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Preliminaries - The general idea OA\\{%&I&

Discretization of continuous time-frequency representations
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Figure: Continuous STFT (left) and discretized STFT (right).



OAW s Preliminaries - The general idea A

In this talk:

 Perfect reconstruction of input from discrete coefficients (Invertibility)

» Approximate energy-preservation between input and coefficients (Stability)

The discrete representation forms a frame.
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Preliminaries - Recap: STFT discretization

The STFT is generated by time-frequency shifts of a fixed window function g:

Vol (2,6) = (f. goe) = F(f - Gz0)(€), where gz ¢(t) = g(t — z)e”™" (1)

» Time-frequency resolution is uniform (no dependence on (z, £)).

« Discretization on a regular grid (z = fa, £ = jb, j,¢ € Z, a,b > 0) is common
and works well.

» Very efficient via windowed FFT.



OAW EEss Preliminaries - Recap: STFT discretization A

Other discretizations are possible, sometimes similarly efficient, but uncommon.
For example, random or on a general lattice:
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Preliminaries - Other time-frequency ”}\RI
representations  \\

Consider a family ¥ = (¢¢). and define

Vu f(x,€) = (f,Ye(0 —z)) = (f *1pe(—9)) (). )

 (Continuous) linear, time-invariant filter bank.

« Time-frequency representation if each v is time-frequency localized around

(0,6).

» Time-frequency resolution may change with frequency &.



Preliminaries - Wavelets as case study A&Iy

Consider ¥ = (v¢)¢, With 1p¢ = D19 = /(£ - @). Then
Vi f(2,8) = (f,ve(o — x)) = Wy f(x,) 3)

is the continuous wavelet transform of f with respect to the mother wavelet .

Frequency

Time
Figure: lllustration of wavelet time-frequency resolution.
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Consider ¥ = (v¢)¢, With 1p¢ = D19 = /(£ - @). Then
Va f(z,8) = (f,ve(o — x)) = Wy f(,) 3)

is the continuous wavelet transform of f with respect to the mother wavelet .

Frequency

Time
Figure: lllustration of wavelet time-frequency resolution.



B\
ARI

Preliminaries - Frames W

A countable (or even finite) subset of (v;); C U is a frame, if there exist constants
0 < A < B < oo, such that

AlFIP < DKL < BISIP, Y f. (4)
J

» Implies that the discretization can be inverted (perfect reconstruction is
possible)

« B/A is stability estimate (think condition number)

» Generalization of stable spanning sets (e.g., orthonormal bases)

» There is a dual frame (wNj)j, such that f =3 (f, wjﬂ;, for all f.



Discretization of the wavelet transform



_E . . . 7\
OAW s Classical wavelet discretization  ani

By convention, Wy, f is usually discretized to log-uniformly-spaced frequencies
E=s",d>0, j€Z.

 Uniform decimation of z = 4d, d > 0, ¢ € Z, e.g., a trous algorithm,

+ Dyadic wavelet bases: s =2 and z = 2794, £ € Z.
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Figure: lllustration of “classical” wavelet discretization.



OAW e Classical wavelet discretization - [ ari

More general (constant-Q-like) low-to-moderate redundancy wavelet
discretization: Wy, f(s™7d¢, s?), j, £ € Z, for some s.d > 0.

L L L L L

Figure: lllustration of “classical” wavelet discretization.




OAW e Issues of non-uniform filter banks

« Coefficients are not aligned

» No meaningful notion of time frames

* No use of efficient matrix calculus or matrix methods
 Dual frame (Jj;)j,e is unstructured in general

» Reconstruction is inefficient or even computationally infeasible



OAW s The Challenge  An

Can we find a wavelet discretization that combines uniform
decimation, low redundancy and efficient, perfect reconstruction



Enter Quasi-Random (Low Discrepancy)
Sequences



Quasi-Random Sequences V)

Usually, (pn)nen, in @ domain © (think the unit cube [0, 1)”) is a quasi-random
sequence or equidistributed, if

. #((po,---,pn-1)NB) _ |B]|
e N RTOTR ®)

for all nice sets B C Q.

The proportion of points falling into B is proportional to the size of B.



OAW sz Discrepancy

Given a set of points Px = (po, . ..,pn—1), its discrepancy is

_ #(Pn N B) @
P =R | =N Tl

where B is the collection of all nice sets.

Discrepancy measures the equidistribution of finite sets.



OAW sz Low Discrepancy Sequences &Y

Informally, a sequence (po, p1,...) C B, has low discrepancy, if D(Px), with
Py = (po,...,pn-1), s small forall N € N.

Note: The appropriate notion of “small” depends on B, 2, and the considered
problem.

Main use: Better substitute for random samples in Monte Carlo schemes.



