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Chapter 1

Differentiability on Normed Vector
Spaces

In all this chapter, we will consider R-vector space.

1.1 Fréchet Differentiability

Definition 1 Let E and F be two normed vector spaces, and U be a non empty open set of E and
x ∈ U . Let f : U −→ F . f is said to be Fréchet-differentiable at x if there exists L ∈ L(E,F ) such
that:

f(x+ h) = f(x) + L(h) + ‖h‖ε(h)︸ ︷︷ ︸
o(‖h‖)

where ε : V −→ F is an application defined on an open neighborhood V of 0E such that ∀ h ∈
V, x+ h ∈ U , and lim

‖h‖→0
ε(h) = 0.

L is called differential of f at x and is denoted either by f ′(x), dfx or Df(x). In what follows, we
will use the term differentiable for Fréchet-differentiable.

Some properties

1) L is unique.

2) f is differentiable on U if f is differentiable at every point in U . In this case, one has f ′ :
U −→ L(E,F ). f is said to be C1 if f is differentiable on U and f ′ is continuous (f is C2 if
f ′ is C1, ...).

3) The set of the applications differentiable at x ∈ U (resp. on U) is a vector space.

4) If f is differentiable at x ∈ U then f is continuous at x.

proof

5



6 CHAPTER 1. DIFFERENTIABILITY ON NORMED VECTOR SPACES

• Point 1 : If L1 and L2 equal Df(x) then: Let h ∈ E \ 0 and t ∈ ]0; ε′[ (ε′ sufficiently small so
that x+ t h ∈ V ).

f(x+ t h) = f(x) + L1(t h) + o(‖t h‖) = f(x) + L2(t h) + o(‖t h‖)

Thus ‖L1(h)− L2(h)‖ =

∥∥∥∥L1(t h)− L2(t h)

t

∥∥∥∥ =
o(t ‖h‖)

t
−−→
t→0

0

• Point 4 : ‖f(x+ h)− f(x)‖ ≤ ‖L(h)‖+ ‖h‖ ‖ε(h)‖ −−−−→
‖h‖→0

0

Remark 1 In the case, E = F = R, we know that if f is differentiable at x then lim
h→0,h6=0

f(x+ h)− f(x)

h
=

f ′(x), which can be rewritten as f(x+h) = f(x) + f ′(x)(h) + o(|h|), and which corresponds to Def-
inition 1.

Examples 1

1) Let f : U −→ F and c ∈ F such that ∀ x ∈ U, f(x) = c. Then ∀ x ∈ U, f ′(x) = 0. So
f ′ : U −→ L(E,F ) is null. f is C∞. f ′′ ∈ L(E,L(E,F )).

2) U = E and f ∈ L(E,F ). Then ∀ x ∈ E, f ′(x) = f (because f(x + h) − f(x) = f(h) =
f ′(x)(h)). Thus f ′ is constant, f is C∞ and higher order differentials are null.

3) Let E1, E2 and F be normed vector spaces, and B : E1 × E2 → F a continuous bilinear
application. Then B is differentiable and B′(x, y)(h, k) = B(x, k) +B(h, y).

proof of 3 ). Let us first show that

∃ M > 0 s.t. ‖B(x, y)‖ ≤M ‖x‖ ‖y‖

As B is continuous at 0:

∃ δ > 0 s.t. ‖(x, y)‖∞ ≤ δ =⇒ ‖B(x, y)‖ ≤ 1

with ‖x‖∞ = max(‖x1‖ , ‖x2‖), and for this norm E1 × E2 is a normed vector space.

Assume x and y are non zero. Then one has:

∥∥∥∥B( δ x‖x‖ , δ y‖y‖
)∥∥∥∥︸ ︷︷ ︸

= δ2

‖x‖ ‖y‖ ‖B(x, y)‖

≤ 1. So ‖B(x, y)‖ ≤

1

δ2
‖x‖ ‖y‖ and we take M =

1

δ2
. Then, one can write:

B(x+ h, y + k) = B(x, y) +B(x, k) +B(h, y)︸ ︷︷ ︸
B′(x,y)(h,k)

+ B(h, k)︸ ︷︷ ︸
o(‖(h,k)‖∞)

.

Indeed, ‖B(h, k)‖ ≤M ‖h‖ ‖k‖ ≤M ‖(h, k)‖2∞, so we have B(h, k) = o(‖(h, k)‖∞).
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Furthermore, B′(x, y) : (h, k) 7−→ B(x, k) +B(h, y) is clearly linear:

B′(x, y)
(
λ(h, k) + (u, v)︸ ︷︷ ︸

(λh+u,λk+v)

)
= B(x, λk + v) +B(λh+ u, y) = λB(x, k) +B(x, v) + λB(h, y) +B(u, y)

= λB′(x, y)(h, k) +B′(x, y)(u, v)

B′(x, y) is continuous, indeed:∥∥B′(x, y)(h, k)
∥∥ ≤M (‖x‖ ‖k‖+ ‖y‖ ‖h‖) ≤M (‖x‖+ ‖y‖) ‖(h, k)‖∞

Application Let E, F , and G be three different normed vector spaces.

B : L(E,F )× L(F,G) −→ L(E,G)
(u, v) 7−→ B(u, v) = v ◦ u

B is bilinear and continuous (‖B(u, v)‖ = ‖v ◦ u‖ ≤ ‖v‖ . ‖u‖). Thus B is differentiable and
B′(u, v)(h, k) = B(u, k) +B(h, v) = k ◦ u+ v ◦ h.

1.2 Differential of a composition of functions

Theorem 1 (chain rule)

Let E, F , and G three normed vector spaces. Let U ⊂ E an open set, x ∈ U , f : U −→ F ,
V ⊂ F an open set, b = f(x) ∈ V and g : V −→ G. If f is differentiable at x and if g is
differentiable at b = f(x), then g ◦ f (defined on a neighborhood of x and continuous at x) is
differentiable at x, and one has:

(g ◦ f)′(x) = g′(f(x)).f ′(x).

If f and g are Cp (p ≥ 1) then g ◦ f also belongs to Cp.

proof Let us put y = f(x) then

g(y + k) = g(y) + g′(y).k + o(‖k‖).

Let us define o(‖k‖) = ‖k‖r1(k) with lim
‖k‖→0

r1(k) = 0, then set k = f(x + h) − f(x) = f ′(x)h +

‖h‖r2(h) with lim
‖h‖→0

r2(h) = 0. Then one can write:

g ◦ f(x+ h) = g(f(x+ h)) = g(y + k) = g(y) + g′(y).(f ′(x)h+ ‖h‖r2(h)) + o(‖h‖)
= g ◦ f(x) + g′(f(x)).f ′(x)h+ ‖h‖g′(y).r2(h) + o(‖h‖)

But ‖g′(y).r2(h)‖ ≤ ‖g′(y)‖‖r2(h)‖. As ‖g′(y)‖ is bounded and lim
‖h‖→0

r2(h) = 0, one obtains

lim
‖h‖→0

g′(y)r2(h) = 0. Finally, as g′(f(x)).f ′(x) ∈ L(E,F ), we get the result.
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Application : functions with values in a product of normed vector spaces

Proposition 1

Let U ⊂ E an open set, and f : U −→ F = F1 × · · · × Fk with Fi a normed vector space,
‖y‖ = max

1≤i≤k
‖yi‖ for y = (y1, · · · , yk) ∈ F .

ui : Fi −→ F
yi 7−→ (0, . . . , 0, yi, 0, . . . , 0)

pi : F −→ Fi
y 7−→ yi

f is differentiable at x ∈ U if and only if for i = 1, . . . , k, fi = pi ◦ f is differentiable at x. Then,
we get:

f ′(x) =

k∑
i=1

ui ◦ fi′(x)

proof (⇒) pi ∈ L(F, Fi) (pi is continuous since ‖pi(x)‖ = ‖xi‖ ≤ ‖x‖), so pi is differentiable.
Therefore, pi ◦ f = fi is differentiable at x.

(⇐)

k∑
i=1

ui ◦ pi = idF =⇒
k∑
i=1

ui ◦ pi ◦ f︸ ︷︷ ︸
fi

= f . Furthermore, as ui ∈ L(Fi, F ) f is differen-

tiable as fi is differentiable. Then, using the chain rule we obtain:

f ′(x) =
k∑
j=1

(ui ◦ fi)′(x) =
k∑
i=1

ui
′(fi(x)) ◦ fi′(x) =

k∑
i=1

ui ◦ fi′(x)

Illustration: Case where E = Rd et F = Rk

From the previous section, one can write that

f ′(x).h =
k∑
i=1

ui ◦ fi′(x).h = (f ′1(x)h, · · · , f ′k(x)h)

Let us then decompose h in the canonical base of Rd, h =
d∑
j=1

hjej . Then using the linearity of the

differential, one may write:

f ′i(x)h = f ′i(x)(

d∑
j=1

hjej) =

d∑
j=1

hjf
′
i(x)(ej)

where f ′i(x)(ej) = lim
t→0

fi(x+tej)−fi(x)
t = ∂fi

∂xj
(x). Thus one can write:

f ′(x).h = (
d∑
j=1

∂f1
∂xj

(x)hj , · · · ,
d∑
j=1

∂fk
∂xj

(x)hj) = Jac(f)(x)h
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In other words, the matrix Jac(f)(x) is the matrix whose element indexed by (i, j), pour i = 1, ..., k
and j = 1, ..., d, is equal to ∂fi

∂xj
(x). In the particular case F = R, one may write

f ′(x)h = f ′(x)(
d∑
j=1

hjej) =
d∑
j=1

hjf
′(x)(ej) =

d∑
j=1

∂f
∂xj

(x)hj = ∇f(x)t.h

One can finally rewrite the chain rule theorem in finite dimension under the following form:

Theorem 2

Let d, n, p ≥ 1 three integers, and U ⊂ Rd, V ⊂ Rn two open sets; Let ϕ : V → Rp and
ψ : U → Rn two differentiable functions such that ψ(U) ⊂ V . Then ϕ ◦ ψ : U → Rp is defined
and differentiable on U , and corresponds to its Jacobian matrix which reads:

∀x ∈ U, Jac(ϕ ◦ ψ)(x) = Jac(ϕ)(ψ(x))Jac(ψ)(x). (1.1)

which can be rewritten in the following way:

The Jacobian matrix of a composition of functions is the product of the Jacobian matrices.

Note that the matrix product in formula (1.1) makes sense , since the matrix Jac(ψ)(x) is with size
n×m and Jac(ϕ)(ψ(x)) is with size p× n (so that Jac(ϕ ◦ ψ)(x) is with size p×m). A particular
case of this is the following (p = d = 1):

Corollary 1

Let n ≥ 1 an integer and Let ϕ : U → R a differentiable function on an open set U of Rn. Let
ψ : I → Rn a differentiable function on an interval I of R (whose components are denoted by
ψ(t) = (ψ1(t), ..., ψn(t))) such that ψ(I) ⊂ U . Then f = ϕ ◦ ψ : I → R is differentiable and

∀t ∈ I, f ′(t) =
∂ϕ

∂x1
(ψ(t))ψ′1(t) + ...+

∂ϕ

∂xn
(ψ(t))ψ′n(t).

1.3 Directional Derivative, first variation and local extrema

Definition 2 (Directional derivative) Let E and F be two normed vector spaces, and U a non
empty open set in E and x ∈ U . Let f : U −→ F , v ∈ E and t ∈ R∗. We say that f admits a
directional derivative in the direction v at x if

lim
t→0

f(x+ t v)− f(x)

t
exists

Definition 3 (First variation) Let E and F be two normed vector spaces. let U be a non empty
open set of E and a ∈ U . Let f : U −→ F . Let v ∈ E. If f admits a directional derivative in each
direction v at x, we call it first variation of f at x and denote it δ(x, v).

Remark 2 If f is differentiable at x and admits a first variation at x, but the converse is false.

Remark 3 If f is differentiable at x, δ(x, v) = f ′(x)v.
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Proposition 2 (Necessary condition for the existence of an extremum)

If f admits a first variation at x and an extremum at x, then δ(x, v) = 0, ∀v ∈ E. Thus, if f is
differentiable at x and admits an extremum at x then f ′(x) = 0.

proof Consider that f admits a minimum at x then

lim
t→0+

f(x+ t v)− f(x)

t
= δ(x, v) ≥ 0

but we also have:

lim
t→0+

f(x− t v)− f(x)

t
= −δ(x, v) ≥ 0

thus δ(x, v) = 0. The proof is the same for a maximum.

Definition 4 (Gâteaux-differentiability) Let E and F be two normed vector spaces. Consider
that f is defined in a neighborhood V (x), for some x in E with values in F . f is said to be
Gâteaux-differentiable (G-differentiable) at x if and only if:

1. f admits a first variation at x, δf(x, h).

2. There exists B ∈ L(E,F ) such that

δf(x, h) = Bh

In this case, B will be called the G-differential of f at x. We will write f ′G(x) = B this G-differential
and will define the G-differential of f at x by

dGf(x;h) = f ′G(x)h.

Proposition 3

If f : V (x) ⊂ E → F is differentiable at x, it is also G-differentiable at x and f ′(x) = f ′G(x).

proof Indeed, one can write:

f(x+ h) = f(x) + f ′(x)h+ o(‖h‖)

Putting h = tk, t ∈ R, k ∈ E, one obtains:

f(x+ tk) = f(x) + tf ′(x)k + o(|t|‖k‖) = f(x) + tf ′(x)k + o(|t|).

So we deduce that δf(x, h) = f ′(x)h, so f is G-differentiable and f ′G(x) = f ′(x).

The converse is of course wrong:
Let

f : R2 → R

(x, y) →
{

1 si y = x2 et x 6= 0
0 otherwise
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This function is discontinuous at (0, 0) so it is not differentiable at this point, but:

lim
t→0

f(th1, th2)− f(0, 0)

t
= 0.

