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ABSTRACT

This paper addresses the problem of estimating spectral and
range profiles from single-photon Lidar waveforms associ-
ated with single surfaces in presence of an unknown back-
ground. A single Lidar waveform per pixel is considered,
whereby a single detector is used to acquire information si-
multaneously at multiple wavelengths. A novel Bayesian
approach is developed to perform the estimation of model
parameters in a reduced computational time. This is achieved
by transforming an EM-based algorithm recently proposed
into a stochastic EM algorithm, which is computationally
more attractive. The reconstruction performance and com-
putational complexity of our approach are assessed through
a series of experiments using synthetic data under different
observation scenarios. The obtained results demonstrate a
significant speed-up compared to the state-of-the-art method,
without significant degradation of the estimation quality.

Index Terms— Multispectral imaging, 3D imaging,
Single-photon Lidar, Bayesian estimation.

1. INTRODUCTION

Light detection and ranging (Lidar) systems have received
considerable interest recently for their ability to reconstruct
a 3D scene at high resolution [1, 2]. By sending light pulses
onto a target and measuring the time-of-flight (ToF) of the
reflected photons, it is possible to estimate the depth profile
of an entire scene. More precisely, the ToFs of the recorded
photons are gathered to form histograms of photon detection
events. Additional detection events caused by ambient illumi-
nation and detector dark counts are generally uniformly dis-
tributed over the histogram. Single-band Lidar (SBL) allows
the reconstruction of high-resolution 3D scenes, but it only
captures one intensity value per pixel, associated with the
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laser source wavelength. Multispectral Lidar (MSL) circum-
vents such an issue, as a single imaging system [3] is used to
collect simultaneously spectral and spatial features [4]. How-
ever, the acquisition of such signals requires an overall longer
acquisition time (sequential acquisition) or more expensive
imaging systems (parallel acquisition) [5, 6].

A recent single-waveform MSL (SW-MSL) approach has
been developed in [7], to reconstruct the depth and spectral
profiles while keeping the acquisition time and complexity
of the imaging system of the same order as SBL. It consists
of registering a single histogram containing spectral informa-
tion from multiple wavelengths for each spatial location, via
wavelength-time coding (see Fig 1). Although the temporal
delays between wavelengths are known, the overall waveform
shape varies as the amplitude of its different peaks depends
on the spectral signature of the surface observed. In [7], a full
Bayesian method was proposed to analyze SW-MSL signals,
which suffers from a prohibitive computational time (about 15
hours to reconstruct a single 3D scene of 200×200 pixels and
4 wavelengths). In [8], we recently proposed a faster alterna-
tive where the model parameters are estimated sequentially.
More precisely, a mixture model was used as it naturally fits
Expectation-Maximization (EM) based algorithms. The re-
sulting algorithm first estimates the mixture weights and sub-
sequently the depth profile. The spectral signatures are com-
puted from the mixture weights using a post-processing step.

Fig. 1: Example of acquisition of four MSL waveforms, us-
ing one wavelength per waveform, and SW-MSL capturing
simultaneously information from four wavelengths.



In this paper, we extend the work presented in [8] in two
aspects. First, we use the traditional Poisson observation
noise model and aim at directly estimating the spectral re-
sponse of each surface, without resorting to the mixtures of
distributions used in [8]. The reflectivity profiles are directly
assigned prior models, without using additional transforms.
Second, we propose a more computationally attractive algo-
rithm, namely a stochastic EM algorithm [9, 10], to estimate
the model parameters from single-photon Lidar waveforms.
We also provide an additional solution to further accelerate
the estimation process, by sub-sampling the grid of admis-
sible depth position. We show that this new method yields
a significant speed-up without degradation of the estimation
performance when compared to our previous methods.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the problem addressed in this work. In Sec-
tion 3 the new SW-MSL observation model and the different
prior distributions associated with the unknown model param-
eters are defined. The estimation strategy and computational
improvement proposal are discussed in Section 4, and the per-
formance of the proposed method is then assessed in Section
5 on synthetic SW-MSL data. Conclusions and future work
are finally reported in Section 6.

