivalent for each method (IF known).
- Laplacian prior only.

 $^{^{11}\}mbox{Q}.$ Legros, D. Fourer, Pseudo-Bayesian Approach for Robust Mode Detection and Extraction Based on the STFT, 2022.

¹²D. Fourer and F. Auger and G. Peeters, Local AM/FM parameters estimation: application to sinusoidal modeling and blind audio source separation, 2018.

Results

- Pure tone and linear chirp signals.
- Sinusoidal amplitude.
- slight frequency modulation.

Results

- Similar results at high SNR.
- Local approach limited for negative SNR.
- $\bullet\,$ EM and PB similar to their Oracles \rightarrow low impact of IF performances.

Results

- Applied now on previous MCS.
- One linear amplitude (from 2 to 0.5) and one Sinusoidal amplitude.
- \bullet Best performance obtained with EM \rightarrow PB limited at high SNR.

Results

- Speech signal of Japanese native speakers¹³
- Comparison with RD algorithm.
- Many gaps, discontinuities and spurious local maxima.

¹³D. Fourer and T. Shochi and J-L. Rouas and A. Rilliard, Perception and manipulation of Japanese attitudes, 2016.

Results

- Bat signal
- EM exhibit oscillations RD provides smooth estimates centered around the IF.
- RD : troubles to estimate mode 3 perfectly.

Plan

2 Prior models

3 Estimation strategy

A Results

Conclusions and perspectives

Conclusions

- A new model for IF and IA estimation of MCS modes in the presence of noise.
- Adapted to component overlap and low SNR scenarios.
- Stochastic variant of the EM algorithm (low computational cost).

Conclusions and perspectives

Future works

- Consider the modulation rate¹⁴.
- Generalizing the estimation process (amplitude, hyperparameters).

• Extension to generalized EM algorithm¹⁵.

¹⁴M. Colominas and S. Meignen and D. H. Pham, Time-Frequency Filtering Based on Model Fitting in the Time-Frequency Plane, 2019.

¹⁵G. McLachlan and T. Krishnan, The EM algorithm and extensions, 2007.

Thanks for your attention !

Contact me quentin.legros@univ-orleans.fr

Paper https://arxiv.org/pdf/2203.16334.pdf

Code https://github.com/QuentinLEGROS/TSP2023