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Analytic signal

Definition
For a signal f (x) ∈ L2(R) the corresponding analytic signal f +(x) is defined as follows:

f +(x) = 2F−1
(
1R+F f

)
(x),∀x ∈ R

where F is the Fourier operator:

F f (ξ) = f̂ (ξ) =

∫
R
f (t)e−2πitξdt, ξ ∈ R

Theorem (Paley-Wiener)

Suppose f and f̂ have moderate decrease. Then f̂ (ξ) = 0 for all ξ < 0 if and only if f
can be extended to a continuous and bounded function in the closed upper half-plane
{z = x + iy : y ≥ 0} with f holomorphic in the interior.
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Analytic Time-Frequency Transform

Let Vg f (x , ξ) and Wψf (x , y) be a time-frequency (e.g. STFT rwith window g) and
time-scale (e.g. wavelet with mother wavelet ψ) representations for a signal
f (x) ∈ L2(R) :

Vg f (x , ξ) = M f
g (x , ξ)e iΦ

f
g (x ,ξ)

Wψf (x , y) = M f
ψ(x , y)e iΦ

f
ψ(x ,y)

I Transforms generated by analytic functions: analytic wavelets whose Fourier
transform vanishes at negative frequencies ψ̂(ξ) = 0 for ξ < 0.

I Transforms that map to the space of analytic functions: a wavelet transform using
an analytic wavelet at a fixed scale y0 also can be extended to an analytic
function on the upper half-plane [Holighaus et al. 19].

3/27



Analytic STFT and wavelet transforms [Ascensi et al. 09]

Theorem
Consider the model space of a Gabor atom g ∈ L2(R) and z = x + iξ a point in the
complex plane:

Hg =

{
F (z) = Vg f (x , ξ) =

∫
R
f (t)g(t − x)e−2πitξdt, f ∈ L2(R)

}
Then this space is a space of holomorphic functions, modulo a multiplication by a
weight, if and only if g is a time-frequency translation of the Gaussian function.
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Characterization of analytic wavelets [Holighaus et al. 19]

Theorem
Let ψ ∈ L2(R) with ψ̂(ξ) = 0 for ξ < 0. There exist constants a ∈ R, b ∈ R+and a C∞
function I : R× R+ → C with I (x , y) 6= 0 such that

h : {z ∈ C : Im(z) > 0} → C
x + iy 7→ I (x , y)Wψf (x − aby , by)

is analytic for all f ∈ L2(R), if and only if

ψ̂(ξ) = cξ
α−1

2 e−2πγξe iβ log ξ
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Phase retrieval

Direct connection between the phase and magnitude (phase-magnitude relationship)

I For the STFT with gaussian window g(t) = λ−1/2π−1/4e−t
2/(2λ2) [Auger 12]

∂

∂x
φfg (x , ξ) = λ−2 ∂

∂ξ
log
(
M f

g (x , ξ)
)

+
ξ

2
∂

∂ξ
φfg (x , ξ) = −λ2 ∂

∂x
log
(
M f

g (x , ξ)
)
− x

2

I For the wavelet transform with ψ̂(ξ) = ξ
α−1

2 e−2πγξe iβ log ξ [Holighaus et al. 19]

∂

∂x
φfψ(x , y) = − ∂

∂y
log
(
M f
ψ(x , y)

)
+

α

2y
∂

∂y
φfψ(x , y) =

∂

∂x
log
(
M f
ψ(x , y)

)
− β

y
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Bridge between TF methods and GAFs

Let z = x + iξ ∈ C and a is WGN. The STFT of white noise Vga(z) coincides with
planar GAF [Bardenet 20]:

Vga(z) =
√
πe iπxξe−

π
2
|z|2

∞∑
k=0

〈a, hk〉
πk/2zk√

k!

GAF
(`)
C (z) :=

∞∑
k=0

ak
1√
k!

(z
`

)k
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Correspondences TF-GAFs [Bardenet 21]

H Transformation Polynôme GAF Théorème

L2(R,C) e−z2/2

π1/4

∫
R f (x)e

√
2xz−x2/2 dx Hermite C Th. 2.1

`2(N,C)
∑

x∈N f (x) zx√
x!