So the function is fonction is G-differentiable at 0.
exercise: Consider the function

f(x, y) =

{
x3−3xy2

x2+y2
si x2 + y2 > 0

0 if (x, y) = (0, 0)

1. Compute δf((0, 0), (s, t))

2. Is this function G-differentiable at (0, 0)? What can you deduce from that?

However, we have the following proposition:

Proposition 4

If f ′G(y) exists at every y in a neighborhood of x, and if f ′G : X → L(E,F ) is continuous at point
x, then f is differentiable at x and f ′(x) = f ′G(x)

proof Let us introduce the function ϕ(t) = f(x + th) , then ϕ′(t) = f ′G(x + th)h. Using the
continuity of f ′G at x, we get:

‖ϕ(1)− ϕ(0)− ϕ′(0)‖ = ‖
∫ 1

0
ϕ′(t)− ϕ′(0)‖

≤ sup
t∈]0,1[

‖ϕ′(t)− ϕ′(0)‖

= sup
t∈]0,1[

‖f ′G(x+ th).h− f ′G(x).h‖

≤ sup
t∈]0,1[

‖f ′G(x+ th)− f ′G(x)‖‖h‖ = o(‖h‖)

Exercices

Ex.1
Study the differentiability of

f(x, y) =

{ xy
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Replace the numerator by x2y, xy2 et x3y, and carry out the same study.
Ex. 2
Let E = (C1[0, 1], ‖u‖ = max(‖u‖∞, ‖u′‖∞)), F = (C[0, 1], ‖u‖∞). Let J : E → F such that
J(u) = u′. Show that J ∈ C∞, compute J ′(u).
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Ex. 3
Let E = (C[0, 1], ‖.‖∞), J : E → E and J(u) = eu. Show that J ∈ C1.

Ex. 4
Let E = (C[0, 1], ‖.‖∞), J : E → R, J(u) =

∫ 1
0 e

u. Show that J ∈ C1 using two different ways
(without using the definition).

Ex. 5
We consider the following functional:

J(u) = e
∫ 1
0 u
′(s)2ds

defined on C1([0, 1]) and with values in R. Compute the differential of J .

Ex. 6
Let E,F,G,H be normed vector spaces, U ⊂ E open, u : U → F , v : U → G, B : F × G → H
bilinear and continuous. Let us put:

ω(x) = B(u(x), v(x)) x ∈ U

1. Show that if u and v are differentiable at x ∈ U , so is ω . Compute ω′.

2. Applications
Consider F = G = H = R, if E = R, et B(x, y) = xy.
If F = R, G = H et B(x, y) = x.y

Finally, considering appropriate compositions, compute the differential of z(x) = u(x)
v(x) with

G = R and v(x) 6= 0 in U , F could be any Banach space, and H = F .

Ex. 7
Let:

f : Rk → Rk
(x1, · · · , xk)→ (x1x2, x2x3, · · · , xkx1)

and:
g : Rk → E = (C[0, 1], ‖.‖∞)

x→ (t→ ‖x‖2 cos(t))

Show that g ◦ f is differentiable and compute its differential.

Ex. 8
Let E be a normed vector space and:

f : Rk × E → E
((x1, · · · , xk), u)→ ‖x‖2u

Show that f is differentiable and compute this differential.

1.4 Local extrema on Convex Sets

Consider the normed vector space E, we have the following proposition:
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Proposition 5

Let X ⊂ E an open set, C ⊂ X a convex set and f : X → R. If f admits a minimum at x in C
and if f is differentiable at x then

f ′(x)(y − x) ≥ 0, ∀y ∈ C

proof One has for θ ∈ [0, 1], x+ θ(y − x) ∈ C, and thus:

f(x+ θ(y − x))− f(x)

θ
≥ 0

Making θ tend to zero we get the desired result.

1.5 Example of the computation of a differential in infinite dimen-
sion

Proposition 6

Recalling that E = C1([a, b],R) equipped with the norm ‖u‖ = max(‖u‖∞ , ‖u′‖∞). (E, ‖.‖) is
a normed vector space. Considering u ∈ E and F ∈ C1([a, b]× R× R), we define for u ∈ E

J(u) =

∫ b

a
F
(
x, u(x), u′(x)

)
dx.

Then J belongs to C1 and we have:

∀ h ∈ E, J ′(u)(h) =

∫ b

a

(
∂F

∂y

(
x, u(x), u′(x)

)
h(x) +

∂F

∂z

(
x, u(x), u′(x)

)
h′(x)

)
dx

proof Let y, z, s, t ∈ R, x ∈ [a, b] and r ∈ [0, 1].

F (x, y + s, z + t)− F (x, y, z) =

∫ 1

0

d

dr

(
F (x, y + rs, z + rt)

)
dr

=

∫ 1

0

{
∂F

∂y

(
x, y + rs, z + rt

)
s+

∂F

∂z

(
x, y + rs, z + rt

)
t

}
dr
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Let ε > 0 and h ∈ E. First, we can write

J(u+ h)− J(u) =

∫ b

a

{
F
(
x, u(x) + h(x), u′(x) + h′(x)

)
− F

(
x, u(x), u′(x)

)}
dx

=

∫ b

a

(∫ 1

0

{
∂F

∂y

(
x, u(x) + rh(x), u′(x) + rh′(x)

)
h(x)

+
∂F

∂z

(
x, u(x) + rh(x), u′(x) + rh′(x)

)
h′(x)

}
dr

)
dx

=

∫ b

a

{
∂F

∂y

(
x, u(x), u′(x)

)
h(x) +

∂F

∂z

(
x, u(x), u′(x)

)
h′(x)

}
dx︸ ︷︷ ︸

L(h)

+

∫ b

a
A(x) dx︸ ︷︷ ︸
B

We are going to show that L ∈ L(E,R) = E′ and that

∃ η > 0 tq ‖h‖ < η =⇒ |B| ≤ ε ‖h‖ .

L is clearly linear. Now let us show that it is continuous:

|L(h)| ≤ sup
x∈[a,b]

{∣∣∣∣∂F∂y (x, u(x), u′(x)
)∣∣∣∣+

∣∣∣∣∂F∂z (x, u(x), u′(x)
)∣∣∣∣} ‖h‖ (b− a).

Furthermore,

A(x) =

∫ 1

0

{
∂F

∂y

(
x, u(x) + rh(x), u′(x) + rh′(x)

)
− ∂F

∂y

(
x, u(x), u′(x)

)}
h(x) dr

+

∫ 1

0

{
∂F

∂z

(
x, u(x) + rh(x), u′(x) + rh′(x)

)
− ∂F

∂z

(
x, u(x), u′(x)

)}
h′(x) dr

As F is C1, there exists η > 0 such that ‖h‖ ≤ η :∣∣∣∣∂F∂y (x, u(x) + rh(x), u′(x) + rh′(x)
)
− ∂F

∂y

(
x, u(x), u′(x)

)∣∣∣∣ ≤ ε∣∣∣∣∂F∂z (x, u(x) + rh(x), u′(x) + rh′(x)
)
− ∂F

∂z

(
x, u(x), u′(x)

)∣∣∣∣ ≤ ε
for all x ∈ [a, b] since u is fixed so u([a, b]) and u′([a, b]) are compact. Thus |A(x)| ≤ ε

(
|h(x)| +

|h′(x)|
)
≤ 2 ε ‖h‖ and |B| =

∣∣∣∣∫ b

a
A(x) dx

∣∣∣∣ ≤ 2 ε ‖h‖ (b− a)

Application: Computation of a minimum

Now, consider the previous problem with F ∈ C2([a, b] × R2,R), and assume we are looking for a
minimum of J in

X =
{
u ∈ C2[a, b], u(a) = ua, u(b) = ub fixed

}
.

As X is a convex set , a minimum u0 must satisfy:

J ′(u0).h = 0, ∀h ∈ Y
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with
Y =

{
h ∈ C2[a, b], h(a) = 0, h(b) = 0

}
.

u0 must satisfy J ′(u0).h = 0 for all h in Y . Taking into account the hypothesis made on F , one
can write:

∀ h ∈ Y, J ′(u0).h =

∫ b

a

(
∂F

∂y

(
x, u0(x), u′0(x)

)
h(x) +

∂F

∂z

(
x, u0(x), u′0(x)

)
h′(x)

)
dx

By integrating by parts the second part of the integral, we get:

∀ h ∈ Y, J ′(u0).h =

∫ b

a

[
∂F

∂y

(
x, u0(x), u′0(x)

)
− d

dx

(
∂F

∂z

(
x, u0(x), u′0(x)

))]
h(x) dx (1.2)

Furthermore, we have the following lemma

Lemma 1

let f ∈ C2([a, b]) such that
∫ b
a f(t)h(t)dt = 0, ∀h ∈ C2([a, b]), satisfying h(a) = h(b) = 0, then

∀t ∈ [a, b], f(t) = 0.

proof Let us assume the contrary. If there exists a point t0 ∈]a, b[ such that f(t0) > 0, then as f
is continuous, there exists a small interval [t1, t2] ⊂]a, b[ containing t0 such that f is strictly positive
on that interval. Let us then introduce the function:

h(t) =

{
(t− t1)3(t2 − t)3 t1 ≤ t ≤ t2

0 sinon.

This function is in Y and one has:∫ b

a
f(t)h(t)dt =

∫ t2

t1

f(t)h(t)dt > 0

hence the contradiction.

One can then write that u satisfies the Euler-Lagrange (or Euler) equation associated with the
problem, namely.:

∂F

∂y

(
x, u0(x), u′0(x)

)
− d

dx

(
∂F

∂z

(
x, u0(x), u′0(x)

))
= 0, ∀x ∈ [a, b].

This is a nonlinear second order differential equation, since one can rewrite the above equation
under the following form:

∀x ∈ [a, b]

∂F

∂y

(
x, u0(x), u′0(x)

)
− ∂2F

∂x∂z

(
x, u0(x), u′0(x)

)
− ∂2F

∂y∂z

(
x, u0(x), u′0(x)

)
u′0(x)− ∂2F

∂2z

(
x, u0(x), u′0(x)

)
u′′0(x) = 0.

Application: The length of a curve y = y(t) (assumed to be C2([a, b])) joining the points (a, ya)
and (b, yb) is given by the integral:

J(y) =

∫ b

a

√
1 + y′(t)2dt
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We try to find what the curves with minimal length in

X =
{
y ∈ C2([a, b]), y(a) = ya, y(b) = yb

}
.

If y is a local minimum it must satisfy the Euler equation. Putting L(t, y(t), y′(t)) =
√

1 + y′(t)2,
which belongs to C2([a, ]× R2), such an equation reads in that case:

∂L

∂y
L(t, y(t), y′(t))− d

dt

∂L

∂y′
L(t, y(t), y′(t)) = 0⇔ d

dt

(
y′(t)√

1 + y′(t)2

)
= 0

since ∂L
∂yL(t, y(t), y′(t)) = 0. So, one has:

y′(t)√
1 + y′(t)2

= C ⇔ y′2 = C2(1 + y′2)⇔ y′2 =
C2

1− C2
⇔ y′ = D

Thus, y = At+ b (which are straight lines!!) and the unique potential candidate is

y =
yb − ya
b− a

t+
bya − ayb
b− a

.

1.6 Mean value theorem

Theorem 3 (mean value theorem)

Let F be a normed vector space. Let f : [a, b] −→ F and g : [a, b] −→ R two continuous
applications on [a, b] and differentiable on ]a, b[. If

∀ t ∈]a, b[,
∥∥f ′(t)∥∥ ≤ g′(t)

then
‖f(b)− f(a)‖ ≤ g(b)− g(a).

proof Let ε > 0. We are going to show that

∀ t ∈ [a, b], ‖f(t)− f(a)‖ ≤ g(t)− g(a) + ε(t− a) + ε (1.3)

Using the continuity of f and g, (1.3) is true for t ∈ [a, a+ η] with η > 0 small.
A = {η ∈ ]0, b− a] ; (1.3) is true for t ∈ [a, a+ η]}. A is non empty and bounded above, one can
thus define θ̃ = supA and then set θ = θ̃ + a. Using a continuity argument, (1.3) is true for t = θ.
Let us suppose that θ < b, ∃δ > 0 such that for all t ∈ [θ, θ + δ] and as f is differentiable in θ:∥∥f(t)− f(θ)− f ′(θ)(t− θ)

∥∥ ≤ ε

2
(t− θ).

Similarly, as g is differentiable at θ,∣∣g(t)− g(θ)− g′(θ)(t− θ)
∣∣ ≤ ε

2
(t− θ)
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Using triangular inequality, we get :

‖f(t)− f(θ)‖ ≤ ‖f ′(θ)‖ (t− θ) + ε
2(t− θ) ≤ g′(θ)(t− θ) + ε

2(t− θ) ≤ g(t)− g(θ) + ε(t− θ)

For t ∈ [θ, θ + δ] :

‖f(t)− f(a)‖ ≤ ‖f(t)− f(θ′)‖+ ‖f(θ′)− f(a)‖
≤ g(t)− g(θ′) + ε(t− θ′) + g(θ′)− g(a) + ε(θ′ − a) + ε
= g(t)− g(a) + ε(t− a) + ε

So (1.3) is true on [θ, θ + δ], which consists of a contradiction. So θ = b and for all ε > 0, one has:

‖f(b)− f(a)‖ ≤ g(b)− g(a) + ε(b− a) + ε

which entails ‖f(b)− f(a)‖ ≤ g(b)− g(a).

Proposition 7

Let E and F be two normed vector spaces. Let U be an open set in E, f : U −→ F differentiable
on U .
We assume that there exists a constant k ≥ 0 such that ∀ x ∈ U, ‖f ′(x)‖ ≤ k.
If [x, y] is a segment included in U , one has :

‖f(y)− f(x)‖ ≤ k ‖y − x‖

In particular, f is Lipschitz on a ball included in U and on a convex set included in U .

proof
Let us define f̃ : t ∈ [0, 1] 7−→ f(x+ t(y − x)) and then apply the mean value theorem to f̃ :

f̃ ′(t) = f ′(x+ t(y − x))(y − x).

