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Preliminaries



Preliminaries - The general idea

Discretization of continuous time-frequency representations

Figure: Continuous STFT (left) and discretized STFT (right).
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Preliminaries - The general idea

In this talk:

• Perfect reconstruction of input from discrete coefficients (Invertibility)

• Approximate energy-preservation between input and coefficients (Stability)

The discrete representation forms a frame.
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Preliminaries - Recap: STFT discretization

The STFT is generated by time-frequency shifts of a fixed window function g:

Vgf(x, ξ) = 〈f, gx,ξ〉 = F(f · gx,0)(ξ), where gx,ξ(t) = g(t− x)e2πiξt (1)

• Time-frequency resolution is uniform (no dependence on (x, ξ)).

• Discretization on a regular grid (x = `a, ξ = jb, j, ` ∈ Z, a, b > 0) is common
and works well.

• Very efficient via windowed FFT.
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Preliminaries - Recap: STFT discretization

Other discretizations are possible, sometimes similarly efficient, but uncommon.
For example, random or on a general lattice:

Holighaus et al (ARI) Wavelets and Discrepancy 09.11.2023 7 / 33



Preliminaries - Other time-frequency
representations

Consider a family Ψ = (ψξ)ξ and define

VΨf(x, ξ) = 〈f, ψξ(• − x)〉 = (f ∗ ψξ(−•))(x). (2)

• (Continuous) linear, time-invariant filter bank.

• Time-frequency representation if each ψξ is time-frequency localized around
(0, ξ).

• Time-frequency resolution may change with frequency ξ.
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Preliminaries - Wavelets as case study

Consider Ψ = (ψξ)ξ, with ψξ = Dξ−1ψ =
√
ξψ(ξ · •). Then

VΨf(x, ξ) = 〈f, ψξ(• − x)〉 =: Wψf(x, ξ) (3)

is the continuous wavelet transform of f with respect to the mother wavelet ψ.

Figure: Illustration of wavelet time-frequency resolution.
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Preliminaries - Frames

A countable (or even finite) subset of (ψj)j ⊂ Ψ is a frame, if there exist constants
0 < A ≤ B <∞, such that

A‖f‖2 ≤
∑
j

|〈f, ψj〉|2 ≤ B‖f‖2, ∀ f. (4)

• Implies that the discretization can be inverted (perfect reconstruction is
possible)

• B/A is stability estimate (think condition number)

• Generalization of stable spanning sets (e.g., orthonormal bases)

• There is a dual frame (ψ̃j)j , such that f =
∑
j〈f, ψj〉ψ̃j , for all f .
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Discretization of the wavelet transform



Classical wavelet discretization

By convention, Wψf is usually discretized to log-uniformly-spaced frequencies
ξ = sm, d > 0, j ∈ Z.

• Uniform decimation of x = `d, d > 0, ` ∈ Z, e.g., à trous algorithm,

• Dyadic wavelet bases: s = 2 and x = 2−j`, ` ∈ Z.

Figure: Illustration of “classical” wavelet discretization.
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Classical wavelet discretization - II

More general (constant-Q-like) low-to-moderate redundancy wavelet
discretization: Wψf(s−jd`, sj), j, ` ∈ Z, for some s.d > 0.

Figure: Illustration of “classical” wavelet discretization.
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Issues of non-uniform filter banks

• Coefficients are not aligned

• No meaningful notion of time frames

• No use of efficient matrix calculus or matrix methods

• Dual frame (ψ̃j,`)j,` is unstructured in general

• Reconstruction is inefficient or even computationally infeasible
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The Challenge

Can we find a wavelet discretization that combines uniform
decimation, low redundancy and efficient, perfect reconstruction
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Enter Quasi-Random (Low Discrepancy)
Sequences



Quasi-Random Sequences

Usually, (pn)n∈N0 in a domain Ω (think the unit cube [0, 1)D) is a quasi-random
sequence or equidistributed, if

lim
N→∞

#((p0, . . . , pN−1) ∩B)
N

= |B||Ω| , (5)

for all nice sets B ⊂ Ω.