Charlier C Th. 2.2

H2(R) 1
(1−z)2β+1

∫
R+

f̂ (x)xβe−
x
2

1+z
1−z dx Laguerre H Th. 2.3

`2(N,C)
∑

x∈N f (x)
√

Γ(x+α+1)
x! zx Meixner H Th. 2.4

CN+1
∑N

x=0 f (x)

√(
N
x

)
zx Krawtchouk S Th. 2.5
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Filtering and feature extraction based on the TF zeros

Use the distribution of zeros in the time-frequency plane to filter non stationary signals
[Flandrin 15, Bardenet 20] and extract features from acceleration signals [Rouge 22].
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Analytic time-frequency (time-scale) transforms

The Stockwell-Transform

The Generalized Stockwell Transform (GST)

The Analytic Stockwell Transform (AST)
From a Wavelet point of view
From time-frequency perspective

The zeros of the AST

Summary and perspectives
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Short-Time Fourier Transform (STFT)
Let f ∈ L2(R) be a signal and g ∈ L2(R,C) the analysis window function. The STFT
of f respect to g , denoted Vg f is defined as :

Vg f (x , ξ) = 〈f ,MξTxg〉 =

∫
R
f (t)g(t − x)e−2πitξdt pour x , ξ ∈ R.

with Mξf (t) = e2πiξt f (t) et Tx f (t) = f (t − x).
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Continuous Wavelet Transform (CWT)

Let a mother wavelet function ψ ∈ L2(R), the continuous wavelet transform of f ,
denoted Wψf is given as:

Wψf (x , y) = 〈f ,TxDyψ〉 =
1
√
y

∫
R
f (t)ψ

(
t − x

y

)
dt

The admissibility constant Cψ of a wavelet ψ is given as:

Cψ =

∫
R

|ψ̂(ξ)|2

ξ
dξ

and for the wavelet ψ to be admissible it is necessary that Cψ <∞.
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An hybrid version: The Stockwell Transform

Let f ∈ L2(R) be a signal. The ST with respect to the window g(t) = 1
σ
√

2π
e−

t2

2σ2

with σ = 1/|ξ|, denoted Sg f can be given as [Stockwell 96]:

Sg f (x , ξ) =
|ξ|√
2π

∫
R
f (t)e−(t−x)2ξ2/2e−2πitξdt, x ∈ R, ξ ∈ R∗

An alternative formulation with respect to Fourier transform of f deduced by rewriting
Sg f (x , ξ) as a convolution product, can be given as:

Sg f (x , ξ) =

∫
R
f̂ (ν + ξ)e−2π2ν2/ξ2

e2πixνdν
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Phase information

For ST we have an absolute referenced phase information: the oscillatory kernel e−2πitξ

remains stationary while translating the time localizing envelope (Gaussian window).
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The Generalized Stockwell Transform (GST)

Definition
Let ϕ ∈ L1(R) ∩ L2(R) be an arbitrary window such that

∫
R ϕ(t)dt = 1 and whose

width is adjusted by an arbitrary function σ(ξ). Then the generalized Stockwell
transform of f , denoted Sσϕ f can be written as:

Sσϕ f (x , ξ) = 〈f ,MξTxDσ(ξ)ϕ〉 =
1

σ(ξ)

∫
R
f (t)ϕ

(
t − x

σ(ξ)

)
e−2πitξdt

By choosing ϕ(t) = 1√
2π
e−t

2/2 and σ(ξ) = 1/|ξ|, we retrieve the classical ST. For more

”flexibility” we can introduce more parameters on σ(ξ), e.g. [Moukadem et al. 15]:

σ(ξ) =
mξp + k

ξr
, m, p, k , r ∈ R
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The Generalized Stockwell Transform (GST)

Proposition

Let f̂ the Fourier transform of a signal f ∈ L2(R), the generalized Stockwell Transform
can be then formulated as follows:

Sσϕ f (x , ξ) =

∫
R
f̂ (ν + ξ)ϕ̂(σ(ξ)ν)e2πixνdν, x ∈ R, ξ ∈ R∗

Proof.
The GST can be written as a convolution product as follows:

Sσϕ f (x , ξ) = Mξf ∗Dσ(ξ)ϕ̃(t)

where ϕ̃(t) = ϕ(−t). By applying the Fourier transform in both sides we obtain:

F
{
Sσϕ f (x , ξ)

}
= f̂ (ν + ξ)ϕ̂(νσ(ξ))

Therefore, Sσϕ f can be obtained by applying the inverse Fourier transform F−1:

Sσϕ f (x , ξ) = F−1
{
f̂ (ν + ξ)ϕ̂(νσ(ξ))

}
which conclude the proposition
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Relation with the CWT

Proposition

The GST Sσϕ with a generalized window ϕ ∈ L1(R) ∩ L2(R) adjusted by an arbitrary
function σ(ξ), can be written as a Wavelet transform as follows:

Sσϕ f (x , ξ) =
e−i2πξx√
σ(ξ)

Wψf (x , σ(ξ))

with a mother wavelet ψ(t), can be expressed as a function of the generalized window
ϕ(t):

ψ(t) = ϕ(t)e i2πξσ(ξ)t

and satisfying the admissibility condition Cψ =
∫
R+
|ψ̂(ξ)|2
ξ dξ <∞, which can be

written in terms of Cϕ:

Cϕ =

∫
R+

|ϕ̂(ξ − ξσ(ξ)|2

ξ
dξ <∞
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Relation with the CWT