OAW Discrepancy - Canonical Example  Ax

Set
Q=1[0,1)" and B={[ao,bo)x-X[ap_1,bp_1) : 0<a; <b; <1, forall j=0,...]1

i.e., boxes in the unit cube.

There exist sequences (po,p1,...) C [0,1)” that achieve
D(Py) < Cplog(N)¢/N.

This is optimal for D = 1,2 and conjectured to be optimal for any D € N.



Construction of Low Discrepancy Sequences &Y

Construction of good sequences can be quite involved, especially if D is large.
See, e.g.,

« J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy
Theory and Quasi—Monte Carlo Integration

+ L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences

Luckily, there are very simple constructions for D = 1.



OAW sz Kronecker sequences )

Fix some badly approximable number o € R\ Q, e.g., « = *£¥5 /2, ... Then
pn =an — |an|, foralln € N, (7)

defines a low discrepancy sequence.
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Figure: First 64 elements of the Kronecker sequence with o = 15,




Grid-Based Wavelet Decimation
- With Delays



Grid + Delays

Recall that Wy, f (z, ) represents the time-freuency energy of f around time z
and frequency &:

» The mother wavelet ¢ is localized around time 0 and frequency 1.

* ¢ (o — x) is localized around time = and frequency &.

For some step size d > 0, a base frequency &, a frequecy step ¢ € 1/N, and
(pn)n @ Kronecker sequence, we consider Wy, f at the points

(d(é + pj_l), fb(l + jq))jez,eeN. Equivalently, we delay ¢§b(1+jq) by

0 < dp;—1 < d and filter with decimation step d.
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Grid + Delays - Il

Frequency

Time
Figure: Time-frequency coverings generated by a uniform grid with Kronecker
delays.



OAW s, Grid + Delays - llI OA\\&IU

Theorem (Invertible Wavelet Decimation)

If the mother wavelet 1) is (essentially) compactly supported and sufficiently
smooth, if &, is not too large, and if (p.)necz iS as before, then there exist positive
constants c; > 0, j € Z, such that the wavelet system (c; - 1¢; (8 — x1,j))e,jez With

Ej = fb(l +]q)7 Jjz 07 and gj = (1 +q)] 'Eb7 Jj< 07 (8)

and
Lej = d(l +pj)7 la] €Z, (9)

is a frame, provided that d > 0 and q € 1/N are small enough. In particular, for
j >0, all ¢; can be chosen equal to 1.

Note: In practice, the frequencies &;, j < 0, are covered by a (set of) low-pass
filter(s).
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Wavelet coefficients (Low redundancy) Wavelet coefficients (High redundancy)
T,

Frequency
Frequency

Time Time

Figure: Spectrogram of grid-based wavelets, with log-scaled frequency axis.



Grid-Based Wavelet Decimation
- With Rotation



Grid + Rotation

Let a € [0,1) be a badly approximable number and define
AZ?, with A= (1 _a>
« 1

Consider Wy f(z, £) at all points (x, &) € AZ* N (R x RT).



OAW e Grid + Rotation - Il 4ni

Frequency

Time

Figure: Time-frequency covering generated by a rotated lattice.



Grid + Rotation - Il

Theorem (Invertible Wavelet Decimation)

If the mother wavelet +) is (essentially) compactly supported and sufficiently
smooth, and let (\n)neny, With X\, = (xn, &), be any ordering of AZ* N (R x RY),
i.e., (An)neno = AZ> N (R x RT) as sets. Then, for any 3 > 0 small enough, the
wavelet system

(e, (® = @n))neno (10)
is a frame.
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- LTFAT - The Large Time-Frequency
Analysis Toolbox - Itfat.github.io

The Large TimelFrequency Analysis Toolbox (LTFAT) is a Matiab/Octave toolbox

MATLAB/octave Toolbox for
time-frequency analysis (with C
backend)
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Implementation and more A

- LTFAT - The Large Time-Frequency
Analysis Toolbox - Itfat.github.io

- PHASERET - Phase retrieval
toolbox - Itfat.github.io/phaseret/

MATLAB/octave Toolbox for phaseless
reconstruction with short-time Fourier
transforms (with on- and offline methods
and C backend)
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Implementation and more

BRI - LTFAT - The Large Time-Frequency
Analysis Toolbox - Itfat.github.io

- PHASERET - Phase retrieval
toolbox - Itfat.github.io/phaseret/

- libLTFAT - C backend library -
Itfat.github.io/libltfat/

Standalone version of the LTFAT C
backend library
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Implementation and more A

o - LTFAT - The Large Time-Frequency
e . N Analysis Toolbox - Itfat.github.io

- PHASERET - Phase retrieval
toolbox - Itfat.github.io/phaseret/

- libLTFAT - C backend library -
Itfat.github.io/libltfat/

- Webpage of this paper -

Manuscript, code and audio examples ltfat github.io/notes/057/
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Thank you for your attention!
If you want more, | can talk about non-iterative phaseless reconstruction for wavelet

transforms.