The proportion of points falling into B is proportional to the size of B.
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Discrepancy

Given a set of points PN = (p0, . . . , pN−1), its discrepancy is

D(PN ) = sup
B∈B

∣∣∣∣#(PN ∩B)
N

− |B||Ω|

∣∣∣∣ , (6)

where B is the collection of all nice sets.

Discrepancy measures the equidistribution of finite sets.
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Low Discrepancy Sequences

Informally, a sequence (p0, p1, . . .) ⊂ B, has low discrepancy, if D(PN ), with
PN = (p0, . . . , pN−1), is small for all N ∈ N.

Note: The appropriate notion of “small” depends on B, Ω, and the considered
problem.

Main use: Better substitute for random samples in Monte Carlo schemes.
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Discrepancy - Canonical Example

Set

Ω = [0, 1)D and B = {[a0, b0)×·×[aD−1, bD−1) : 0 ≤ aj < bj < 1, for all j = 0, . . . D−1},

i.e., boxes in the unit cube.

There exist sequences (p0, p1, . . .) ⊂ [0, 1)D that achieve
D(PN ) ≤ CD log(N)d/N .

This is optimal for D = 1, 2 and conjectured to be optimal for any D ∈ N.
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Construction of Low Discrepancy Sequences

Construction of good sequences can be quite involved, especially if D is large.
See, e.g.,

• J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy
Theory and Quasi–Monte Carlo Integration

• L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences

Luckily, there are very simple constructions for D = 1.
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Kronecker sequences

Fix some badly approximable number α ∈ R \Q, e.g., α = 1+
√

5
2 ,
√

2, . . .. Then

pn = αn− bαnc, for all n ∈ N0, (7)

defines a low discrepancy sequence.

Figure: First 64 elements of the Kronecker sequence with α = 1+
√

5
2 .
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Grid-Based Wavelet Decimation
- With Delays



Grid + Delays

Recall that Wψf(x, ξ) represents the time-freuency energy of f around time x
and frequency ξ:

• The mother wavelet ψ is localized around time 0 and frequency 1.

• ψξ(• − x) is localized around time x and frequency ξ.

For some step size d > 0, a base frequency ξb, a frequecy step q ∈ 1/N, and
(pn)n a Kronecker sequence, we consider Wψf at the points
(d(`+ pj−1), ξb(1 + jq))j∈Z,`∈N. Equivalently, we delay ψξb(1+jq) by
0 ≤ dpj−1 < d and filter with decimation step d.
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Grid + Delays - II

Figure: Time-frequency coverings generated by a uniform grid with Kronecker
delays.
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Grid + Delays - III

Theorem (Invertible Wavelet Decimation)

If the mother wavelet ψ is (essentially) compactly supported and sufficiently
smooth, if ξb is not too large, and if (pn)n∈Z is as before, then there exist positive
constants cj > 0, j ∈ Z, such that the wavelet system (cj · ψξj (• − x`,j))`,j∈Z with

ξj = ξb(1 + jq), j ≥ 0, and ξj = (1 + q)j · ξb, j < 0, (8)

and
x`,j = d(l + pj), l, j ∈ Z, (9)

is a frame, provided that d > 0 and q ∈ 1/N are small enough. In particular, for
j ≥ 0, all cj can be chosen equal to 1.