So, ∥∥∥f̃ ′(t)∥∥∥ =
∥∥f ′(x+ t(y − x))(y − x)

∥∥ ≤ ∥∥f ′(x+ t(y − x))
∥∥ ‖y − x‖ ≤ k ‖y − x‖ = g′(t).

Taking g(t) = k ‖y − x‖ t, we get∥∥∥f̃(1)− f̃(0)
∥∥∥ = ‖f(y)− f(x)‖ ≤ g(1)− g(0) = k ‖y − x‖

Corollary 2

Let f : U −→ F a C1 function. Then f is locally Lipschitz.

proof Let x0 ∈ U , f ′ is continuous on a neighborhood V of x0 and is bounded on V .
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1.7 Higher order differentials

Let f be a function defined on an open set Ω of a normed vector space E taking its values in a
normed vector space F . We assume that f is differentiable on Ω and thus

f ′ : Ω→ L(E,F ).

If this function is also differentiable on Ω, f is said to be two times differentiable on Ω, and the
second order differential is a function

f ′′ : Ω→ L(E,L(E,F )).

The space L(E,L(E,F )) can be identified to L2(E,F ), the space of continuous bilinear applications
from E onto F (in fact the spaces are isomorphic), so the second order differential in a ∈ Ω, f ′′(a)
belongs to L2(E,F ), and one often denotes it by D2f(a).
To understand well the notations, let us come back to the computation of the second order derivative.
One can write

f ′(a+ h) = f ′(a) + f ′′(a)h+ o(‖h‖),

by definition. So f ′′(a)h ∈ L(E,F ). This linear application evaluated at k ∈ E should be written
as (f ′′(a)h)(k), which we rewrite as f ′′(a)(h, k). If f is two time differentiable at a then f ′′(a) is
symmetric (Schwarz symmetry theorem). In practice, to compute f ′′(a)(h, k) one differentiates the
application x→ f ′(x)h for h in E, at x = a.
In the particular case where f is a function from Rn to R, f ′′(a) written in the canonical basis
of Rn is a matrix called Hessian matrix of f at a and denoted by Hf(a). The coefficients of

the matrix Hf(a) are the second order partial derivatives ∂2f
∂xi∂xj

(a), 1 ≤ i, j ≤ n, and one has

∂2f
∂xi∂xj

(a) = ∂2f
∂xj∂xi

(a).

Going further, if f is r times differentiable at a, the differential of order r at a is an r-linear
application on E with values in F , which we denote by Drf(a), for all h in E we will denote
Drf(a)(h, · · · , h) = Drf(a)hr.

1.7.1 Taylor-Young formula

One can generalize Taylor-Young formula for functions from E to F , assumed to be vector spaces.
To start with we will need the following lemma:

Lemma 2

Let E and F be normed vector spaces, φ : Ek → F continuous k-linear and symmetric and
Φ : E → F defined by Φ(x) = φ(xk). Then Φ is differentiable and

DΦ(x)h = kφ(xk−1, h)

for x and h in E

proof We have

Φ(x+ h) = φ(x+ h, · · · , x+ h)

= φ(xk) + kφ(xk−1, h) + terms of the form φ(xp, hq)
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with p+ q = k and q ≥ 2. The mapping h→ kφ(xk−1, h) is linear and continuous. Also,

‖φ(xp, hq)‖ ≤ ‖φ‖‖x‖p‖h‖q

and the result follows.

Theorem 4 (Taylor-Young)

Let U ⊂ E, an open set and f an application from U to F . If f is r times differentiable at a ∈ U ,
then it admits a Taylor-Young expansion of order k at point a, meaning there exists a function
ε : E → F , with lim

‖h‖→0
ε(h) = 0, such that:

f(a+ h) = f(a) +

k∑
r=1

1

r!
Drf(a)(hr) + o(‖h‖k)

proof We will prove this result by induction on k. First, by the definition of the differential, it is
true for k = 1. We now suppose that it is true up to order k − 1 and consider the case k. We set:

φ(x) = f(a+ x)− f(a)−Df(a)x− 1

2
D2f(a)(x2)− · · · − 1

k!
Dkf(a)(xk).

Using Lemma 2, we obtain:

Dφ(x)h = Df(a+ x)h−Df(a)h−D2f(a)(x, h)− · · · − 1

(k − 1)!
Dkf(a)(xk−1, h).

By hypothesis, for the mapping Df : U → L(E,F ), we can write:

Df(a+x) = Df(a)+D(Df)(a)x+
1

2
D2(Df)(a)(x2)+· · ·+ 1

(k − 1)!
Dk−1(Df)(a)(xk−1)+o(‖x‖k−1),

therefore

Df(a+x)h = Df(a)h+D2f(a)(x, h)+
1

2
D3f(a)(x2, h)+· · ·+ 1

(k − 1)!
Dkf(a)(xk−1, h)+o(‖x‖k−1)h.

Hence Dφ(x)h = o(‖x‖k−1)h and so Dφ(x) = o(‖x‖k−1). Let us fix ε > 0. From what we have just
seen, there exists δ > 0 such that ‖Dφ(x)‖L(E,F ) < ε‖x‖k−1 if ‖x‖ < δ. From this we deduce that:

‖φ(x)‖ = ‖φ(x)− φ(0)‖ ≤ ε‖x‖k

or

‖f(a+ h)− f(a)−
k∑
r=1

1

r!
Drf(a)(hr)‖ ≤ ε‖h‖k

It follows that

f(a+ h) = f(a) +

k∑
r=1

1

r!
Drf(a)(hr) + o(‖h‖k)

Hence the result is true for k. This ends the proof.
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1.7.2 Taylor-Lagrange formula

Before we introduce Taylor-Lagrange formula, we need the following lemma

Lemma 3

Let E and F be normed vector spaces, U an open subset of E and f : U → F a (k+1)-differentiable
mapping. Suppose that a ∈ U and x ∈ E are such that the segment [a, a+x] ∈ U . Then the mapping

φ : [0, 1]→ F,

t→ f(a+ tx) +
k∑
r=1

(1−t)r
r! Drf(a+ tx)(xr)

is continuous on [0, 1] and differentiable on ]0, 1[ with

φ′(t) =
(1− t)k

k!
Dk+1f(a+ tx)(xk+1)

proof There is no difficulty in seeing that φ is continuous on [0, 1]. For r = 1, · · · , k, we set

φr(x) = Drf(x)(xr),

which is differentiable and

dDrf(a+ tx)(xr)

dt
=

d

dt
φr(a+ tx) = Dφr(a+ tx)x = Dr+1f(a+ tx)(xr+1).

Finally since

d

dt

(1− t)r

r!
Drf(a+ tx)(xr) =

(1− t)r

r!
Dr+1f(a+ tx)(xr+1)− (1− t)r−1

(r − 1)!
Drf(a+ tx)(xr).

Hence the result.

Theorem 5 (Taylor-Lagrange)

Let E and F be normed vector spaces. U an open subset of E and f : U → F a (k + 1)-
differentiable mapping. Suppose that a ∈ U and that x ∈ E is such that the segment [a, a+ x]
is contained in U . Then

f(a+ x) = f(a) +
k∑
r=1

1

r!
Drf(a)(xr) +R(a, x)

where

‖R(a, x)‖ ≤ 1

(k + 1)!
sup

0≤λ≤1
‖Dk+1f(a+ λx)‖Lk+1(E,F )‖x‖k+1.
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proof If sup
0≤λ≤1

‖Dk+1f(a + λx)‖Lk+1(E,F ) = ∞, we have nothing to prove, so let us assume that

this is not the case. Let φ be defined as in the preceding lemma. Then

‖φ′(t)‖ ≤ (1− t)k

k!
sup

0≤λ≤1
‖Dk+1f(a+ λx)‖Lk+1(E,F )‖x‖k+1 =

(1− t)k

k!
C

If we set

ψ(t) = −(1− t)k+1

(k + 1)!
C

then

ψ′(t) =
(1− t)k

k!
C,

and thus using the mean value theorem we may write

‖φ(1)− φ(0)‖ ≤ ψ(1)− ψ(0) =
C

(k + 1)!

Observing that

φ(1)− φ(0) = f(a+ x)− f(a)−
k∑
r=1

1

r!
Drf(a)(xr),

we obtain the result.

When F = R, we have a simpler form for the remainder.

Theorem 6 (Taylor-Lagrange 2)

Let E be a normed vector space, U an open subset of E and f : U → R a (k + 1)-differentiable
function. Suppose that a ∈ U and that x ∈ E is such that the segment [a, a+ x] is contained in
U . Then there is a real number θ ∈]0, 1[ such that

f(a+ x) = f(a) +

k∑
r=1

1

r!
Drf(a)(xr) +

1

(k + 1)!
Dk+1(a+ θx)(xk+1)

proof If we set g(t) = f(a + tx), then g has continuous derivatives up to order k on [0, 1] and a
(k + 1)th derivative on ]0, 1[. It is easy to prove by induction that

g(r)(t) = Drf(a+ tx)(xr)

From Taylor’s formula for a function defined on a compact interval of R, we know that there is a
real number θ ∈]0, 1[ such that

g(1) = g(0) +

k∑
r=1

1

r!
g(r)(0) +

1

(k + 1)!
g(k+1)(θ).

or

f(a+ x) = f(a) +

k∑
r=1

1

r!
Drf(a)(xr) +

1

(k + 1)!
Dk+1(a+ θx)(xk+1).

This ends the proof.
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1.7.3 Taylor formula with integral remainder

Taylor formula with integral remainder gives an explicit formula for the remainder.

Theorem 7

Let E and F be normed vector spaces with F complete. U an open subset of E and f : U → F
of class Ck+1. If a ∈ U and x ∈ E is such that the segment [a, a+ x] is contained in U then

f(a+ x) = f(a) +
k∑
r=1

1

r!
Drf(a)(xr) +

∫ 1

0

(1− t)k

k!
Dk+1f(a+ tx)(xk+1)dt

proof Let φ be the mapping defined as in Lemma 3. As f is of class Ck+1, φ is of class C1 on an
open interval containing [0, 1]. Using the fundamental theorem of calculus, we have

φ(1) = φ(0) +

∫ 1

0
φ′(t)dt

or

f(a+ x) = f(a) +
k∑
r=1

1

r!
Drf(a)(xr) +

∫ 1

0

(1− t)k

k!
Dk+1f(a+ tx)(xk+1)dt

which is the result we are looking for.



Chapter 2

Image restoration

Image restoration is the process that corrects degraded images and reconstructs a good quality image
from the latter. In this chapter, we are interested in the restoration of blurred images. Before we
start with the description of the different techniques, we need to introduce some background on
some quantities very often used in image processing.

2.1 Autocorrelation function and power spectral density

Definition 1 One can associate to a stochastic process f(t) its statistical autocorrelation defined
by:

Rf (t, τ) = E[f(t)f∗(t− τ)].

For a deterministic signal, the autocorrelation is defined as:

Rf (τ) =

∫
R2

f(t)f∗(t− τ)dt.

A white noise is the simplest example of second order wide-sense stationary process, which corre-
sponds to the following definition:

Definition 2 A stochastic process is wide-sense stationary if it satisfies the following two proper-
ties:

1. Its expectation is independent of t.

2. The autocorrelation function depends only on τ but not on t.

In the case of a wide-sense stationary process, one can thus write:

Rf (τ) = E[f(t)f∗(t− τ)],

and for a white noise b, one has
Rb(τ) = N2

0 δ0.

where N2
0 is the power spectral density of the noise and δ0 the Dirac distribution in 0.

Definition 3 We have the following definitions:

23
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• For a deterministic signal, one defines the energy spectral density Γf as the Fourier transform

of the auto-correlation function, one can show that Γf (ξ) = |f̂(ξ)|2.

• For a stochastic signal, one defines the power spectral density Γf of the process f as the
Fourier transform of the autocorrelation function.

proof The above proposition is called the Wiener-Kintchine theorem. In the deterministic case,
the proof is as follows:

Γf (ξ) =

∫
R2

∫
R2

f(t)f∗(t− τ)e−2iπ〈ξ,τ〉 dt dτ

=

∫
R2

(∫
R2

f(t+ τ)e−2iπ〈ξ,(t+τ)〉dτ

)
f∗(t)e2iπ〈ξ,t〉 dt

=

∫
R2

(∫
R2

f(v)e−2iπ〈ξ,v〉dv

)
f∗(t)e2iπ〈ξ,t〉 dt = f̂(ξ)

∫
R2

f∗(t)e2iπ〈ξ,t〉 dt = |f̂(ξ)|2.

Remark 1 In the case of a white noise, the autocorrelation function is a Dirac distribution so one
has Γb = N2

0 .

Similarly, we define Γf,g the Fourier transform of the cross-correlation function defined in the
deterministic case as:

Cf,g =

∫
R2

f(t)g∗(t− τ)dt

and, in the stochastic case, as
Cf,g(t, τ) = E[f(t)g∗(t− τ)].

Note that we say that f and g are jointly wide-sense stationary (WSS) processes when Cf,g(t, τ) =
Cf,g(τ).
Let us now consider that f is a bidimensional discrete stochastic process, then, as in the continuous
case, we have the following definitions:

Definition 4 The autocorrelation function of a discrete stochastic process fn is defined as:

Rf (n, k) = E[fkf
∗
k−n].