Proof.
To establish the link between the WT and the generalized ST, we set the mother
wavelet as ψ(t) = ϕ(t)e i2πξσ(ξ)t and y = σ(ξ). Therefore, Wψf (x , y) can be written
as:

Wψf (x , σ(ξ)) =
1√
σ(ξ)

∫
R
f (t)ϕ

(
t − x

σ(ξ)

)
e
−i2πξσ(ξ)

(
t−x
σ(ξ)

)
dt

=
e i2πξx√
σ(ξ)

∫
R
f (t)ϕ

(
t − x

σ(ξ)

)
e−i2πξtdt

=
√
σ(ξ)e i2πξxSσϕ(x , ξ)
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GST from a wavelet point of view

Corollary

Let ϕ ∈ L1(R) ∩ L2(R) with ϕ̂(ν) = 0 for ν < 0 and σ(ξ) a function which controls
the width of ϕ. There exist a C∞ function I : R× R+ → C with I (x , ξ) 6= 0 such that

h : {z ∈ C : Im(z) > 0} → C
x + iy 7→ I (x , y)Sy

ϕf (x , ξ)

is analytic for all f ∈ L2(R), if and only if

ϕ̂(ν) =

{
c(ν + ξσ(ξ))

α−1
2 e−2πγ(ν+ξσ(ξ))e iβ log(ν+ξσ(ξ)) ν ∈ R+

0 otherwise
(1)

In the case of σ(ξ) = 1/ξ , we have ϕ̂(ν) = c(ν + 1)
α−1

2 e−2πγ(ν+1)e iβ log(ν+1).
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The partial derivatives of Sσϕ(x , ξ)

Proposition

Let a signal f (t) ∈ L2(R), an arbitrary window ϕ(t) ∈ L1(R) ∩ L2(R), a function σ(ξ)
such that

∫
R ϕ(t)dt = 1, then for all x and ξ ∈ R the partial derivatives of the

generalized Stockwell transform of f , denoted Sσϕ(x , ξ) can be given as follows:

∂

∂x
Sσϕ f (x , ξ) =

−1

σ(ξ)
Sσϕ′f (x , ξ) (2)

and

∂

∂ξ
Sσϕ f (x , ξ) =

−σ′(ξ)

σ(ξ)
Sσ(Tϕ)′f (x , ξ)− i2π

(
Sσ(Tϕ)f (x , ξ) + xSσϕ f (x , ξ)

)
(3)

where T denotes the time-weighting operator Tf (t) = tf (t).
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Time-Frequency interpretation

Theorem
Let ϕ ∈ L1(R) ∩ L2(R) with ϕ̂(ν) = 0 for ν < 0 and σ(ξ) a function which controls
the width of ϕ. There exist a C∞ function I : R× R+ → C with I (x , ξ) 6= 0 such that

h : {z ∈ C : Im(z) > 0} → C
x + iξ 7→ I (x , ξ)Sσϕ f (x , ξ)

is analytic for all f ∈ L2(R), if and only if

ϕ̂(ν) = ce
i σ(ξ)

σ′(ξ)
g ln(σ′(ξ)ν+σ(ξ))

e
2π
σ′(ξ)

ν
e
−2π σ(ξ)

(σ′(ξ))2 ln(σ′(ξ)ν+σ(ξ))

for all ν > 0 and g(x , ξ) =
∂
∂x

I (x ,ξ)+2πxI (x ,ξ)+i ∂
∂ξ

I (x ,ξ)

I (x ,ξ)
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Elements of proof

The analyticity of h is equivalent to the satisfaction of the Cauchy-Riemann equations
∂
∂x h = −i ∂∂ξh. This will lead to the following differential equation:(

g − i2πν

σ(ξ)

)
ϕ̂(ν)− i

(
σ′(ξ)ν

σ(ξ)
− 1

)
(ϕ̂(ν))′ = 0

which gives the given solution ϕ̂(ν). For the case σ(ξ) = 1/ξ, it can be written as:

ϕ̂(ν) = c(ν + ξ)(Im(g)ξ+2πξ3)e iξ Re(g) log (ν+ξ)e−2πξ2ν
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Poincaré Disk Model for Hyperbolic geometry

Conformal map between half plane model and Poincaré disk model (the Cayley
transform)
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The zeros of the AST of white noise
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Estimation of the pair correlation function
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Summary

I The ST is an hybrid version between STFT and CWT.

I Generalized ST allows us to define an analytical ST under certain conditions in
time-scale and time-frequency planes.

I It seems that analytic ST, like analytic WT, coincides with hyperbolic GAF
(confirmed empirically).

Perspectives

I Application to filtering, feature extraction and phase retrieval (comparisons with
existing methods based on STFT and WT).

I Extension of the work carried out in [Courbot et al. 22] ”Sparse off-the-grid
computation of the zeros of STFT” to the zeros of the ST.
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