
Robust depth imaging in adverse scenarios using
single-photon Lidar and beta-divergences

Q. Legros∗, S. McLaughlin, Y. Altmann
School of Engineering and Physical Sciences

Heriot-Watt University
Edinburgh, United Kingdom

qll1@hw.ac.uk

S. Meignen
Laboratoire Jean Kuntzmann

University Grenoble Alpes
Grenoble, France

Mike E. Davies
School of Engineering
University of Edinburgh

Edinburgh, United Kingdom

Abstract—This paper addresses the problem of robust esti-
mation of range profiles from single-photon Lidar waveforms
associated with single surfaces using a simple model. In contrast
to existing methods explicitly modeling nuisance photon detection
events, the observation model considered neglects such events
and the depth parameters are instead estimated using a cost
function which is robust to model mismatch. More precisely,
the family of β-divergences is considered instead of the classical
likelihood function. This reformulation allows the weights of
the observations to be balanced depending on the amount of
robustness required. The performance of our approach is assessed
through a series of experiments using synthetic data under
different observation scenarios. The obtained results demonstrate
a significant improvement of the robustness of the estimation
compared to state-of-the-art pixelwise methods, for different
background illumination and imaging scenarios.

Index Terms—3D reconstruction, Single-photon lidar, Robust
estimation.

I. INTRODUCTION

Light detection and ranging (Lidar) systems have received
an increasing interest in the past few years for their ability to
efficiently reconstruct 3D scenes at high resolution [1], [2].
One particular case is single photon Lidar (SPL) that uses a
high repetition rate pulsed laser source in conjunction with
single-photon detectors. One of the main advantages of this
technology is its temporal resolution allowing sub-millimeter
depth estimation, which makes SPL particularly attractive for
a variety of problems such as long range imaging [3], [4],
[5], underwater imaging [6], [7], or even through obscurants
[8]. Lidar technologies allow the acquisition of the depth
structure of scenes, by analysing at the time-of-flight (ToF)
of photons originally emitted by a laser source and reflected
by surfaces of interest. More precisely, time correlated single-
photon counting (TCSPC), which is used in SPL, correlates the
time-of-arrivals (ToAs) of detected photons with the time of
emission of the last pulse, and often produces ToA histograms.
Repeating this acquisition process for different pulse emission
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directions allows a region of the 3D space to be sensed and
reconstructed. However, additional detection events occur in
the presence of strongly scattering media and additional light
sources, such as solar illumination. Although these events
are generally modelled as uniformly distributed, they can
present more complex distributions. This is typically the case
for instance when imaging through obscurants, where light
scattering can produce a significant number of detection events
shortly after the pulse emission (photons are reflected with
high probability before they can reach the scene of interest).

Bayesian approaches have demonstrated their efficiency to
perform a depth profile estimation of the illuminated scene
from the Lidar measurements in many different applications
[9], [10], [11], [12]. However, the quality of the estimates
depends on that of the likelihood (or observation model) used.
In this paper, we specifically concentrate on the choice/design
of this data fidelity term. Traditionally in SPL analysis, studies
have introduced complex parametric models to approximate
as accurately as possible the actual data acquisition process,
including background illumination, broadening of the system
impulse response [13], attenuation due to scattering [14] and
detector dead-time [15], [16], [17]. However, such models of-
ten comes with an increased computational complexity of the
depth estimation process, e.g. can require iterative algorithms.

In this work a simple observation model is considered,
whereby we assume that only signal photons, those originally
omitted by the laser source, can be detected. The main focus
of this work is to estimate the distance between the imaging
system and the scene. Although intensity information can be
important, it is not addressed here. To overcome the limitations
of the simple model used, we do not adopt a maximum
likelihood approach but instead use β-divergences [18], [19]
to define a more robust depth estimators. Using this family of
divergences, we can reinterpret the classical depth estimator
via matched filtering (MF), seen as a specific minimum
divergence depth estimator for SPL. Using β-divergences for
SPL has been recently investigated, in a pseudo Bayesian
framework in [20], where the main focus was to propose an
online 3D imaging method. Here, we do not adopt a Bayesian
perspective and concentrate on pixelwise, regularization-free
depth estimation, to better understand the benefits of the β-
divergence in various illumination conditions and several types



of model mismatch.
The remainder of this paper is organized as follows. Section

II introduces and motivates the simple observation model
considered in this study. The divergence used for robust depth
estimation in the presence of an imperfectly known system
impulse response function (IRF) is introduced in Section III. A
comparison to state-of-the-art approaches using synthetic data
is conducted in Section IV to identify benefits of the proposed
approach. Conclusions are finally reported in Section V.