For a deterministic signal, the autocorrelation corresponds to:

Rf (n) =
∑
k∈Z2

fkf
∗
k−n

Definition 5 Let (fn) be a discrete signal in l1(Z2), one calls discrete-space Fourier transform
(DSFT) the function:

f̂d(ξ) =
∑
n∈Z2

fne
−2iπ〈n,ξ〉, (2.1)

Remark 2 This corresponds to the Fourier transform in the sense of distributions of the bidimen-
sional Dirac comb.
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Remark 3 f̂d is a continuous function and belongs to L2([0, 1]2) since from Fourier series theory
one has:

fn =

∫
[0,1]2

f̂d(ξ)e
2iπ〈n,ξ〉dξ

As in the continuous space framework:

Definition 6 one can then define:

• For a deterministic signal, the energy spectral density Γf is the DSFT of the autocorrelation

function and one has: Γf (ξ) = |f̂d(ξ)|2

• For a stochastic process, the power spectral density is the DSFT of the autocorrelation function.

proof Assuming f in l1(Z2), we have

Γf (ξ) =
∑
n∈Z2

∑
p∈Z2

fpf
∗
p−ne

−2iπ〈n,ξ〉 =
∑
n∈Z2

∑
p∈Z2

fp+nf
∗
p e
−2iπ〈n,ξ〉

=
∑
p∈Z2

f∗p (
∑
n∈Z2

fp+ne
−2iπ〈p+n,ξ〉)e2iπ〈p,ξ〉 = |f̂d(ξ)|2

Definition 7 A discrete stochastic process f is said to be wide-sense stationary if it satisfies the
following two properties:

1. E[fn] is independent of n.

2. The autocorrelation function Rf (n, k) = Rf (k).

Remark 4 In the case of a white noise, one has Rb(k) = N2
0 δ0,k where δi,j is the kronecker symbol.

In that case, we get Γb(ξ) = N2
0 .

2.2 Image restoration using Wiener Filtering

One assumes an infinite image is damaged in the following way:

ũ = u ∗ h+ b,

where the image u is assumed to be a bidimensionnal wide-sense stationary process and h belongs
to L1(R2)

⋂
L2(R2), and b is a null average white noise, with power spectral density N2

0 . Note that
in that framework ũ is also WSS.

Coming back to the problem of recovering u from ũ, Wiener deconvolution consists in filtering ũ to
obtain ur = w ∗ ũ (which is also WSS), where w is supposed to belong to L1(R2) ∩ L2(R2). The
main idea is to find w that minimizes:

E
[
(u(x)− ur(x))2

]
= E

[
e(x)2

]
= E

[
(u(x)− w ∗ (u ∗ h+ b)(x))2

]
= E

[
(u− w ∗ u ∗ h)(x)2 − 2(u(x)− w ∗ u ∗ h(x))(w ∗ b)(x) + (w ∗ b)(x)2

]
= E

[
(u− w ∗ u ∗ h)(x)2

]
+ E

[
(w ∗ b)(x)2

]
.
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The last equality being obtained remarking b is with null average, and also because the noise is
independent from the signal. Our goal is first to find a simpler expression for the above expectation,
before finding the optimal w.
For that purpose let us first recall that for a real wide-sense stationary process f (assuming
E [f(x)f(x− τ)] has a sufficiently fast decay, typically is in L1(R2) ∩ L2(R2)):

Γf (ξ) =

∫
R2

E [f(x)f(x− τ)] e−2iπ〈τ,ξ〉dτ

Then, taking the inverse transform:

E [f(x)f(x− τ)] =

∫
R2

Γf (ξ)e2iπ〈τ,ξ〉dξ

From this we may deduce that

E
[
(u(x)− ur(x))2

]
=

∫
R2

Γu−w∗u∗h(ξ) + Γw∗b(ξ)dξ

Now we remark that

E [(w ∗ b)(x)(w ∗ b)(x− τ)] = E
[∫

R2

w(q)b(x− q)dq
∫
R2

w(r)b(x− τ − r)dr
]

=

∫
R2

∫
R2

w(q)w(r)E [b(x− q)b(x− τ − r)] drdq =

∫
R2

∫
R2

w(q)w(r)Rb(x− q, τ − (q − r))drdq

=

∫
R2

∫
R2

w(q)w(r)Rb(τ − (q − r))drdq =

∫
R2

(∫
R2

w(q)w(q − p)dq
)
Rb(τ − p)dp

=

∫
R2

Rw(p)Rb(τ − p)dp = Rw ∗Rb(τ).

From this we deduce that:

Γw∗b(ξ) =

∫
R2

Rw ∗Rb(τ)e−2iπ〈τ,ξ〉dτ = Γw(ξ)Γb(ξ) = |ŵ(ξ)|2N2
0 .

Furthermore we may also write:

Γu−w∗u∗h(ξ) = Γu(ξ)− Γu,w∗u∗h(ξ)− Γw∗u∗h,u(ξ) + Γw∗u∗h(ξ).

Since one has:

E [u(x)(w ∗ u ∗ h)(x− τ)] =

∫
R2

w(q)

∫
R2

h(p)E [u(x)u(x− τ − q − p)] dpdq

=

∫
R2

w(q)

∫
R2

h(p)Ru(τ + q + p)dpdq =

∫
R2

w̄(q)

∫
R2

h̄(p)Ru(τ − q − p)dpdq

= w̄ ∗ h̄ ∗Ru(τ),

with w̄(x) = w(−x) (and similarly for h). One can then deduce that:

Γu,w∗u∗h(ξ) = ŵ(ξ)∗ĥ(ξ)∗Γu(ξ).
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Similarly we may write:

E [(w ∗ u ∗ h)(x)u(x− τ)] = w̄ ∗ h̄ ∗Ru(−τ)

meaning that

Γw∗u∗h,u(ξ) = ŵ(ξ)ĥ(ξ)Γu(ξ).

This leads us to:

Γu−w∗u∗h(ξ) = Γu(ξ)− 2<(ŵ(ξ)ĥ(ξ))Γu(ξ) + |ŵ(ξ)|2|ĥ(ξ)|2Γu(ξ)

= |1− ŵ(ξ)ĥ(ξ)|2Γu(ξ)

and thus

E
[
(u(x)− ur(x))2

]
=

∫
R2

Γu−w∗u∗h(ξ) + Γw∗b(ξ)dξ =

∫
R2

Γu(ξ)|1− ŵ(ξ)ĥ(ξ)|2 + |ŵ(ξ)|2N2
0dξ

Differentiating with respect to ŵ we get:

DŵE
[
(u(x)− ur(x))2

]
.v̂ = −

∫
R2

Γu(ξ)2<
(

(1− ŵ(ξ)ĥ(ξ))ĥ(ξ)∗v̂(ξ)∗
)

+ 2<(ŵ(ξ)v̂(ξ)∗)N2
0dξ

= 2<
(∫

R2

(−Γu(ξ)(1− ŵ(ξ)∗ĥ(ξ)∗)ĥ(ξ) + ŵ(ξ)∗N2
0 )v̂(ξ)dξ

)
which is null if, for all ξ:

−Γu(ξ)(ĥ(ξ)− ŵ(ξ)∗|ĥ(ξ)|2) + ŵ(ξ)∗N2
0 = 0

⇔ ŵ(ξ)∗ =
Γu(ξ)ĥ(ξ)

Γu(ξ)|ĥ(ξ)|2 +N2
0

⇔ ŵ(ξ) =
Γu(ξ)ĥ(ξ)∗

Γu(ξ)|ĥ(ξ)|2 +N2
0

Finally we remark that:

Γũ(ξ) = Γu(ξ)|ĥ(ξ)|2 +N2
0

so that we finally get:

ŵ(ξ) =
1

ĥ(ξ)

Γũ(ξ)−N2
0

Γũ(ξ)
.

In the absence of noise, one obtains the so-called inverse filter. Finally, one must pay great attention
to singular values of the inverse filter and proceed as previously to deal with that matter.

2.3 Wiener filtering: discrete space setting

We, this time, study the discrete formalism to Wiener filtering, that is we consider:

ũ = u ∗ h+ b

where u ∗ hn =
∑
k∈Z2

hn−kuk, where h is supposed to belong to l1(Z2) (so also to l2(Z2)), and b is a

white noise, with spectral density N2
0 and u is also supposed to be a wide sense stationary process

(whose definition is just below).
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Similarly to what was done in the continuous case, we seek a discrete filter (wn) such that ur = w∗ ũ
is the closest of u as possible in the following sense:

ε = E
[
(un − (ur)n)2

]
.

Note that if ((Rf )k) is in l1(Z2), Γf (ξ) is continuous and using the theory of Fourier series we have
that:

(Rf )k =

∫
[0,1]2

Γf (ξ)e2iπ〈k,ξ〉dξ

meaning that:

E
[
(un − (ur)n)2

]
=

∫
[0,1]2

Γu−ur(ξ)dξ

=

∫
[0,1]2

Γu−w∗u∗h(ξ) + Γw∗b(ξ)

=

∫
[0,1]2

|1− ŵd(ξ)ĥd(ξ)|2Γu(ξ) + |ŵd(ξ)|2N2
0dξ

Differentiating with respect to ŵd (in the space L2([0, 1]2)), we get as previously:

ŵd(ξ) =
1

ĥd(ξ)

Γũ(ξ)−N2
0

Γũ(ξ)
.

2.4 Wiener filter finite setting

The previous analysis assumes images are of infinite size which is definitely unrealistic. In image
processing, one very often makes the assumption that the image is periodic in each of its directions.
This enables us to replace the restoration problem on Z2 by the same type of analysis but on a
finite domain. The key ingredient for this transition is the circular convolution.

Definition 8 The circular convolution between sequences h et u both with size (N,N) is defined
by:

(h©? u)n =
∑

0≤k1,k2≤N−1

ukhn mod (N,N)−k =
∑

0≤k1,k2≤N−1

u(n mod (N,N)−k)hk (2.2)

Remark 5 This sequence is itself periodic with period (N,N).

Proposition 1

Let u a periodic signal with period (N,N), define hN,n =
∑
k∈Z2

hn−kN , then one has the following

property:
(h ∗ u)n = (hN©? u)n.

To summarize, one seeks to recover the image u, assumed to be periodic and wide sense stationary,
from ũ which has the following expression:

ũ = u©? hN + b (2.3)
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and we look for a periodic filter w (period N in each direction) , and define ur = w©? ũ so as to
minimize, the expectation:

εd = E
[
(un − (ur)n)2

]
.

Image restoration in that context uses the discrete Fourier transform (DFT):

Definition 9 The discrete Fourier transform of a bidimensional sequence fn of size (N1, N2) is
defined by:

f̂k =
∑

0 ≤ n1 ≤ N1 − 1
0 ≤ n2 ≤ N2 − 1

fn1,n2e
− 2iπn1k1

N1 e
− 2iπn2k2

N2 , (2.4)

and its inverse discrete Fourier transform is equal to:

fn =
1

N1N2

∑
0 ≤ k1 ≤ N1 − 1
0 ≤ k2 ≤ N2 − 1

f̂ke
2iπn1k1
N1 e

2iπn2k2
N2 (2.5)

Proposition 2

The DFT satisfies the following property:

(f©? h)n
TFD→ FkHk.

We have the following definitions:

Definition 10 The autocorrelation function of a discrete stochastic periodic process fn is defined
as:

Rf (n, k) = E[fkf
∗
k−n].

and has the same period as f . For a deterministic signal with period (N,N), the autocorrelation
corresponds to:

Rf (n) =
∑
k∈S

fkf
∗
k−n

with S = {(k1, k2), 0 ≤ k1, k2 ≤ N − 1}.

Definition 11 In such a case, we have that:

• For a deterministic signal, the energy spectral density Γf is the DFT of the autocorrelation
function and we have (Γf )k = |Fk|2.

• For a stochastic signal, the power spectral density Γf is the DFT of the autocorrelation func-
tion.
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So we have as in the previous two settings:

E
[
(un − (ur)n)2

]
=

1

N2

∑
k∈S

(Γu−ur)k

=
1

N2

∑
k∈S

(Γu−w©? u©? h)k + (Γw©? b)k

=
1

N2

∑
k∈S

(Γu)k − 2<(WkHk)(Γu)k + |Wk|2|Hk|2(Γu)k + |Wk|2N2
0

So if we compute the differential with respect to Wk we get:

Wk =
1

Hk

(Γũ)k −N2
0

(Γũ)k
.

In this context, one can write the Wiener filters using the FFT. Typically, the Matlab implementa-
tion is then as follows, assuming the support of h is {−m, · · · ,m} and getting rid of singular values
in the filtre H using a parameter n.

We give a simple illustration

load gatlin2;

% the image is loaded in the variable X
% other images clown; mandrill;
% visualization

imagesc(X);

colormap(gray);

[M,N] = size(X);

%white noise generation

sigma = 0.1;

J = sigma*randn(M,N);

% filter design

h = ones(5,5)/25;

%transformation to frequency domain

Freq_X = fft2(X);

Freq_h = fft2(h,M,N);

B = real(ifft2(Freq_X.*Freq_h)) + J;

figure

imagesc(B);

colormap(gray);

%Wiener filtering
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Freq_B = fft2(B);

pow_B = abs(Freq_B).^2/(M*N);

%generation of the inverse filter

gamma = 50;

sFreq_h = Freq_h.* (abs(Freq_h) > 0)+ 1/gamma * (abs(Freq_h) == 0);

iFreq_h = 1./sFreq_h;

iFreq_h = iFreq_h.*(abs(sFreq_h)*gamma >1)...

+gamma*abs(sFreq_h).*iFreq_h.* (abs(sFreq_h)*gamma <= 1);

%construction of Wiener filter

W = iFreq_h.*(pow_B-sigma^2)./pow_B;

Xr = ifft2(Freq_B.*W);

figure

imagesc(Xr);

colormap(gray);

2.5 Relation between Wiener filter and orthogonality

Coming back to the initial formulation

εd = E
[
(un − (ur)n)2

]
= E

[
(un −

∑
k∈S

wkũn−k)
2

]

Finding the best filter corresponds to finding wk such that:

∂εd
∂wk

= 2E

(un −
∑
p∈S

wpũn−p)ũn−k


= 2E [enũn−k] = 0

So Wiener filtering corresponds to the orthogonality of the error with the data.

2.6 Image Denoising with PDEs: isotropic operators

In the following we assume that ũ = u+ b, where b is a white Gaussian noise.