Non-iterative phaseless reconstruction for
wavelet transforms
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Male Speech Excerpt (Magnitude)

complex-valued representations as
magnitude and phase
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Male Speech Excerpt (Magnitude)

- complex-valued representations as
magnitude and phase

modification/generation of
magnitudes comparably easy
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Male Speech Excerpt (Magnitude)

- complex-valued representations as
magnitude and phase

- modification/generation of
magnitudes comparably easy

Frequency (Hz)
$ 55T
¥y e s

0 05 1 15 2 25 3 35 4 A5 ° phase invalid after
Time (s) magnitude-based processing

Male Speech Excerpt (Phase)
j e .u

Frequency (Hz)

0.5 1 15 2 25 3 3.5 4 4.5
Time (s)



OAW isa Phaseless reconstruction/Phase retrieval A{%\IO

Male Speech Excerpt (Magnitude)

16000
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- signal reconstruction from
magnitude is a challenging problem
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magnitude is a challenging problem

- theoretical guarantees are rare
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Male Speech Excerpt (Magnitude)

16000

- o 4 - complex-valued representations as
Z 2o / magnitude and phase

g 1000 [

% 2:2 “: R . modification/generation of

& N, magnitudes comparably easy

100
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0 05 1 15 2 25 3 35 4 A5 ° phase invalid after
Time (s) magnitude-based processing

Male Speech Excerpt (Phase)

- signal reconstruction from
magnitude is a challenging problem

- theoretical guarantees are rare

Frequency (Hz)

- algorithms are computationally
expensive, often require costly
iteration

Time (s)
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Wavelet transforms

- redundant wavelet/constant-Q

transforms
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Male Speech Excerpt

Time (s)

Wavelet transforms OA\\&I&

- redundant wavelet/constant-Q

transforms

- (usually) fixed number of channels

per octave
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Frequency (Hz)

Male Speech Excerpt

Time (s)

Wavelet transforms OA\\&I&

- redundant wavelet/constant-Q

transforms

- (usually) fixed number of channels

per octave

- possibility of decimation



J—
OAW ‘omeseee

Frequency (Hz)

Male Speech Excerpt

Time (s)

Wavelet transforms OA\\@&

- redundant wavelet/constant-Q

transforms

- (usually) fixed number of channels

per octave

- possibility of decimation

- invertibility (in the frequency range

of interest)
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Frequency (Hz)

Male Speech Excerpt

Time (s)

Wavelet transforms OA\\@&

- redundant wavelet/constant-Q

transforms

- (usually) fixed number of channels

per octave

- possibility of decimation

- invertibility (in the frequency range

of interest)

- high-fidelity synthesis requires good

magnitude and phase estimates
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- generic algorithms usually require expensive iteration
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- generic algorithms usually require expensive iteration

- wavelet-specific algorithms are rare



OAW Problems of wavelet phaseless reconstruction 4

- generic algorithms usually require expensive iteration
- wavelet-specific algorithms are rare

- solutions are not unique, at best up to an additive constant
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- generic algorithms usually require expensive iteration
- wavelet-specific algorithms are rare
- solutions are not unique, at best up to an additive constant

- convergence to a good solution can rarely be guaranteed
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- generic algorithms usually require expensive iteration

- wavelet-specific algorithms are rare

- solutions are not unique, at best up to an additive constant
- convergence to a good solution can rarely be guaranteed

- algorithms often introduce audible artifacts, even under optimal conditions



OAW Problems of wavelet phaseless reconstruction &Y

- generic algorithms usually require expensive iteration

- wavelet-specific algorithms are rare

- solutions are not unique, at best up to an additive constant

- convergence to a good solution can rarely be guaranteed

- algorithms often introduce audible artifacts, even under optimal conditions

- provably unstable in areas of small magnitude



éAW: The phase-magnitude relationship for wavelet ”\\RI
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The wavelet transform of a signal s with respect to the mother wavelet v is

Wys(z,y) = f/ ( >dt forallz e R,y € RY, (11)

with magnitude M, := |[Wys| > 0 and phase and ¢y, := arg(Wys) € R. If

,sz(g) _ {50‘;16—2r§eiﬁlog§ 5 c R+, (12)

0 otherwise,
for some a > —1,3 € R, then
0 s . s o
871'¢¢(x’ y) - aiy log(qu;)(337 y) + @ and (13)
0 s _a s B

The phase can be recovered from the magnitude up to a constant by simple
integration.