II. OBSERVATION MODEL

In this paper, we address the pixelwise estimation of object
range from SPL data. Thus, to simplify notation, we omit
indices representing pixel dependency. Two main pixelwise
representations of photon ToAs are currently used in the
context of SPL. The earliest methods have considered each
pixel as a ToA histogram y = [y1, . . . , yT ]

>, which consists of
T non-overlapping temporal bins (the bin width being usually
given by the temporal resolution of the detector). Note that in
this work, we implicitly assume that the repetition period of
the laser source is T , where the arbitrary time unit is width
of a temporal bin. However, with the development of high-
resolution photodetectors, T can be extremely large (although
the actual temporal span of the histogram remains constant,
the width of the time bins decreases) and the measured ToAs
can now also be seen as continuous variables [5]. In a context
of photon-starved measurements, the alternative ToA repre-
sentation is simply based on sets of individual photon ToAs.
If we assume that P photons are detected, the observations
are denoted by s = {sp}Pp=1, where sp is the ToA of the pth
detected photon.

Neglecting detector dark counts and additional light sources
apart from the classical emission laser and assuming the a
single surface is visible in the field of view, the observation
model for any ToA s can be expressed as

f(s|d) = h

(
s− 2d

c

)
, (1)

where h is the normalized IRF associated with the imaging
system. This IRF is generally measured during calibration
of the Lidar-based imaging system. In (1), c is the speed
of light and d is the distance to the target, such that 2d

c is
the characteristic ToF associated with the illuminated target.
Eq. (1) implicitly assumes that the scene is approximately
static and that the shape of h (·) remains the same for all the
admissible values of d. When P photons are detected, if the
dead-time of the detector can be neglected, the photon ToAs
are mutually independent (given d) and the joint likelihood
can be expressed as

f(s|d) =
P∏
p=1

f(sp|d). (2)

III. ROBUST ESTIMATION USING β DIVERGENCES

The model in (2) is simple (it only depends on a single
parameter d per pixel) but is often not accurate enough,

especially when ambient illumination cannot be neglected.
In particular, using maximum likelihood (ML) estimation
strategies using Eq. (1) to infer d yields poor estimation
performance.

In general, the observation model used for depth estimation
is chosen to be ”similar” to the actual (to usually unknown)
data distribution, to enable reliable parameter estimation. The
similarity measure used also impacts the estimation perfor-
mance. For instance, the estimator constructed from the ML
criterion can also by seen as the estimator minimizing the
Kullback-Leibler (KL) divergence KL(ĝ(s)||f(s|d)), between
the empirical data distribution ĝ(s) = 1

P

∑P
p=1 δ(s− sp) and

the postulated observation model in (1) (δ(·) stands for the
Dirac delta function). Instead of using the traditional KL as
similarity measure, here we consider a more general family
of divergences, to reflect the potential mismatch between the
actual data distribution and the postulated model. The main
objective here is to use a similarity measure that leads to a
robust and computationally attractive depth estimator, where
robust refers to the presence of spurious detection events.

In this work, we consider the family of β-divergences,
defined by

Dβ(g||f) =
∫ T

0

f1+β(x|d)− 1 + β

β

[
g(x)fβ(x|d)

]
+

1

β

[
(g)1+β(x)

]
dx, β > 0.

(3)

to measure the similarity between two distributions g and f .
In a similar fashion to the ML estimation which reduces to
minimizing KL(ĝ(s)||f(s|d)), here we estimate the depth in
(1) by minimizing Dβ(ĝ(s)||f(s|d)). Under mild assumptions,
the resulting estimator is given

d̂ = argmax
d

{
1 + β

βP

P∑
p=1

fβ(sp|d)− Const.

}
, (4)

where the constant corresponds to the first and third terms on
the right-hand side of Eq. (3). While the third term does not
depend on d, the first term does not either in practice as we
assume that the shape and the integral of h(·) does not depend
on d over its domain of definition (2d/c is expected to be far
from 0 and T ). Note that f1+β(x|d) depends on divergence
parameter β though.

An interesting link with histogram-based depth estimation
methods and (4) has been discussed in [20] and is briefly
recalled here. If the data in s are represented using y, i.e., a
set photons counts being detected in each of the T time bins,
Eq. (4) can be rewritten

d̂ = argmax
d

T∑
t=1

yth
β

(
t− 2d

c

)
, (5)

which corresponds to maximizing the cross-correlation be-
tween

[
hβ
(
1− 2d

c

)
, . . . , hβ

(
T − 2d

c

)]>
and y.

The depth estimation based on (5) (or (4)) depends on the
divergence parameter β. Two special cases to be mentioned are



1) when β = 1, where solving Eq. (5) reduces to matched-
filtering the data with hβ(t − 2d

c ), and 2) when β → 0,
where solving Eq. (5) reduces to log-matched filtering the
data with the logarithm of h(t − 2d

c ). In the latter case,
the resulting estimator is the classical ML estimator (the β-
divergence converges to the KL divergence when β → 0).