2. PROBLEM FORMULATION

Consider a 2D observation array Y of SW-MSL signals yn =
[Y ]n,: = [yn,1, . . . , yn,T ]

> of size N × T , where N is the
number of pixels or spatial locations and T is the length of the
ToF histograms. The element yn,t is the photon count in the
nth pixel in the tth temporal bin. The spectral response of the
object in the nth pixel is denoted by rn = [rn,1, . . . , rn,L]

> ∈
RL

+, where L stands for the number of spectral bands, and
bn ≥ 0 gathers all the background contributions in that pixel.
In the low-flux regime, and in the presence of a single surface
per pixel, yn,t follows the Poisson distribution [7]

yn,t|rn, bn, tn ∼ P

(
bn +

L∑
`=1

rn,`g`(t− tn)

)
, (1)

where tn is the characteristic ToF of photons emitted by the
laser source and reflected by an object at distance dn of the
sensor and {g`(.)}` are the instrumental/impulse response
functions (IRFs) associated with the L wavelengths, and
whose shape can differ between spectral channels. These
IRFs are assumed to be known as they are generally esti-
mated during the system calibration. Moreover, the integral
G` =

∑T
t=1 g`(t− tn) is constant for any admissible tn.

The problem addressed in this paper is a computation-
ally attractive estimation of t = {tn}n and (R, b) =
({rn}n, {bn}n) in presence of possibly high background
illumination.

3. BAYESIAN MODEL

3.1. Likelihood

Assuming that the photon counts in all bins and histograms
are mutually independent (conditioned on there mean), the
joint likelihood can be expressed as

p(Y |R, b, t) =
∏
n

p(yn|rn, tn, bn). (2)

Since maximum likelihood estimation (MLE) based on Eq.
(2) is generally sensitive to noise, the problem has to be reg-
ularized in order to perform robust estimation as discussed
below.

3.2. Prior model

Natural scenes present depth and spectral profiles which are
often spatially correlated. As in previous work, e.g., [7, 11–
13] we model separately the depth and reflectivity profiles and
neglect potential correlation between them to keep the infer-
ence process tractable.

Depth prior model: The range profile of the target is as-
sumed to belong to a discrete grid of admissible positions
T = {tmin, . . . , tmax} such that 1 < tmin < tmax < T
as in [14, 15]. As in [11, 12], we define a prior model for t
which preserves sharp edges, i.e., we use the following total-
variation (TV) Markov random field (MRF),

p(t|ε) = exp [−ε‖t‖TV ] , (3)

where the fixed (user-defined) hyperparameter ε, which
mostly depends on the range resolution of the single-photon
detector, determines the level of correlation between the depth
parameters of neighboring pixels. Here we fixed ε = 0.05 for
all the experiments performed in this paper.

Reflectivity prior model: The reflectivity profile is also
assumed to present spatial correlation as neighboring pixels
are likely to belong to the same surface. We propose a hier-
archical model based on the gamma distribution as in [16].
In a similar fashion to [8] we assume that the pixels can be
clustered into C distinct and known classes and that the pix-
els within each class share the same prior model. The joint
prior model for R is then given by

f(R|Θ) =

C∏
c=1

∏
n∈Ic

L∏
`=1

G(rn,`; kc,`, θc,`), (4)

where G(·; kc,`, θc,`) is the probability density function of the
gamma distribution with respective shape and scale parame-
ters (kc,`, θc,`), Θ = {kc,`, θc,`}c,` and Ic is the set of pixel
indices in the cth group.

Weakly informative independent truncated gamma (resp.
inverse-gamma) hyper-prior models are finally assigned to the



shape (resp. scale) parameters as follows

f(Θ) =
∏
c,l

G(kc,`; 2, 0.5)1(1,∞)(kc,`)IG(θn,`; 1.01, 0.5). (5)

In practice the C classes are often unknown. Here they
are set as in [8] by applying patch-based k-means clustering
on R after a few iterations of the algorithm using a single
class. In all the experiments performed in this work, the seg-
mentation was done on the third iteration of the algorithm, as
the current estimates were sufficiently informative to cluster
the reflectivity image in our experiments, and patches of size
(3× 3) are clustered in C = 7 classes.

Background prior model: The background image may
present spatial structure but can also be significantly different
from R. In the high-background regime, the likelihood is
relatively informative and the background image b does not
need to be strongly regularized. For this reason, we simply
assign a separable prior (with respect of b)

f(b|α, β) =
∏
n

G(bn|α, β), (6)

and (α, β) is assigned the same prior model f(α, β) as in (5).

4. ESTIMATION STRATEGY

Using the likelihood and prior models defined in Section 3,
we obtain

f(R, b, t,Φ|Y ) ∝ p(Y |R, b, t)p(t)f(R, b|Φ)f(Φ), (7)

where Φ = {Θ, α, β}, f(R, b|Φ) = f(R|Θ)f(b|α, β) and
where all the fixed model parameters have been omitted in the
conditional distributions to simplify notations.