2.6.1 On the relation between the heat equation and the Gaussian kernel

For any function, u(t, .) in L1(R2), its Fourier transform is defined by:

F (t, ξ) =

∫
R2

u(t, x)e−2iπ〈ξ,x〉dx. (2.6)

Then, let us consider the heat equation:{
∂u(t,x)
∂t = ∆u(t, x) on R2

u(0, x) = ũ(x),
(2.7)
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where ũ ∈ L1(R2). Now assume ∂u(.,x)
∂t is continuous for all t and almost every x, and that |∂u(.,x)

∂t | ≤
g(x) ∈ L1(R2) for all t, then we can write that:

∂F (t, ξ)

∂t
=

∫
R2

∂u(t, x)

∂t
e−2iπ〈ξ,x〉dx.

Then, if u(t, .) belongs to C2(R2)
⋂
L1(R2) and is such that ∂u

∂x1
and ∂u

∂x2
are in L1(R2) as well as

∂2u
∂2x1

and ∂2u
∂2x2

, one can finally write that:∫
R2

(
∂2u

∂2x1
+

∂2u

∂2x2

)
e−2iπ〈ξ,x〉dx = −4π2(ξ2

1 + ξ2
2)F (ξ, t).

Indeed, one has:∫
R2

∂2u

∂2x1
e−2iπ〈ξ,x〉dx1dx2 =

∫
R

(∫
R

∂2u

∂2x1
e−2iπξ1x1dx1

)
e−2iπξ2x2dx2,

and then integrating by parts twice, one obtains the expected result.
Finally, the Fourier transform of the heat equation reads:

∂F (t, ξ)

∂t
= −4π2(ξ2

1 + ξ2
2)F (t, ξ), (2.8)

so that we can finally write F (t, ξ) = C(ξ)e−4π2(ξ21+ξ22)t. Denoting ̂̃u the Fourier transform of ũ,
we get that: F (ξ, t) = ̂̃u(ξ)e−4π2(ξ21+ξ22)t. Using classical results on Fourier transforms of Gaussian
functions, we deduce:

F (t, ξ) = ̂̃u(ξ)
̂1

4πt
e−

x21+x
2
2

4t (ξ).

Considering the inverse Fourier transform of the above expression, we end up writing:

u(t, x) = ũ ∗Gt(x)

where Gt(x) = 1
4πte

−x
2
1+x

2
2

4t .
In the following section, we are going to show that to smooth an image using a radial based kernel
is asymptotically equivalent to using a Gaussian kernel. We first consider the averaging operator,
and then will switch on to a more general case.
Matlab implementation of the heat equation:
We discretize the derivative in time as follows:

∂u

∂t
(nδt, i, j) ≈

un+1
i,j − uni,j

δt

and the discretization of the Laplacian is given by:

∆uni,j = uni+1,j + uni,j+1 + uni−1,j + uni,j−1 − 4uni+1,j

Assuming Neumann conditions at the boundaries one can write the following Matlab program:
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close all;

load gatlin2;

imagesc(X);

colormap(gray);

N = size(X);

Xextend = zeros(N(1)+2,N(2)+2);

% We extend the signal using miror extension

Xextend(2:N(1)+1,2:N(2)+1) = X;

Xextend(2:N(1)+1,1) = X(1:N,1);

Xextend(2:N(1)+1,N(2)+2) = X(1:N(1),N(2));

Xextend(1,2:N(2)+1) = X(1,1:N(2));

Xextend(N(1)+2,2:N(2)+1) = X(N(1),1:N(2));

Xextend (1,1) = X(1,1);

Xextend (N(1)+2,1) = X(N(1),1);

Xextend (1,N(2)+2) = X(1,N(2));

Xextend (N(1)+2,N(2)+2) = X(1,1);

% we compute the iteration associated with the heat equation a certain number of times

delta_t = 0.1;

B = [0 delta_t 0; delta_t 1-4*delta_t delta_t; 0 delta_t 0];

n_iter = 5;

for k = 1:n_iter

C = conv2(Xextend,B,’same’);

X0 = C(2:N(1)+1,2:N(2)+1);

Xextend(2:N(1)+1,2:N(2)+1) = X0;

Xextend(2:N(1)+1,1) = X0(1:N(1),1);

Xextend(2:N(1)+1,N(2)+2) = X0(1:N(1),N(2));

Xextend(1,2:N(2)+1) = X0(1,1:N(2));

Xextend(N(1)+2,2:N(2)+1) = X0(N(1),1:N(2));

Xextend(1,1) = X0(1,1);

Xextend(N(1)+2,1) = X0(N(1),1);

Xextend(1,N(2)+2) = X0(1,N(2));

Xextend(N(1)+2,N(2)+2) = X0(1,1);

end

figure

imagesc(X0);

colormap(gray);

2.6.2 Property of the averaging operator

One defines the averaging operator on the disk centered at x and with radius h by:

mhu0(x) =
1

πh2

∫
D(x,h)

u0(y)dy.

We are now going to show that the averaging operator satisfies the following property:

mhu0(x)− u0(x)

h2
=

1

8
∆u0(x) + ε(h).
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Looking at the above equation, we clearly see that it behaves like the heat equation. Indeed
∂tu(x,t)
∂t ≈ u(t+∆t)−u(t)

∆t , which is similar to mhu0(x)−u0(x)
h2

considering the discretization parameter h2.
Proof: Without any loss of generality, let us consider that x = 0. A second order Taylor-Young
expansion at 0 reads:

u0(y) = u0(0) +Du0(0).y +
1

2
((u0)xx(0)y2

1 + (u0)yy(0)y2
2 + 2(u0)xy(0)y1y2) + o(‖y‖2).

The average of u0 computed on the disk reads:

(mhu0)(0) = u0(0) +
1

2πh2
((u0)xx(0)

∫
D(0,h)

y2
1dy1dy2 + (u0)yy(0)

∫
D(0,h)

y2
2dy1dy2) + o(h2).

Then, we obtain the final result remarking that:

1

2πh2

∫
D(0,h)

x2
1dx1dx2 =

1

4πh2

∫
D(0,h)

(x2
1 + x2

2)dx1dx2 =
1

4πh2

∫ h

0
2πr3dr =

h2

8
.�

We are now going to generalize this property to more general kernels,

2.6.3 Convolution with radial based kernels

We define radial based kernels as g(x) = g(‖x‖). In what follows, we assume that these kernels are
normalized as: ∫

R2

g(x)dx = 1

∫
R2

x2
1g(x)dx =

∫
R2

x2
2g(x)dx = 2.

We would like to determine how these properties can still be satisfied when g undergoes a scale
change, that is we consider ag(xb ) and seek the relations between a and b. For the first equality to
be satisfied, one needs to have ab2 = 1 that is to say b = 1√

a
. With such a b, the other equalities

are satisfied (use a change of variables). Then, it is easy to remark that:∫
R2

x1g(x)dx =

∫
R2

x2g(x)dx =

∫
R2

x1x2g(x)dx = 0 (2.9)

Indeed, since function g is radial based, one has:∫
(x1 − x2)2g(x)dx =

∫
(x1 + x2)2g(x)dx,

which enables us to deduce the last equality of (2.9). As far as the first two equalities are concerned,
it suffices to remark that:∫

R2 x1g(x)dx =
∫ +∞

0 x1

∫∞
−∞ g(x)dx2dx1 +

∫ 0
−∞ x1

∫∞
−∞ g(x)dx2dx1

=
∫ +∞

0 x1

∫∞
−∞ g(x)dx2dx1 −

∫ +∞
0 x1

∫∞
−∞ g(x)dx2dx1 = 0.

We now consider a rescaled version of g as follows: gh(x) = 1
hg( x

h
1
2

), and then denote by gn∗ =

g ∗ g ∗ · · · ∗ g the function obtained by convolving g with itself n times. Similarly, one defines gn∗h ,
of which we study the behaviour when n→ +∞ and h→ 0. To do so, we first study the properties
of the convolution by gh, for which we have the following theorem:
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Théorème 1 Let g(x) ∈ L1(R2) a radial based function, normalized as explained above, if one
further assumes that: ∫

R2

|g(z)||z|3dz = C < +∞,

then for any function u ∈ L∞(K)
⋂
C3(K), K being a compact set of R2, one has:

(gh ∗ u)(x)− u(x) = h∆u(x) +O(h
3
2 )

proof: One can write using the fact that u is C3:

(gh ∗ u)(x)− u(x) =

∫
R2

h−1g(
y

h
1
2

)(u(x− y)− u(x))dy

=

∫
R2

g(z)(u(x− h
1
2 z)− u(x))dz

=

∫
R2

g(z)(−h
1
2Du(x).z +

h

2
D2u(x)(z, z))dz − 1

6
h

3
2

∫
R2

g(z)D3u(x− h
1
2 θz)(z, z, z)dz,

where θ = θ(x, z, h) belongs to [0, 1]. This last expression being obtained by using Taylor-Lagrange

formula on the interval [x− h
1
2 z, x]. Using the information on the moments of the function g given

by equation (2.9) and its definition, we are able to write:

|(gh ∗ u)(x)− u(x)− h∆u(x)| ≤ Ch
3
2 max
x∈K
‖D3u(x)‖.

2.7 Image restoration using PDEs: nonlinear diffusion equations

At each point (x, y) where ∇u(x, y) 6= 0, we consider the local coordinates

η =
∇u
‖∇u‖

and ξ =
∇u⊥

‖∇u⊥‖
.

Let us denote Φ the angle made by the gradient and the axis Ox. With this notation we have:

η =

(
cos(Φ)
sin(Φ)

)
. Then we write

∂u
∂η = ∇u.η = ∂u

∂x cos(Φ) + ∂u
∂y sin(Φ).

Differentiating a second time we get:

uηη = ∂2u
∂x2

cos2(Φ) + ∂2u
∂x∂y cos(Φ) sin(Φ) + ∂2u

∂2y
sin2(Φ) = ηtD2uη = D2u( ∇u‖∇u‖ ,

∇u
‖∇u‖).

Similarly, one has D2u( ∇u
⊥

‖∇u‖ ,
∇u⊥
‖∇u‖) = uξξ.

2.7.1 Perona-Malik diffusion equation

One of the most annoying problem when using the heat equation for image restoration is that the
smoothing process damages the edges. An approach proposed by Perona and Malik [10] aims at
smoothing homogeneous regions while preserving the edges. It is essentially based on the use of the
following equation:

∂u

∂t
= div(g(‖∇u‖)∇u),
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where g(s) = 1
1+(λs)2

. One easily shows that if ‖∇u‖ ≤ 1
λ , diffusion occurs while anti-diffusion

in the opposite case. To prove this, we rewrite the Perona-Malik equation in terms of the local
coordinates (η, ξ). We thus have:

div(g(‖∇u‖)∇u) = ∂
∂x(g(‖∇u‖)ux) + ∂

∂y (g(‖∇u‖)uy)
= Dg(|∇u|)∇u+ g(‖∇u‖)∆u
= g′(‖∇u‖)uηη‖∇u‖+ g(‖∇u‖)(uηη + uξξ)

=
uξξ

1+(λ‖∇u‖)2 +
(1−λ2(‖∇u‖2))uηη

(1+λ2‖∇u‖2)2
.

The first term appears to be a diffusion term in the direction orthogonal to the gradient while
the second one is a smoothing term in the direction of the gradient. Applying this nonlinear
diffusion equation, homogeneous regions should be smoothed while sharp edges should be preserved.
However, since the diffusion operator depends on the gradient of u, the latter does not perform well
in a noisy context. To improve the performance of the proposed operator in a noisy context, Catté,
Lions and Morel have introduced the following model:

∂u

∂t
= div(g(‖∇(u ∗Gσ)‖)∇u), (2.10)

where Gσ is a Gaussian kernel. By making the diffusion depend on the gradient of the regularized
image, the diffusion is still important on noisy homogeneous regions.
A example of Matlab implementation of Perona-Malick model is as follows
% Convert input image to double.

close all

load gatlin2;

% the image is loaded in the variable X % visualization %white noise generation

sigma = 1;

colormap(gray);

[M,N] = size(X);

J = sigma*randn(M,N);

im = X + J;

imagesc(im);

pause

im = double(im);

% PDE (partial differential equation) initial condition.

diff_im = im;

% Center pixel distances

dx = 1;

dy = 1;

% 2D convolution masks - finite differences.

hN = [0 1 0; 0 0 0; 0 -1 0]/(2*dx);

hE = [0 -1 0; 0 0 0; 0 1 0]/(2*dy);
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num_iter = 10;

kappa = 2;

for t = 1:num_iter

nablaN = conv2(diff_im,hN,’same’);

nablaE = conv2(diff_im,hE,’same’);

% Diffusion function.

norm_nabla = sqrt(nablaN.^2+nablaE.^2);

%mean(mean(norm_nabla))

c = 1./(1 + (norm_nabla/kappa).^2);

A =conv2(c.*nablaN,hN,’same’)+conv2(c.*nablaE,hE,’same’);

% Discrete PDE solution.

diff_im = diff_im + delta_t*A;

% Iteration warning.

fprintf(’\rIteration %d\n’,t);

end

figure

imagesc(diff_im);

colormap(gray)

2.7.2 Approaches using mean curvature motion

The main motivation to design filters based on the mean curvature motion (MCM) is that they
correspond to a nonlinear diffusion operator that is able to smooth the image in the direction of
an edge but not in the direction orthogonal to it. Let us first recall that the heat equation can be
written in the local coordinates as:

∂u

∂t
= uξξ + uηη.

If we only keep the diffusion in the direction orthogonal to the gradient, we get:

∂u

∂t
= uξξ = ∆u− D2u(∇u,∇u)

‖∇u‖2
= ‖∇u‖div(

∇u
‖∇u‖

). (2.11)

This last equality is obtained by means of the following computation:

‖∇u‖div(
∇u
‖∇u‖

) = ‖∇u‖
(
∂

∂x
(
ux
‖∇u‖

) +
∂

∂y
(
uy
‖∇u‖

)

)
= ∆u−t ∇(

1

‖∇u‖
)∇u = ∆u− D2u(∇u,∇u)

‖∇u‖2
.

We are now going to establish a relation between equation (2.11) and level set motion. Let us
consider that u(x, y, t) is the solution to (2.11) at time t, and then let us define the level set with
level r at time t as:

Fr,t = {(x, y), u(x, y, t) = r}.