Note: In practice, the frequencies ξj , j < 0, are covered by a (set of) low-pass
filter(s).
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Grid + Delays - Spectrograms

Figure: Spectrogram of grid-based wavelets, with log-scaled frequency axis.
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Grid-Based Wavelet Decimation
- With Rotation



Grid + Rotation

Let α ∈ [0, 1) be a badly approximable number and define

AZ2, with A =
(

1 −α
α 1

)
Consider Wψf(x, ξ) at all points (x, ξ) ∈ AZ2 ∩ (R× R+).
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Grid + Rotation - II

Figure: Time-frequency covering generated by a rotated lattice.
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Grid + Rotation - III

Theorem (Invertible Wavelet Decimation)

If the mother wavelet ψ is (essentially) compactly supported and sufficiently
smooth, and let (λn)n∈N0 , with λn = (xn, ξn), be any ordering of AZ2 ∩ (R× R+),
i.e., (λn)n∈N0 = AZ2 ∩ (R× R+) as sets. Then, for any β > 0 small enough, the
wavelet system

(ψξn(• − xn))n∈N0 (10)

is a frame.
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Implementation and more

MATLAB/octave Toolbox for
time-frequency analysis (with C

backend)

· LTFAT - The Large Time-Frequency
Analysis Toolbox - ltfat.github.io

· PHASERET - Phase retrieval
toolbox - ltfat.github.io/phaseret/

· libLTFAT - C backend library -
ltfat.github.io/libltfat/

· Webpage of this paper -
ltfat.github.io/notes/057/
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Implementation and more

MATLAB/octave Toolbox for phaseless
reconstruction with short-time Fourier

transforms (with on- and offline methods
and C backend)

· LTFAT - The Large Time-Frequency
Analysis Toolbox - ltfat.github.io
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Implementation and more

Standalone version of the LTFAT C
backend library

· LTFAT - The Large Time-Frequency
Analysis Toolbox - ltfat.github.io

· PHASERET - Phase retrieval
toolbox - ltfat.github.io/phaseret/

· libLTFAT - C backend library -
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Implementation and more

Manuscript, code and audio examples

· LTFAT - The Large Time-Frequency
Analysis Toolbox - ltfat.github.io

· PHASERET - Phase retrieval
toolbox - ltfat.github.io/phaseret/

· libLTFAT - C backend library -
ltfat.github.io/libltfat/

· Webpage of this paper -
ltfat.github.io/notes/057/
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Thank you for your attention!
If you want more, I can talk about non-iterative phaseless reconstruction for wavelet

transforms.
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Non-iterative phaseless reconstruction for
wavelet transforms



Phaseless reconstruction/Phase retrieval

· complex-valued representations as
magnitude and phase

· modification/generation of
magnitudes comparably easy

· phase invalid after
magnitude-based processing

· signal reconstruction from
magnitude is a challenging problem

· theoretical guarantees are rare

· algorithms are computationally
expensive, often require costly
iteration
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Wavelet transforms

· redundant wavelet/constant-Q
transforms

· (usually) fixed number of channels
per octave

· possibility of decimation

· invertibility (in the frequency range
of interest)

· high-fidelity synthesis requires good
magnitude and phase estimates
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Problems of wavelet phaseless reconstruction

· generic algorithms usually require expensive iteration

· wavelet-specific algorithms are rare

· solutions are not unique, at best up to an additive constant

· convergence to a good solution can rarely be guaranteed

· algorithms often introduce audible artifacts, even under optimal conditions

· provably unstable in areas of small magnitude
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The phase-magnitude relationship for wavelet
transforms

The wavelet transform of a signal s with respect to the mother wavelet ψ is

Wψs(x, y) = 1
√
y

∫
R
s(t)ψ

(
t− x
y

)
dt, for all x ∈ R, y ∈ R+, (11)

with magnitude Ms
ψ := |Wψs| ≥ 0 and phase and φsψ := arg(Wψs) ∈ R. If

ψ̂(ξ) =
{
ξ
α−1

2 e−2πξeiβ log ξ ξ ∈ R+,

0 otherwise,
(12)

for some α > −1, β ∈ R, then

∂

∂x
φsψ(x, y) = − ∂

∂y
log(Ms

ψ)(x, y) + α

2y and

∂

∂y
φsψ(x, y) = ∂

∂x
log(Ms

ψ)(x, y)− β

y
.