The likelihood in Eq.(2) is multimodal (because of t) and
the joint estimation of t and (R, b,Φ) is challenging within a
reasonable computational time. Thus, we propose as in [8,13]
to decompose the estimation process into successive prob-
lems, by first considering t as a nuisance parameter which
is marginalized to simplify the estimation of (R, b,Φ) such
as

(R̂, b̂, Φ̂) = argmax
R,b,Φ

∑
t

f(R, b, t,Φ|Y )

= argmax
R,b,Φ

f(R, b,Φ|Y ). (8)

The depth t is then estimated via marginal maximum a
posteriori (MMAP) estimation using the estimates from Eq.
(8)

t̂n = argmax
tn

∑
t\n

p(t|Y , R̂, b̂, Φ̂), ∀n, (9)

where t̃\n stands for the vector t̃ whose nth element has been
removed. The next sections detail how Eqs. (8) and (9) are
obtained.

4.1. Estimation of (R, b,Φ)

The estimation of (R, b,Φ) can be performed as in [13] us-
ing a stochastic EM (SEM) algorithm capable of handling
the intractable expectation step induced by the MRF prior in
(3). However, here we adopt a generalized SEM approach to
obtain a more computationally attractive inference process.
The main modifications with respect to the algorithm pre-
sented in [8] are twofold. Let (Ri, bi,Φi) be the current esti-
mate of (R, b,Φ). Instead of using a mean field-like approx-
imation [17] in the E-step, we simulate a set of Nt samples
{t̄1, . . . , t̄Nt} via Markov chain Monte Carlo (MCMC) sam-
pling from p(t|Y ,Ri, bi,Φi). Note that at each iteration, the
Gibbs sampler used is hot-started with the samples generated
at the previous iteration to improve the convergence speed.
Sampling from p(t|Y ,Ri, bi,Φi) is, in addition to the like-
lihood computation, one of the most computationally expen-
sive step of the algorithm, even if the sampler is initialised
properly, as it requires inverting a cumulative density func-
tion (CDF) defined on T for each pixel. To reduce this cost,
it is possible to downsample T by a factor Ts and compute
the CDFs on a coarser grid without affecting significantly the
quality of theNt simulated depth samples as well as the over-
all estimation quality.

After generation of the Nt samples, the cost function to
be maximized in the M-step becomes
Q(R, b,Φ|Ri, bi,Φi) =

1

Nt

Nt∑
m=1

[
log p(Y |R, b, t̄m)

]
+ log f(R, b|Φ)f(Φ). (10)

Instead of exactly maximizing this function at each iteration,
in a generalized EM fashion [9], we used a few iterations
of gradient ascent (resp. Newton-Raphson) to update (R, b)
(resp. Φ) sequentially. A gradient ascent was preferred to sec-
ond order methods for (R, b) to avoid the inversion of Hes-
sian matrices, which are heavy to compute and whose com-
plexity depends on L. We fixed the gradient step size to 10−3

as it gave the best trade-off between speed and performance
in our experiments. When the number of signal photons is
not to small compared to the background counts, our gener-
alized SEM algorithm converges quickly and an average of 5
iterations are usually sufficient for the successive estimates to
oscillate around fixed values. We assumed the convergence is
reached when the relative error between two successive esti-
mates of R falls below 10−2. The final estimates (R̂, b̂, Φ̂)
are obtained by averaging the next 5 successive estimates of
(R, b),Φ after convergence.

4.2. Depth estimation

After convergence of generalized SEM algorithm proposed
to estimate (R, b,Φ), the final step of the algorithm consists
of estimating t using (9). A MMAP estimates is computed
from a variational approximation of p(t|Y , R̂, b̂, Φ̂) using



the samples generated during the last iteration of the gener-
alized SEM algorithm. As such solution is computationally
expensive for the reasons mentioned above, we fixed Nt = 1
for all the experiments unless otherwise stated. As in [8], this
approximation can be expressed as a product of independent
distributions over theN pixels, whose maximum can be com-
puted easily.

5. RESULTS

We assess the performance of the proposed approach using
synthetic SW-MSL data, generated with N = 200 × 200
pixels depth and reflectivity profiles obtained from real data
in [7], with L = 4 wavelengths (473, 532, 589 and 640nm).
The number of temporal bins is T = 1500 (bin width of
2ps) and a spatially constant background was added to all of
the waveforms. We set the admissible temporal positions to
[tmin, tmax] = [301, 900] to ensure the integrals of the IRFs
remain constant over the admissible object range. Different
scenarios have been reproduced to assess the performance
of the proposed method through both the mean signal pho-
ton counts (MSC) and the average signal to background ratio
(SBR) defined as

MSC =
1

N

∑
n,`

rn,`G`, SBR =
1

N

N∑
n=1

1

Tbn

L∑
`=1

rn,`G`.