Solving Eq. (4) instead of maximizing the classical log-
likelihood leads to a pseudo-ML estimation, also referred to
as minimum divergence (MD) estimation.

IV. RESULTS

In this section, we assess the depth reconstruction perfor-
mance of the proposed approach by comparing it to that of
existing pixelwise estimation procedures. We first consider
two IRFs, (depicted in Fig.1 top), i.e., a real asymmetric IRF
measured in [21] and a Gaussian IRF presenting the same
full width at half maximum (FWHM) (28 bins, each bin
representing a 2ps interval) and the same mode. Based on these
IRFs, we generated synthetic data with T = 1500 and added
different types of model mismatch, including constant and
non-uniform background levels and measured peaks broader
than the original IRF, referred to as IRF broadening, as
typically occurs when the surface imaged is not orthogonal to
the beam direction [13]. For all the methods considered, we set
the admissible temporal range to [tmin, tmax] = [101, 1400],
which ensures that the integrals of the IRFs remain constant
over the admissible object range. All the results presented have
been averaged over Niter = 2000 Monte Carlo realizations.
Different scenarios have been reproduced to assess the perfor-
mance of the proposed method through both the mean signal
photon counts (MSC) and the average signal to background
ratio (SBR). The MSC is the number of detected photons
originally emitted by the laser and whose distribution is given
by (1), and the SBR is defined as the ratio of the MSC over the
total number of nuisance detection events. For each scenario,
data have been simulated using different MSCs, ranging from
1 to 103 and SBRs between 102 and 10−4, with the ground
truth depth fixed to correspond to the 620th bin.

Our method is compared to ML and robust estimators for
pixelwise depth estimation. More precisely, we considered
the log-matched filtering (LMF) approach, which is the ML
estimator based on Eq. (2), the robust Huber’s estimator [22],
[23], the Half-sample-mode (HSM) estimator [24]. For all
the simulations, we also considered the Oracle estimator, i.e.,
the ML estimator of the depth based on the true model used
to generate the data, with other model parameters (e.g. SBR
and MSC) being set to their actual values. Note that Huber’s
estimator requires a user-defined hyperparameter to be tuned,
and it has been fixed to 0.4 for the experiments conducted in
this work, aiming to discard 80% of the detected photons prior
to estimating the truncated mean with the remaining data. This
value has been set such that the performance of the estimator
remains satisfactory across a range of SBR values.

To quantify the depth estimation quality, we computed the
probability of accurately estimating the target depth, whereby
a detection is deemed accurate if the absolute error between

Fig. 1. Top: Real asymmetric (red) and Gaussian IRFs used to simulate the
data used for the experiments in Sections IV-A and IV-C. Middle: broadened
IRFs used in Section IV-B, obtained by convolving the IRFs from the top plot
with a Gaussian of standard deviation 20. Bottom: gamma distribution used
to generate non-uniform background detection events in Section IV-C.

the estimated depth and the ground truth is below a threshold
that has been fixed to the IRF FWHM. The curves displayed
in Fig. 2 represent for each SBR the MSC necessary to reach a
probability of accurate detection higher than 85% (the working
region of each method is on the right-hand side of each curve).

A. Constant background level

In this section, we first investigate the robustness of the
selected methods, in the case of constant background levels
corrupting the observations. The main results are presented in
Fig. 2.

Fig. 2. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. Top: results related to data
generated with the real IRF displayed in red in Fig. 1top. Bottom : histograms
generated with the Gaussian IRF approximation displayed in blue in Fig. 1
top.



Note first in Fig. 2 that using the real IRF (top) or its
Gaussian approximation (bottom) does not modify the order
of performances of the compared methods. Although the IRF
shape does not seem to affect the relative performance of
the methods considered, it impacts the overall performance as
show in Fig. 2 (bottom) where the symmetry of the IRF seems
to improve the estimation performance. The best estimation
performance is obtained by the proposed MD for β close
to 1, whereas the worst estimation is obtained with Huber.
The performance of the MD is significantly improved when
β is increased, but this tails off when β gets closer to 1.
The detection threshold associated with the MD estimators
converge to that of the Oracle when β tends to 1. Even though
high values of β enhance the depth estimation performance for
low SBR cases, we observe the opposite phenomena when
the SBR is higher than 1. HSM gives on average worse
performance than MD, but performs better than Huber.

B. Broadening of the IRF

In this section, we assess the performance of our method
in situations where the empirical IRF is broader than the
postulated IRF (see Fig. 1 middle). IRF broadening can occur
when surfaces observed that are not orthogonal to direction
of the laser beam and when the size of the laser footprint
on target can no longer be neglected. It can also occur in the
presence of partially transparent materials, whereby part of the
light penetrates deeper into the objects before being reflected
(e.g. forest canopy). For simplicity, the broadened IRFs (see
Fig. 1 middle) are modeled here by convolving the true IRFs
from Fig. 1 top) by a Gaussian kernel whose standard is equal
20 bins.