This curve can be parametrized by:

Fr,t = {M(s, t), u(M(s, t), t) = r}. (2.12)

Differentiating (2.12) once with respect to s (we omit t for ease of notation), one gets:

〈∂M(s)

∂s
,∇u(M(s))〉 = 0. (2.13)
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Differentiating (2.12) twice with respect to s, one gets:

〈∂
2M(s)

∂2s
,∇u(M(s))〉+

∂M(s)

∂s

T

D2(u(M(s)))
∂M(s)

∂s
= 0. (2.14)

We then remark that:

∂2M

∂2s
= −Kη, (2.15)

whereK is the curvature. We can thus writeK = −
〈 ∂

2M(s)

∂2s
,∇u(M(s))〉
‖∇u‖ , and finally since ∂M(s)

∂s = ∇u⊥
‖∇u‖ ,

we get from (2.14).

uξξ = D2(u)(
∇u⊥

‖∇u‖
,
∇u⊥

‖∇u‖
) = D2u(M(s))(

∂M(s)

∂s
,
∂M(s)

∂s
) = ‖∇u‖div(

∇u
‖∇u‖

) = K‖∇u‖,

hence the result. Based on this equation, a new model was proposed by Alvarez, Lions and Morel
[1]: {

∂u
∂t = g(‖∇(u ∗Gσ)‖)‖∇u‖div

(
∇u
‖∇u‖

)
,

u(x, y, 0) = u0(x, y).
(2.16)

This model is based on a diffusion in the direction of the level sets except where the regularized
gradient has a strong amplitude.

2.8 Image restoration as minimization process

2.8.1 Tychonov Minimization

The above mentioned nonlinear diffusion equations have uninteresting steady states, which means
that if these equations are used for image restoration, they need to be stoped at a certain time,
imposed by the user. Alternatively, image restoration can be viewed as an optimization problem.
If u0 is the original image, we would like the restored image û to be close to u0 supposed to belong
to L2(Ω), and also such that the gradient of û is as small as possible on average. With this in mind,
one can seek u can be viewed as the solution of the following optimization problem:

u = argmin
v∈H1

0 (Ω)

{
λ

∫
Ω
|v − u0|2 +

∫
Ω
‖∇v‖22

}
. (2.17)

with

H1
0 (Ω) =

{
u ∈ L2(Ω), admitting first order weak derivatives ∈ L2(Ω), and such that u = 0 on ∂Ω

}
.

The term ”weak derivative” means u is not differentiable and that there exists unique functions
vi ∈ L2(Ω), i = 1, 2 such that

∀ϕ ∈ D(Ω),

∫
Ω
u
∂ϕ

∂xi
= −

∫
Ω
viϕ.
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By an abuse of notation, we note ∇u = (v1, v2)T . The first question we need to answer is whether û
exists and is unique. Let us put J(u) = λ

∫
Ω |u− u0|2 +

∫
Ω ‖∇u‖

2
2. The minimum of this functional

if it exists satisfies:

DJ(u).h = 0, ∀h ∈ H1
0 (Ω)

Let us compute the differential of J , which has to be null at û whatever h ∈ H1
0 (Ω).

DJ(u).h = 0, ∀h ∈ H1
0 (Ω)⇔

∫
Ω

2λ(u− u0)h+ 2〈∇u,∇h〉 = 0, ∀ h ∈ H1
0 (Ω)

Note that H1
0 (Ω) is an equipped with the norm

‖u‖H1
0 (Ω) =

(
‖u‖22 +

2∑
i=1

‖ ∂u
∂xi
‖22

) 1
2

,

which is associated with the inner product:

〈u, v〉H1
0 (Ω) =

∫
Ω
uv +

2∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
.

Introducing:

H1(Ω) =
{
u ∈ L2(Ω), admitting first order weak derivatives ∈ L2(Ω)

}
.

is an Hilbert space (for the just mentioned norm) and H1
0 (Ω) can be be viewed as the closure of

C1
0 (Ω) in this space, meaning H1

0 (Ω) is also an Hilbert space. We may then write:∫
Ω
〈∇u,∇h〉+ λuh =

∫
Ω
λu0h, ∀ h ∈ H1

0 (Ω).

Considering the bilinear form a(u, v) =
∫

Ω〈∇u,∇h〉 + λuh, which is continuous, i.e |a(u, v)| ≤
C‖u‖‖v‖, and coercive meaning a(v, v) ≥ α‖v‖2, for some α > 0. From classical functional analysis
theory (Lax-Milgram theorem), it is known that there exists a unique u ∈ H1

0 (Ω), satisfying the
above equation and that it corresponds to a minimum. Now if Ω is a C2 open set, with ∂Ω bounded,
one can show that the solution u ∈ H2, and that one has:

Theorem 1

If Ω is C2 and u0 ∈ L2(Ω) then u ∈ H2(Ω) and ‖u‖H2(Ω) ≤ C‖u0‖L2(Ω)

Note that if u ∈ C2(Ω), using the Green-Ostrogradsky theorem we may write:∫
Ω
〈∇u,∇h〉 =

∫
∂Ω
〈∇u, n〉h−

∫
Ω

∆uh = −
∫

Ω
∆uh ∀ h ∈ C1

0 (Ω),

where n is a vector normal to ∂Ω oriented outward. So u satisfies:∫
Ω

(−∆u+ λ(u− u0))h = 0, ∀ h ∈ C1
0 (Ω)
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which means −∆u+λu = λu0 almost everywhere and, as thus as u is C2, this equation (called Euler
equation) is satisfied everywhere. Therefore one can relate the Tychonov minimization problem to
the following partial differential equation:{

∂u
∂t = −λ(u− u0) + ∆u in Ω

u = 0 on ∂Ω

This equation can be viewed as a modified heat equation where the term λ(u − u0) prevents u to
be too far from u0. If one denotes u∞ the solution u when t tends to +∞, it has the following
behaviour:
If λ is large, u∞ is close to u0.
If λ is small, the solution is close to that of the heat equation and the edges can be strongly damaged.

Ex: propose a Matlab code to solve this, investigate different values for λ.

The conditions that u be null at image boundaries are somewhat arbitrary, and we are going to
show that Neumann conditions could be used instead. Let us reformulate the initial minimization
problem as:

u = argmin
v∈H1(Ω)

{
λ

∫
Ω
|v − u0|2 +

∫
Ω
‖∇v‖22

}
. (2.18)

The extrema of the function J should satisfy:

DJ(u).h = 0, ∀h ∈ H1(Ω)⇔
∫

Ω
2λ(u− u0)h+ 2〈∇u,∇h〉 = 0, ∀ h ∈ H1(Ω)

⇔
∫

Ω
〈∇u,∇h〉+ λuh =

∫
Ω
λu0h, ∀ h ∈ H1(Ω),

which admits a unique solution due to Lax-Milgram theorem. The theorem related to the regularity
of u is similar to that associated with u ∈ H1

0 (Ω), that it is H2 when Ω is C2.

Assume that the solution is C2, such that ∂u
∂n = 0 on ∂Ω. From the Green-Ostrogradsky formula

we may write:∫
Ω
〈∇u,∇h〉 =

∫
∂Ω
〈∇u, n〉h−

∫
Ω

∆uh = −
∫

Ω
∆uh ∀ h ∈ C1(Ω),

∂u

∂n
= 0, on ∂Ω

Then, we may write∫
Ω
〈∇u,∇h〉+ λuh =

∫
Ω
λu0h, ∀ h ∈ C1(Ω),

∂u

∂n
= 0, on ∂Ω∫

Ω
(−∆u+ λ(u− u0))h = 0, ∀ h ∈ C1(Ω),

∂u

∂n
= 0, on ∂Ω

From this we deduce that on Ω we have −∆u + λ(u − u0) = 0 (since the equality is also true for
C1

0 (Ω)). The associated evolution equation in that case is{
∂u
∂t = −λ(u− u0) + ∆u in Ω

∂u
∂n = 0 on ∂Ω
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The minimization problem can be rewritten, in a more general setting using more general Dirichlet
conditions, as:

u = argmin
v∈K

{
λ

∫
Ω
|v − u0|2 +

∫
Ω
‖∇v‖22

}
. (2.19)

where K =
{
u ∈ H1(Ω), u = g on ∂Ω

}
. Note that K is a convex set (it is even more than that, it

is an affine space). In such a case, a critical point will satisfy

DJ(u)(h− u) ≥ 0, ∀h ∈ K ⇔ DJ(u).h = 0 ∀h ∈ H1
0 (Ω)

So we end up with the following problem:∫
Ω
〈∇u,∇h〉+ λuh =

∫
Ω
λu0h, ∀ h ∈ H1

0 (Ω)

which is known to admit a unique solution in K.
Instead of considering an evolution equation, one can seek to solve directly the Euler equation when
Ω = [0, L]× [0, 1]. So we seek u such that:{

− 1
λ∆u+ u = u0 on Ω
u = 0 sur ∂Ω

We then recall that ( e
i2π xn

L√
L
ei2πyk)n,k∈Z is an orthonormal basis of L2(Ω), and proceed as follows:

• Extend u on Ω̃ = [−L,L]× [−1, 1] into ũ, satisfying ũ(−x, y) = −u(x, y), ũ(x,−y) = −u(x, y),
et ũ(−x,−y) = u(x, y) for (x, y) in Ω. Remarking that ũ is odd with respect to each of its
variable, show that on Ω̃, ũ can be decomposed in the basis (sin(π xnL ) sin(πyk))n,k∈Z∗ .

• Do the same thing on u0, to obtain ũ0, which also decomposes the same way on the basis
made of sine functions just introduced.

• Compute the Fourier coefficients of ũ with respect to those of ũ0, and then deduce u.

2.8.2 Mumford-Shah model and variants

An alternative approach to Tychonov minimization was proposed by Mumford and Shah in [8].
Their approach consists of minimizing the following functionnal:

Eu0(u,K) = β

∫
Ω

(u− u0)2 +

∫
Ω\K
‖∇u‖2 + αmes(K).

This model admits many different variants. Among these, one could seek to write explicitly the
edge function in the minimization, which leads to the so-called Nordström model [9]:

Eu0(u,w) =

∫
Ω
β(u− u0)2 + w‖∇u‖2 + λ2(w − log(w))dx,

where w : Ω → R+
∗ with w ≈ 1 inside homogeneous regions and should be null at edge location, λ

and β being two positive constants. Assuming that (u, v) lives in H1(Ω) ×K, with K the convex
set of positive functions on Ω, the critical points will this time satisfy:

DEu0(u,w).(v − u, k − w) ≥ 0 ∀(v, k) ∈ H1(Ω)×K

⇔ ∂Eu0
∂u

(u,w).(v − u) +
∂Eu0
∂w

(u,w).(k − w) ≥ 0 ∀(v, k) ∈ H1(Ω)×K.
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One of the local minimum satisfies:∫
Ω
β(u− u0)v − 〈w∇u,∇v〉 = 0, ∀v ∈ H1(Ω)∫
Ω

(λ2(1− 1

w
) + ‖∇u‖2)k = 0, ∀k ∈ K

Thus we get the Euler Lagrange equations:{
β(u− u0)− div(w∇u) = 0
λ2(1− 1

w ) + ‖∇u‖2 = 0.

The second equation enables us to write w under the same form as the function g using in the
Perona-Malik equation:

w =
1

1 + ‖∇u‖2
λ2

.

Finally, we remark that the above minimization can be related to the following reaction-diffusion
equation: {

∂u
∂t = div(g(‖∇u‖)∇u) + β(u0 − u)

u(x, 0) = u0(x).

This equation combines a diffusion term similar to that used in the Perona-Malik equation and
another term that prevents the pre-processed image from being far from the original image.

Note that in that formalism the parameter β has to be tuned, and also that the minimization
process can be viewed as minimizing

Fu0(u) =

∫
Ω
β(u− u0)2 + λ2 log(1 +

‖∇u‖
λ2

)dx,

which is unfortunately non convex.

2.8.3 More general setting

We here study the restoration of the image u, defined on a domain Ω, and from u0 by :

u0 = k ∗ u+ n (2.20)

where ∗ stands for the convolution product. For that purpose, one seeks u minimizing the following
functional:

E(u) =

∫
Ω

Φ(‖∇u‖) + λ

∫
Ω

(u0 − k ∗ u)2 (2.21)

1. Assuming Neumann on ∂Ω, compute the differential of E.

2. Deduce the associated Euler equation and then that the minimisation can be solved by study-
ing an certain evolution equation (we will denote k̄(x) = k(−x)).

3. Write this equation in the local coordinates (η, ξ).
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2.9 Formulation of the Rudin-Osher-Fatemi Model

If one assumes that an image u is a cartoon image, a natural approach is to consider that u is in
BV, and u0 − u, i.e. the noise is in L2. BV functions correspond to:

BV = {u ∈ L1(Ω),

∫
Ω
‖∇u‖ < +∞},

where the gradient has to be understood in the distributional sense. Then minimizing

u = argmin
v∈BV

{
λ

∫
Ω
|v − u0|2 +

∫
Ω
‖∇v‖

}
with the supplementary condition that

∫
Ω u =

∫
Ω u0. The critical points are such that, the differ-

ential vanishes which admits the following differential, at point where ‖∇u‖ 6= 0:

DJ(u).h =

∫
Ω

(λ(u− u0)− div(
∇u
‖∇u‖

))h = 0, ∀h ∈ BV.