The proposed approach, referred as C-Gamma (cluster-
Gamma), is compared to the C-Dirichlet method proposed
in [8]. To assess the speed-up/performance trade-off when
sub-sampling the admissible depth grid or when estimating
the depth using more samples, we considered several ver-
sions of our proposed method with a downsampling factor
Ts ∈ [4, 10]. We also performed experiments with C-Gamma
where Nt = 100 samples are generated in the S-step. These
approaches are referred as C-Gamma{Ts, Nt}, when either
Ts or Nt differ from 1.

We assess the reflectivity estimation quality using the
mean squared error (MSE) defined as 1

N

∑N
n=1 ‖rn − r̂n‖22,

where rn (resp. r̂n) is the actual (resp. estimated) spec-
tral response of the nth pixel. The ranging performance
is then quantified using the CDF of the depth absolute error
hn = |tn−t̂n|,∀n, where t̂n is the estimate of the actual depth
parameter tn in the nth pixel. The reconstruction performance
of the reflectivity (resp. depth profile) obtained with [10, 44]
MSC photons are depicted in Fig.2 (resp. Fig.3). Note that
modifying Ts does not significantly change the reflectivity
reconstruction performance for Nt = 1, so C-Gamma{4, 1}
is omitted in Fig. 2.

Increasing Ts implies estimating the reflectivity with a
coarse depth profile at each iteration, but as Ts remains lower
than the delays between each IRF, and more importantly
as long as the resolution of the coarse grid resolution stays
smaller than the width of the IRFs, this does not impact R̂ as

Fig. 2: MSE of R obtained with the different competing
methods as function of the SBR. The left (resp. right) sub-
plot corresponds to MSC equals to 10 (resp. 44) photons.

Fig. 3: CDFs of the depth absolute error, with high back-
ground (SBR = 0.426). The left (resp. right) subplot corre-
sponds to MSC equals to 10 (resp. 44) photons.

shown in Fig. 2. Although this affect the final depth recon-
struction performance, the loss is not important for Ts ≤ 4.

The reflectivity reconstruction performance of C-Gamma
and C-Gamma{1, 100} differ only at low SBR in short imag-
ing cases, explained by the accurate depth reconstruction of
C-Gamma{1, 100} in the same scenario that outperforms C-
Dirichlet. Although the performance of C-Gamma{1, 100}
are better than those of C-Gamma, they differ only slightly
and the high complexity of C-Gamma{1, 100} makes it
unattractive. The similarity between those results show that
the proposed approach does not require perfect depth sam-
pling at each iteration, as the depth profile converges quickly
to a satisfactory estimate. Although the depth estimate with
C-Dirichlet is more accurate than that of C-Gamma, their
performance remain close and C-Gamma enables better re-
flectivity estimation for SBR≥ 0.426. Moreover, the loss is
balanced by the significantly lower computational cost of our
approach.

Finally, Table 1 reports the computational time associated



10/∞ 10/0.046 44/∞ 44/0.426
C-Gamma 104s 132s 350s 493s
C-Gamma{4, 1} 43s 49s 55s 69s
C-Gamma{10, 1} 34s 36s 38s 42s
C-Dirichlet 530s 592s 629s 662s

Table 1: Computational cost of the competing approaches
for synthetic SW-MSL data analysis. In the top row, the first
(resp. second) value stands for the MSC (resp. SBR).

with the proposed model, compared to the method in [8]. The
computational time of C-Gamma{1, 100} is omitted here as it
is computationally unattractive. All the experiments we per-
formed in this work have been run on Matlab R2019a with a
intel i7-8700k CPU @ 3.70GHz. Although the computational
gain is implementation dependent and could still be improved
via parallel programming, we noticed that a significant speed-
up is obtained by the proposed method when compared to [8],
for all illumination scenarios. In general, C-Gamma provides
similar depth as the method in [8] but more accurate spectral
signatures reconstruction and is about 10 times faster.

6. CONCLUSION

In this paper, a novel algorithm has been presented to estimate
the spectral and depth profile of a target from SW-MSL return.
The method works in presence of non negligible background
photon level and for short acquisition scenarios (2.5 signal
photons per pixel per wavelength, on average). The alterna-
tive estimation of the model parameters simplifies the infer-
ence process and makes it computationally tractable. More-
over, the non-local C-Gamma prior model, similarly built as
in [8], allows to split the problem pixel wise, and the con-
catenation of the admissible depth position reduces markedly
the tractability of the likelihood computation. While our new
approach benefits from a significantly reduced computational
cost, it is limited by the presence of high background level.
Moreover, the starved photon regime has not been studied in
our experiments. Thus, further studies should focus on adapt-
ing the method to extreme acquisitions scenarios.
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