Fig. 3. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. Top : results obtained with a
broad version of the real IRF displayed in red in Fig. 1top. Bottom : results
obtained with a broad version of the Gaussian IRF displayed in blue in Fig.
1top.

The main results obtained with broadened IRFs are depicted
in Fig. 3. This figure shows that the estimation performance

of the MD estimators and the LMF remain similarly to that
depicted in Fig. 2. The best performance is still obtained by
the Oracle that gives the SBR bound (for a given MSC) under
which all the other methods provide less than 85% of accurate
detection. The MD estimator for high values of β provides the
most robust reconstructions whereas Huber provides the least
satisfying ones (still relative to the fixed detection threshold).
HSM achieves similar performance than in Fig. 2, and is less
robust than the MD estimators. As in Fig. 2, the symmetry
of the IRF used in Fig. 3 (bottom) enhances slightly the
estimation performance of all the methods. However, the
Huber estimator seems more affected by the asymmetry of
the IRF (Fig. 3 (top)).

C. Non-uniform background

Imaging scenarios in presence of scattering media are re-
ceiving growing interest in underwater and automotive (e.g.
fog and rain) applications. In such cases, the background
temporal profile is expected to follow a non-uniform distribu-
tion. To investigate this issue, we applied our method to data
generated with a gamma background distribution, depicted in
Fig. 1 (bottom). The parameters of the gamma distribution
have been set to 5 bins (shape) and 55 bins (scale) and this
profile is similar to that observed in [7].

Fig. 4. Threshold of accurate detection higher than 85% for different robust
methods, as function of the MSC and SBR. The outliers corresponds to
background photons following a gamma distribution, and the Gaussian IRF
(see Fig. 1 top) has been used to generate and analyze the data.

The estimation performance of the different methods is
assessed in Fig. 4. As in Figs. 2 and 3, the MD method
provides better results as β increases. The worst estimation are
obtained with Huber and HSM performs similarly than LMF
in this case. Note that here, the Oracle performs significantly
better than in Fig. 2, due to the non-uniform nature of the
noise. While the proposed method can mitigate the presence
of uniform background and IRF broadening, its gain here is
more limited. Consequently, using a parametric model (which
accounts for the shape of the background distribution) is more
adapted.

D. Computational complexity

The two pixelwise representations of the photon ToAs
introduced in Section II (involving y or s) play a key role
in the complexity of the proposed estimator. Although the use
of y allows us to retrieve the matched filtering formulation, the
best ToA representation is still user/scenario dependent. While



the evaluation of the cost function in (5) depends linearly on
the number of (non-empty) histogram bins in y, which is at
most T , the evaluation of the cost function in (4) depends
on the number of detected photons P (assuming they all
have different ToAs). Thus, the most suited representation will
depend on the amount of ToAs acquired.

The quantitative comparison of the different methods used
in this paper in terms of computational complexity is not in-
cluded here as the complexity can be highly platform (sequen-
tial of parallel) and implementation dependent. Nonetheless,
it is possible to qualitatively compare their complexity. The
proposed robust method has roughly the same computational
cost as the standard LMF as it reduces to computing a similar
cross-correlation (LMF uses log(f(·)) while MD uses fβ(·)).
Huber is generally faster than MD and LMF for low photon
counts, but is not well adapted to thousands of photon counts.
Finally, HSM relies on an iterative algorithm whose number of
iterations grows with the number of photons and is not adapted
to large photon counts either (it becomes rapidly slower than
Huber and MD/LMF).

V. CONCLUSION

In this paper, we proposed a new depth estimator for robust
estimation of the range profile from single-photon Lidar data,
in the presence of non negligible background. The proposed
formulation of the problem significantly simplifies the estima-
tion process as it relies on the estimation of a single parameter,
i.e., the depth parameter. To alleviate the robustness issues
of the classical maximum likelihood approach, β-divergences
are used instead of the Kullback-Leibler divergence to quan-
tify the similarity between the empirical data distribution
and the postulated distribution. We compared the estimation
performance of the proposed estimator to that of existing
pixelwise approaches for different observation scenarios, and
demonstrated its potential benefits over the classical pixelwise
log-matched filter. Moreover, the estimation process benefits
from a low complexity, similar to that of log-matched filtering.
Beyond pixelwise estimation, such a robust estimation strategy
can be coupled, as in [20], with prior/regularization terms to
further enhance the estimation performance. However, using
such β-divergences within a Bayesian framework requires
further investigation to better understand and balance the
relative weights of the data fidelity and regularization terms.
Future work include the consideration of alternative families
of divergences or similarity measures. Moreover, it would also
be interesting to investigate if such robust methods could be
used to mitigate dead-time detector limitations [16], [17].
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