Using the Green-Ostrogradski theorem (assuming the gradient does not vanish) and imposing Neu-
mann conditions on the boundaries (which amounts to drop the constraints on the constant mean),
we obtain: 

∂u
∂t = div( ∇u‖∇u‖)− λ(u− u0)

∂u
∂n = 0

u(x, 0) = u0(x)

Then a solution is proposed by discretizing the above equation (an automatic determination of the
parameter λ is proposed).
One of the limitation of the above approach is that the functional J is not differentiable everywhere,
and an alternative technique was proposed by Chambolle in [2]. The minimization problem can be
rewritten as:

inf
v

(
1

2λ
‖v − u0‖22 + F (v))

with F (v) =
∫

Ω ‖∇v‖. Generally speaking, when v is not differentiable, F (v) is defined as [2]:

F (v) = sup{
∫
v(x)div(ξ(x))dx, ξ ∈ C1

c (Ω,R2), ‖ξ(x)‖ ≤ 1, ∀x ∈ Ω}

Note that if the gradient of v exists, then:

F (v) = sup{−
∫

Ω
〈∇v(x), ξ(x)〉dx, ξ ∈ C1

c (Ω,R2), ‖ξ(x)‖ ≤ 1, ∀x ∈ Ω} =

∫
Ω
‖∇v(x)‖.

The functional F is not differentiable (even though in the initial formulation by Osher, Fatemi, the
formal derivation assumed it was the case), so to find the critical points, we use the concept of
sub-differential

Definition 12 (sub-gradient and sub-differential) Let f : E → R a convex function. A vector
η ∈ E is called sub-gradient of f at x0 if

∀x ∈ dom(f), f(x) ≥ f(x0) + 〈η, x− x0〉.

The set of the sub-gradients is called sub-differential of f at x0 and is denoted by ∂f(x0).
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Then, one needs to introduce the Legendre-Fenchel transform of F as

F ∗(u) = sup
v∈L2(Ω)

〈v, u〉 − F (v).

One remarks that:

F ∗(u) = χK(u) =

{
0 if u ∈ K

+∞ otherwise,

with K = {div(ξ) : ξ ∈ C1
c (Ω,R2), ‖ξ(x)‖ ≤ 1, ∀x ∈ Ω}. Indeed,

F ∗(u) = sup
v∈L2(Ω)

inf
ξ∈C1

c (Ω,R2),‖ξ(x)‖≤1

∫
Ω
v(u− div(ξ)) = inf

ξ∈C1
c (Ω,R2),‖ξ(x)‖≤1

sup
v∈L2(Ω)

∫
Ω
v(u− div(ξ))

If u − div(ξ) 6= 0 for all ξ in the set, we take v = α(u − div(ξ)) and notice that F ∗(u) is equal to
+∞ by making α tend to +∞. On the contrary, if there exists ξ such that u = div(ξ), then F ∗(u)
is null.

Note that with that formalism, since Ω is finite, it can be proven that F is continuous and then
F ∗∗ = F . With that formalism, the Euler equation associated with the minimization problem reads:

0 ∈ v − u0 + λ∂F (v)⇔ u0 − v
λ

∈ ∂F (v)⇔ v ∈ ∂F ∗(u0 − v
λ

) (2.22)

To show that the Euler equation has the above form, let us denote J(v) = 1
2λ‖v − u0‖22 + F (v).

Since J is convex we have :

u∗ ∈ ∂J(u)⇔ ∀v ∈ dom(J), J(v) ≥ J(u) + 〈u∗, v − u〉

and thus

0 ∈ ∂J(u)⇔ ∀v ∈ dom(J), J(v) ≥ J(u)

Now ∂J(u) = 1
λ(u − u0) + ∂F (u), since the two functions are convex and since the intersection of

the domains of definition of 1
2λ‖v − u0‖22 and of F are non empty.

Now to prove Eq. (2.22), we shall remark that

r ∈ ∂F (v) ⇔ F (u) ≥ F (v) + 〈r, u− v〉, ∀u ∈ dom(F )

⇔ 〈r, v〉 − F (v) ≥ 〈r, u〉 − F (u), ∀u ∈ dom(F )

⇔ 〈r, v〉 − F (v) = F ∗(r)

⇔ v ∈ ∂F ∗(r)

For the last equivalence, assume that 〈r, v〉 − F (v) = F ∗(r), then we have:

v ∈ ∂F ∗(r) ⇔ F ∗(u) ≥ F ∗(r) + 〈v, u− r〉
⇔ F ∗(u) ≥ F ∗(r) + 〈v, u〉 − 〈v, r〉
⇔ F ∗(u) ≥ 〈v, u〉 − F (v)

which is true. So we have proven that

r ∈ ∂F (v)⇒ v ∈ ∂F ∗(r)
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Making the same kind of computation for F ∗ we get v ∈ ∂F ∗(r) ⇒ r ∈ ∂F ∗∗(v) = ∂F (v). Hence
the result. We can then rewrite the above equation as:

u0

λ
∈ u0 − v

λ
+

1

λ
∂F ∗(

u0 − v
λ

)⇔ 0 ∈ u0 − v
λ
− u0

λ
+

1

λ
∂F ∗(

u0 − v
λ

)

we thus get that w = u0−v
λ is the minimizer of

‖w − u0
λ ‖

2

2
+

1

λ
F ∗(w)

and due to the definition of F ∗ we deduce that w = PK(u0λ ) (K is a closed convex). Hence the
solution of the minimization problem is given by:

v = u0 − PλK(u0).

We may write:

u0 − v
λ

= PK(
u0

λ
) ⇔ v = u0 − λPK(

u0

λ
)

⇔ v = u0 − PλK(u0).

Indeed, from the characterization of the projection on a closed convex set, we may write:

〈u0

λ
− PK(

u0

λ
), y − PK(

u0

λ
)〉 ≤ 0, ∀y ∈ K

〈u0 − λPK(
u0

λ
), λy − λPK(

u0

λ
)〉 ≤ 0, ∀y ∈ K

〈u0 − λPK(
u0

λ
), y − λPK(

u0

λ
)〉 ≤ 0, ∀y ∈ λK

From the unicity of the projection on a closed convex set we get: λPK(u0λ ) = PλK(u0). In the
discrete space setting, to compute the orthogonal projection amounts to determining the element
p ∈ RN×N × RN×N , minimizing

min
(
‖λdiv(p)− u0‖22, s.t. ‖pi,j‖ ≤ 1, ∀i, j = 1, · · · , N

)
which can be solved by a fixed point technique:

p0 = 0

pn+1
i,j =

pni,j + τ(∇(div(pn)− u0λ))i,j

1 + τ |(∇(div(pn))− u0
λ )i,j |

We then have the following theorem:

Theorem 2

Assume that τ ≤ 1/8, then λdiv(pn) converges to PλK(u0) when n→ +∞

The solution to the minimization problem is thus given by:

u = u0 − λdiv(p∞).

where p∞ = lim
n→+∞

pn.
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2.10 Wavelet thresholding

An alternative technique to minimize the above mentioned problem is to consider the wavelet
formalism. Let u0 ∈ L2(Ω) and {Ψi,j} be an orthonormal wavelet basis of L2(Ω), and write u0 in
that basis as follows:

u0(x) =
∑
j,k

cj,kΨj,k(x).

Since u also belongs to L2(Ω), it admits a decomposition in the wavelet basis:

u(x) =
∑
j,k

c̃j,kΨj,k(x).

Since the basis is orthonormal:

‖u− u0‖2 =
∑
j,k

|cj,k − c̃j,k|2.

Then, one would like to approximate
∫

Ω ‖∇u‖ using wavelet coefficients. For that purpose, one
needs to introduce an approximation of BV functions by means of Besov spaces.
Very commonly used spaces in wavelet analysis are Besov spaces Bs

p,q which roughly speaking
correspond to functions admitting s derivatives in Lp(Ω), the third parameter enabling to adjust
with accuracy the regularity of the functions involved.
One can give an intrinsic definition of Besov spaces Bs

p,q and of their norm ‖.‖Bsp,q , assuming ψ has

s+ 1 null moments and with regularity at least Cs+1, then if f ∈ Bs
p,q, ‖f‖Bsp,q is equivalent to:∑

k

(∑
k

2skp2k(p−2)|cj,k|p
) p

q

 1
q

(2.23)

The constant defining the equivalence depend on the chosen wavelet. The Besov spaces are defined
up to a constant, therefore we introduce the homogeneous Besov space as:

Ḃs
p,q = Bs

p,q / {u ∈ Bs
p,q, ∇u = 0}

Definition 13 Ḃ1
1,1 is the usual homogeneous Besov space. Let ψj,k be an orthonormal basis of

compactly supported regular wavelets. Ḃ1
1,1 is a subspace of functions of L2(R2), and a function f

belongs to Ḃ1
1,1 if and only if: ∑

j∈Z

∑
k∈Z2

|cj,k| < +∞

BV functions are very close to Ḃ1
1,1 functions, so that we may write:

u ∈ BV ≈
∑
j,k

|c̃j,k| <∞.

Written in terms of wavelet coefficients, the minimization problem then reads:

argmin
c̃

λ∑
j,k

|c̃j,k − cj,k|2 +
∑
j,k

|c̃j,k|

 .
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This problem can be solved directly without the use of partial differential equation (the functional
is strictly convex and the coefficient of u can be found by simple differentiation). Annihilating the
differential corresponds in this case to:

2λ(c̃j,k − cj,k) + sign(c̃j,k) = 0.

so that c̃j,k has the same sign as cj,k if |cj,k| ≥ 1
2λ , and then we get:

c̃j,k = cj,k − 1
2λ if cj,k >

1
2λ

c̃j,k = cj,k + 1
2λ if cj,k < − 1

2λ
c̃j,k = 0 otherwise

So , one translates by a factor of − 1
2λ the coefficients above 1

2λ and by a factor 1
2λ those under − 1

2λ .
This restoration process is called soft-thresholding.
Ex: propose an algorithm to compute the image restored that way.
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Chapter 3

Edge Detection

3.1 Edge detection: Marr-Hildreth and Canny approaches

A very intuitive definition of an edge would be to consider it is a closed curve on each side of which
the grey level varies sharply, meaning the grey level gradient is strong at edges location. However,
this definition of edges cannot be used as is since:

a) high grey level gradients do not necessarily correspond to closed curves.

b) high grey level gradients may also arise in noisy parts of an image and thus may not correspond
to an edge.

To get rid of high grey level gradients associated with noise, a very classical technique is to filter
the image. This step is carried out by convolution with Gaussian functions.
Then, two main definition are used to characterize an edge, removing the notion of closed curve. The
first one called Marr-Hildreth approach consists in considering the locations where the Laplacian of
the image u vanishes. Another approach, called Canny’s approach, consists in seeking the location
of the local maxima of the modulus of the gradient of u in the direction of the gradient of u. This
amounts to considering a function g defined by:

g(t) = ‖∇u(x+ t∇u(x))‖,

and then computing points x such that g′(0) = 0. To compute this derivative, we remark that
g(t) = d(h(c(t))) with c(t) = x+ t∇u(x), h(x) = ∇u(x) and d(x) = ‖x‖. Using the chain rule, one
writes:

g′(t) = d′(h(c(t))).h′(c(t)).c′(t) =
〈h(c(t)), h′(c(t)).c′(t)〉

‖h(c(t))‖

=
〈∇u(x+ t∇u(x)), D2u(x+ t∇u(x))∇u(x)〉

‖∇u(x+ t∇u(x))‖
.

Finally, we write:

g′(0) = 0⇔ D2u(
∇u(x)

‖∇u(x)‖
,
∇u(x)

‖∇u(x)‖
) = 0.

Now, if we are interested in the implementation of Canny edge detector, a potential implementation
would be:
Algo 1 (Canny [3]):

49
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• Convolve u0 with a Gaussian kernel of increasing size to obtain u (associated with a scale s)

• Find points x such that ‖∇u(x)‖ 6= 0 and D2u(x)(∇u(x)
‖∇u‖ ,

∇u(x)
‖∇u(x)‖) passes through zero.

• At each scale s, only keep the selected points that corresponds to ‖∇u(x)‖ > θ(s), where θ(s)
is some threshold.

Remark:

1. A simple implementation consists in using finite differences to compute the image gradients
(but more complicated techniques can also be involved).

2. Due to the filtering step, the computation of the second order derivatives can always be carried
out since u is C∞ as soon as u0 est bounded.

However, in practice Canny’s edge detector is not implemented that way because to find the zeros
of D2u(x)(∇u(x)

‖∇u‖ ,
∇u(x)
‖∇u(x)‖) is difficult. On the contrary, it is usually implemented by finding the

location of the maxima of the norm of the grey level gradients in the direction of the grey level
gradients. To do so, one proceeds as follows:
given a filter Λ : R2 → R, one defines the gradients of the smooth image by:

∇(u0 ∗ Λ) =

(
u ∗ ∂

∂xΛ

u ∗ ∂
∂yΛ

)
=

(
Wxu
Wyu

)
Then one computes Mu =

√
|Wxu|2 + |Wyu|2 the norm of the gradient and then the orientation of

the gradient is approximated by:

Au =

{
α(u) if Wxu ≥ 0

π + α(u) if Wxu < 0.

Then, to find the edge points we look for the maximum of the modulus of the image gradient in
the direction of the gradient by considering the following approximation:

• If Af ∈ [−π
8 ,

π
8 [ (modulo π), we compare Mu(x, y) to Mu evaluated at (x+1, y) and (x−1, y).

• If Af ∈ [π8 ,
3π
8 [ (modulo π), we compare Mu(x, y) to Mu evaluated at (x + 1, y + 1) and

(x− 1, y − 1).

• If Af ∈ [3π
8 ,

5π
8 [ (modulo π), we compare Mu(x, y) to Mu evaluated at (x, y+1) and (x, y−1).

• If Af ∈ [5π
8 ,

7π
8 [ (modulo π), we compare Mu(x, y) to Mu evaluated at (x − 1, y + 1) and

(x+ 1, y − 1).

We then chain the maxima thus obtained by moving along the direction orthogonal to the local
gradient and then remove the chains with small length.
In Matlab, a procedure is predefined to compute such type of edges:
% Convert input image to double.

close all

load gatlin2;

colormap(gray);

[M,N] = size(X);

edge(X,’Canny’);
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Marr-Hildreth edge detector

Alternatively, one can try and seek to compute the zeros of the Laplacian operator. This is called
the Marr-Hildreth edge detector.
Algo 2 (Marr-Hildreth):

• Convolve u0 (original image) with a Gaussian filter with increasing size.