Phase reconstruction by differentiation and

integration R

In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet
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In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet

- only finitely many wavelet coefficients are available



Phase reconstruction by differentiation and

integration R

In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet

- only finitely many wavelet coefficients are available

- phase reconstruction is unstable when the magnitude is small
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In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet

- only finitely many wavelet coefficients are available

- phase reconstruction is unstable when the magnitude is small

A solution:
- approximate differentiation by finite differences
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In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet

- only finitely many wavelet coefficients are available

- phase reconstruction is unstable when the magnitude is small

A solution:
- approximate differentiation by finite differences

- approximate integration by an easy quadrature rule
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In practice:
- wavelet transform obtained from a sampled (discrete) signal and wavelet

- only finitely many wavelet coefficients are available

- phase reconstruction is unstable when the magnitude is small

A solution:
- approximate differentiation by finite differences

- approximate integration by an easy quadrature rule

- adaptive, patchwise integration
- begin at points of large magnitude

- avoid areas of small magnitude
- use heap of positions sorted by magnitude
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(PGHI)

Input: Magnitude M of wavelet coefficients, estimates Ai”’s and Aﬁ'g’s of the partial phase
derivatives, relative tolerance tol.
Output: Phase estimate (¢;, )est-
1 abstol < tol - max (M;|[n, k]);
2 CreatesetZ = {(n, k) : Ms[n, k] > abstol};
3 Assign random values to (d;f/,)est("y k) for (n, k) ¢ I;
4 Construct a self-sorting max heap for (n, k) pairs;
5 while Zis not ) do

6 if heap is empty then

7 Move (nm , km) = arg max, ez (Ms[n, k]) from T into the heap;

8 (d’i.)est(nm, km) <~ 0;

9 end

10 while heap is not empty do

1 (n, k) < remove the top of the heap;

12 foreach (ny, ky) in NV,, x N Z do

~ - ~ Epp —& 5 5

13 (@5 )est[nn, kn] = (5 est [, k] + ~En—F (Aﬁ’g’s[n, K]+ AD S [nn, kn]>
1 +2G=t) (AG [0, k] + AL [nn, kn])
15 Move (ny, kn) from Z into the heap;

16 end

17 end
18 end

Algorithm 1: Wavelet Phase Gradient Heap Integration
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abs. tolerance = 2

™m—

Heap: value: (m,n)

; V . Just removed heap top

‘ . Just computed phase
. Known phase

1

0 . [ D Unknown phase

n'—

Step 0: Unknown phase

(kw4
B e



L : A
OAW stz Numerical evaluation  An
R
FBS 03000 FBSR3
FB3 23000 FB3R3
M3R3 |
M3 3000
M2R3 |
M2 3000
MR3 |
M a3000 CR3
C 3000 FBSRS
FBS a300 FB3RS|
FB3 300 M3RS |-
M3 a300 M2RS |
M2 6300 MRS|-
M a300 CRS
FB5RI10 |-
C a300
FB3R10
M3 a30
M3RI0 |
M2 a30 M2R10
Ma30 MRI0
Ca30 CRI10
—50 —40 30 —20
Spectral Convergence

Numerical evaluation on a subset of the SQAM dataset for wavelet PGHI, fast Griffin-Lim (0-initialization),
fast Griffin-Lim (WPGHl-initialization). Spectral convergence measures the relative spectral error in dB.
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Male Speech Excerpt Phase difference (Redundancy 30)
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Holighaus et al (ARI) Wavelets and Discrepancy 09.11.2023  10/14
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A continuous STFT for discrete signals ﬁA\\RI

« Consider finite signals as periodic J-trains (tempered distributions):

N
(a1,...,an) ~ Zanen =:¢ withe, := On itk
n=1 kEZL
« Take a nice window function (e.g., Gaussian) g.

Then
N—-1

Voplw,©) = 3 ane R Zg (L —ag), (14)

n=0

where Z denotes the Zak transform.



Relation to the discrete STFT

With fy = (a1, ...,an)” € CV, we have
Vop(x,8) = exp(=2mirens /N) - STET (ry.re) I [1, me], (15)
&N
where z = n, /N +r, and, { = me + r¢, with v, € [0,1/N), ¢ € [0,1), and

(ra, )
g =Pn(M, T, 9),

with the periodization-and-sampling operator P f[n] = >-., f(n/N — j).
In particular, we have

Vyo(k/N,1) = STF T,y fx[k, 1], Wwith gx = Png.
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Zoom - Zero Location

Discrete, finite STFT STFT on the Torus

5

Frequency

0 0.05 0.1 015
Time

=

0.2 0.4 0.6 08
Time

Figure: Comparison between the spectrograms obtained from the discrete STFT
and the STFT on the torus, and their application for detecting zeros of the STFT:
Here, fy was sampled from a complex Gaussian noise process
N(0,In)+iN(0,In), N = 20. The right panel shows a zoom into the lower-left
part of the spectrogram (indicated by the teal border), where the location of a
spectrogram zero is marked.
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