(13)

The phase can be recovered from the magnitude up to a constant by simple
integration.
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Phase reconstruction by differentiation and
integration

In practice:

· wavelet transform obtained from a sampled (discrete) signal and wavelet

· only finitely many wavelet coefficients are available

· phase reconstruction is unstable when the magnitude is small

A solution:

· approximate differentiation by finite differences

· approximate integration by an easy quadrature rule

· adaptive, patchwise integration
- begin at points of large magnitude

- avoid areas of small magnitude

- use heap of positions sorted by magnitude
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The algorithm - Phase Gradient Heap integration
(PGHI)

Input: Magnitude Ms of wavelet coefficients, estimates ∆φ̃,x,s
ψ and ∆φ̃,ξ,s

ψ of the partial phase
derivatives, relative tolerance tol.

Output: Phase estimate (φ̃sψ)est.
1 abstol ← tol ·max (Ms[n, k]);
2 Create set I = {(n, k) : Ms[n, k] > abstol};
3 Assign random values to (φ̃sψ)est(n, k) for (n, k) /∈ I;
4 Construct a self-sorting max heap for (n, k) pairs;
5 while I is not ∅ do
6 if heap is empty then
7 Move (nm, km) = arg max(n,k)∈I (Ms[n, k]) from I into the heap;
8 (φ̃sψ)est(nm, km)← 0;
9 end

10 while heap is not empty do
11 (n, k)← remove the top of the heap;
12 foreach (nn, kn) inNn,k ∩ I do

13 (φ̃sψ)est[nn, kn] = (φ̃sψ)est[n, k] +
ξkn−ξk

2

(
∆φ̃,ξ,s
ψ [n, k] + ∆φ̃,ξ,s

ψ [nn, kn]
)

14 + ad(nn−n)
2ξs

(
∆φ̃,x,s
ψ [n, k] + ∆φ̃,x,s

ψ [nn, kn]
)

.;

15 Move (nn, kn) from I into the heap;
16 end
17 end
18 end

Algorithm 1: Wavelet Phase Gradient Heap Integration
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Phase Gradient Heap integration visualized
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Numerical evaluation

Numerical evaluation on a subset of the SQAM dataset for wavelet PGHI, fast Griffin-Lim (0-initialization),

fast Griffin-Lim (WPGHI-initialization). Spectral convergence measures the relative spectral error in dB.
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Phase differences vs. redundancy
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A continuous STFT for discrete signals



A continuous STFT for discrete signals

• Consider finite signals as periodic δ-trains (tempered distributions):

(a1, . . . , aN ) ∼
N∑
n=1

anεn =: φ with εn :=
∑
k∈Z

δ n
N

+k

• Take a nice window function (e.g., Gaussian) g.

Then

Vgϕ(x, ξ) =
N−1∑
n=0

ane
−2πiξ n

N Zg
( n
N
− x, ξ

)
, (14)

where Z denotes the Zak transform.
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Relation to the discrete STFT

With fN = (a1, . . . , aN )T ∈ CN , we have

Vgϕ(x, ξ) = exp(−2πirξnx/N) · STFT
g

(rx,rξ)
N

fN[nx,mξ], (15)

where x = nx/N + rx and, ξ = mξ + rξ, with rx ∈ [0, 1/N), rξ ∈ [0, 1), and

g(rx,rξ)
N = PN (MrξTrxg),

with the periodization-and-sampling operator PNf [n] =
∑
j∈Z f(n/N − j).

In particular, we have

Vgϕ(k/N, l) = STFTgN fN[k, l], with gN = PNg.
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Superresolution spectrograms

Figure: Comparison between the spectrograms obtained from the discrete STFT
and the STFT on the torus, and their application for detecting zeros of the STFT:

Here, fN was sampled from a complex Gaussian noise process
N (0, IN ) + iN (0, IN ), N = 20. The right panel shows a zoom into the lower-left

part of the spectrogram (indicated by the teal border), where the location of a
spectrogram zero is marked.
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