• At each scale, spot the points x such that ‖∇u(x)‖ 6= 0 and ∆u(x) changes sign.

The Marr-Hildreth operator corresponds to the search for the zeros of the image Laplacian convolve
with a Gaussian function. If one defines b(x, y) = ∆(u ∗ g(x, y)), with g a Gaussian kernel, then
due to the property of Gaussian functions, b(x, y) amounts to convolving directly the image with
the Laplacian operator ∆g (Laplacian of Gaussian).
A implementation is given in matlab through:
% Convert input image to double.

close all

load gatlin2;

colormap(gray);

[M,N] = size(X);

edge(X,’log’);

This can be well approximated by a difference of two Gaussian functions (called DoG). Indeed, in
the unidimensional case, the DoG operator reads:

DoG(x) =
1

σ
e−

x2

2σ2 − 1

σi
e
− x2

2σ2
i .

Assuming σi = σ + δσ, one writes :

DoG(x) =
1

σ
e−

x2

2σ2 − 1

σ + δσ
e
− x2

2(σ+δσ)2 .

Writing a first order Taylor expansion with respect to σ, we get that:

DoG(x) ≈ δσ ∂
∂σ

(
1
σe
− x2

2σ2

)
= −

(
1
σ2 − x2

σ4

)
e−

x2

2σ2

= σ ∂
2g(x)
∂x2

.

This operator naturally extends to the bidimensional case through:

DoG(x, y) =
1

(σ + δσ)2
e
− x2+y2

2(σ+δσ)2 − 1

σ2
e−

x2+y2

2σ2 .

By means of a first order Taylor expansion with respect to σ, we obtain:

DoG(x, y) = δσ
∂

∂σ
(

1

σ2
e−

x2+y2

2σ2 )

= δσ

(
− 1

σ3
+

1

σ2
(
x2 + y2

σ3
)

)
e−

x2+y2

2σ2



52 CHAPTER 3. EDGE DETECTION

Differentiating twice the Gaussian function with respect to x, one obtains:

∂2

∂x2
g(x, y) =

1

σ2

(
− 1

σ2
+
x2

σ4

)
e−

x2+y2

2σ2 .

One would obtain the same type of expression by differentiating twice with respect to y so that we
finally get:

1

σδσ
DoG(x, y) ≈ ∆g(x, y).

This formulation is very much used in computer vision because it allows for a very fast computation
of the Laplacian of the image. As we will see in the next chapter, the DoG algorithm is very much
used to detect structure like blobs.

3.2 Edge detection with active contour method: energy based ap-
proach

A very different approach to the previous ones for edge detection is known as active contour edge
detection and was initially proposed by Kass [6]. In the literature, this technique is sometimes
refered to as edge detection based on snakes. It is a semi-interactive mehod in which the operator
places in the image, and in the vicinity of the object to be detected, an initial contour line. This
contour line is going to undergo different transformations under the action of several forces:

• An internal energy corresponding to tension and torsion forces.

• A potential energy aiming at sticking the contour onto the object of interest.

3.2.1 Direct Resolution

We first try to find whether it is possible to solve the problem directly, that is by finding directly the
contour associated with the minimal energy. To do so, one first defines a contour using a parametric
formulation involving the curvilinear abscissa s and time t:

v(s) = [x(s), y(s)]t s ∈ [0, 1].

Then, welook for v that minimize an energy containing 2 different terms, as mentionned before
which are as follows:

Eglobal = Einternal(v) + Eimage(v).

To obtain a C2 contour one considers [6]:

Einternal =

∫ 1

0
α‖dv
ds
‖2 + β‖d

2v

ds2
‖2ds.

The first order derivative takes into account the length variations of the contour (it is a tension term
which controls the elasticity of the studied contour), while the second order derivative monitors the
curvature variations (this is a flexion term controlling the stiffness of the contour). The contour
has to be both smooth and stiff and these two terms assume a C2 regularity for the curve.
The second term Eimage characterizes the lines in the image one wants to follow. In the case of
edge detection, the lines correspond to high image gradient, and the energy is taken equal to:

Eimage = −
∫ 1

0
‖∇u(v(s))‖2ds.
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The global energy can be written as:

Eglobal =

∫ 1

0

[
−‖∇u(v(s))‖2 + α‖∂v

∂s
‖2 + β‖∂

2v

∂2s
‖2
]
ds.

To compute the minimum of the energy, we make use of the important result of differential calculus
that follows:

Theorem 1 Let s ∈ [0, 1] and v a function belonging to Cnp (0, 1), p being for periodic (with period

1). Let F (s, v, v′, v′′, · · · , v(n)) a C1 function with respect to each of its variables, periodic with
period 1, and such that Fvm is Cm with respect to s. With these hypotheses, J(v) the functional
defined by:

J(v) =

∫ 1

0
F (s, v, v′, v′′, · · · , v(n))ds,

is such that its extrema must satisfy the following equation:
n∑

m=0

(−1)m
∂mFv(m)

∂sm
(s, v, v′, v′′, · · · , v(n)) = 0,

where Fv(m) stands for the partial derivative of F with respect to v(m).

proof: Cnp (0, 1) equipped with ‖u‖ = max
i

(‖u(i)‖∞,[0,1]) is a Banach space, so the extrema satisfy

J ′(v) = 0. Let us compute, the differential of J :

J(v + k) =
∫ 1

0 F (s, v + k, v′ + k′, v′′ + k′′, · · · , v(n) + k(n))ds

=
∫ 1

0 F (s, v, v′, v′′, · · · , v(n))ds+
∫ 1

0 Fvk + Fv′k
′ + · · ·+ Fv(n)k

(n)ds+ ‖k‖ε(k)

=
∫ 1

0 F (s, v, v′, v′′, · · · , v(n))ds+
n∑

m=0

∫ 1
0 (−1)m

∂mF
v(m)

∂sm k + ‖k‖ε(k)

=
∫ 1

0 F (s, v, v′, v′′, · · · , v(n))ds+
∫ 1

0

n∑
m=0

(−1)m
∂mF

v(m)

∂sm k + ‖k‖ε(k).

The last equality is obtained by integration by parts using the fact that the expression under
consideration are equal in 0 and 1. The final result is then obtained by remarking that Cnp (0, 1) is
dense in L2(0, 1) (One can also notice that the property is true for k ∈ D(0, 1)) �.
In our case, s is the curvilinear abscissa and, to simplify, we will note:

x′ = dx(s)
ds y′ = dy(s)

ds

x′′ = d2x(s)
d2s

y′′ = d2y(s)
d2s

v′ = ∂v(s)
∂s v′′ = ∂2v(s)

∂s2
.

The energy to be minimized has thus the following form:

Eglobal =

∫ 1

0
α(x′2 + y′2) + β(x′′2 + y′′2)− ‖∇u(v(s))‖2ds.

Differentiating Eglobal, on C2
p(0, 1) assuming F satisfies the hypotheses of the theorem, we get:

Eglobal(v + h) =

∫ 1

0
α‖v′ + h′‖2 + β‖v′′ + h′′‖2 − ‖∇u(v(s) + h(s))‖2ds

= Eglobal(v) +

∫ 1

0
2α〈v′, h′〉+ 2β〈v′′, h′′〉 − 2〈D2u(v)∇u(v), h〉ds+ ‖h‖ε(h)

= Eglobal(v) + 2

∫ 1

0
〈−αv′′ + βv(4) − 2D2u∇u, h〉ds+ ‖h‖ε(h),
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where ‖h‖ = max(‖h‖2,[0,1], ‖h′‖2,[0,1], ‖h′′‖2,[0,1]). In such a case, v satisfies the following equation:

−αv′′(s) + βv(4)(s) = D2u(v(s))∇u(v(s)).

Since the term on the right hand side also depends on v(s) a direct resolution is not feasible, and
the sought minimum is going to be defined as the steady sate of a certain evolution equation as
explained hereafter. That is why we need the time parameter.

3.2.2 Active contour: formulation using finite differences

To find out the curves associated with the minimal energy requires to solve a partial differential
equation which involves a discretization step by using finite differences.
So, we first consider a discretized version {vi = (xi, yi), i = 0, · · · , N − 1} of v. At location vi, the
first and second order derivatives of the first component x of vector v are respectively approximated
by xi−xi−1

h and xi+1−2xi+xi−1

h2
(and similarly for y), with h = 1

N . The equations for x and y are

independent. In that discrete framework, the equation −αx′′ + βx(4) = f becomes:

−α 1
h2

(xi+1 − 2xi − xi−1) + β 1
h4

((xi+2 − 2xi+1 + xi)− 2(xi+1 − 2xi + xi−1) + (xi − 2xi−1 + xi−2))
= fi+1

⇔ βxi−2 + (−4β − h2α)xi−1 + (6β + 2h2α)xi + (−4β − h2α)xi+1 + βxi+2 = h4fi+1.

We then obtain a linear sytem of the form BX = F , where:

X = (xi)i=0,··· ,N−2

F = (h4fi+1)i=0,··· ,N−2,

where B is the matrix defined just below. In the case of a closed curve, and taking into account
the fact that the later is periodic, the matrix B is circulant and can be written as (we take h equal
1 for the sake of simplicity):

B =



2α+ 6β −α− 4β β 0 · · · β −α− 4β
−α− 4β 2α+ 6β −α− 4β β · · · 0 β

β −α− 4β 2α+ 6β −α− 4β β · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · β −α− 4β 2α+ 6β −α− 4β β
β 0 · · · β −α− 4β 2α+ 6β −α− 4β

−α− 4β β 0 · · · · · · −α− 4β 2α+ 6β


.

As already mentioned above, since the right hand term depends on v, a direct resolution os not
possible. The problem is thus solved iteratively by studying the following partial differential equa-
tion:

∂v

∂t
− αv′′ + βv(4) = D2u(v)∇u(v) = F (v), (3.1)

to which one can associate the following so-called explicit scheme:

h4x
t+∆t
i − xti

∆t
+ βxti−2 − (4β + h2α)xti−1 + (6β + 2h2α)xti − (4β + h2α)xti+1 + βxti+2 = h4F (xti),

which can be written in the following matrix form:

X(t+ ∆t) = (I + ∆tB)X(t) + ∆tF (X(t)),

which may be unstable depending on the choice for ∆t with respect to h. If one considers the
resolution of the problem under its implicit form, one finally gets:

(I + ∆tB)X(t+ δt) = (X(t) + ∆tF (X(t))).
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3.2.3 Active contour: variational approach

In this formulation, we consider the original expression of the differential, i.e. without integrating
by parts and simplifying using periodic conditions. The problem can be written as follows:

a(v, w) =

∫ 1

0
α〈v′, w′〉+ β〈v′′, w′′〉ds =

∫ 1

0
〈F (v), w〉 = Lv(w).

in which 〈., .〉 denotes the inner product on R2. a is a bilinear form on the Sobolev space H2
p (0, 1)

(p being for periodic). Then, we write the variational formulation corresponding to our problem.
We denote 〈., .〉2 the inner product on L2(0, 1), and then the variational problem reads (v is now a
function belonging to L2(0, T,H2

p (0, 1)):

∂

∂t
〈v, w〉2 + a(v, w) = Lv(w),∀w ∈ H2

p (0, 1)

We now need to find the appropriate subspace Vh of H2
p (a, b) satisfying relevant limit conditions

and in which we can solve the following variational problem.
That is we determine vh ∈ Vh such that :

∀w ∈ Vh,
∂

∂t
〈vh(t), w〉+ a(vh(t), w) = Lvh(w). (3.2)

This formulation enables the resolution of the problem using the finite elements method. In practice,
the problem is solved that way: one first remark that a(v, w) = Lv(w) admits a unique solution
in H2

p (]0, 1[), provided the bilinear form a is coercive (a(x, x) ≥ ‖x‖2 ∀ x ∈ V ), which is the case
as soon as α(s) and β(s) are positive (to prove it, one computes for each coordinate its mean over
]0, 1[ and then subtract it to the considered coordinate. Then one applies the Poincaré-Wirtinger
inequality).
Having shown the existence of a solution to the stationary problem, one approaches this solution
in a finite dimension sub-space Vh of V (Galerkin method):

a(vh, wh) = Lvh(wh) ∀wh ∈ Vh,

where (wh) is a basis for Vh. Decomposing vh onto the basis (wh), one can write the previous
equality as a linear system: AV = L, where V corresponds to the coordinates of vh in the basis of
finite elements (wh). Nevertheless, since the right hand side term also depends on v, one cannot
ensure that vh converges to v. One therefore finally discretizes the evolution equation (3.2) using
finite differences to obtain:

Vt − Vt−1

∆t
+AVt−1 = LVt−1

3.3 Edge detection with active contour method: geodesic based
approach

In many different papers it was remarked that the term involving the second order derivative of the
curve was somehow useless, and a variant was proposed through the minimization of [4]:

E(v) = α

∫ 1

0
‖v′(s)‖2ds− λ

∫ 1

0
‖∇u(v(s))‖ds. (3.3)
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Note that another difference with the previous minimization is that the modulus of the norm is
considered instead of the squared modulus. The above minimization can be generalized to:

E(v) = α

∫ 1

0
‖v′(s)‖2ds− λ

∫ 1

0
g(‖∇u(v(s))‖)2ds.

with g : [0,+∞[→ R+ a strictly decreasing function such that g(r) → 0 when r → ∞. One
remaining issue is that the energy to minimize depend on the parametrization of the curve. To find
an intrinsic description of the curve the concept of geodesic is used. Indeed, it is possible to show
that the solution to (3.3) is given by the geodesic curve in a Riemannian space induced from the
image u ( A geodesic is a (local) minimal path between given points).
We can rewrite:

E(v) =

∫ 1

0
L(v(s), v′(s))ds,

where L is the Lagrangian. We recall that for such an energy the Euler-Lagrange equation:

∂L
∂v
− d

ds

∂L
∂v′

= 0, ∀s

Now has the Lagrangian does not depend explicitly on s, we have the following proposition:

Theorem 1 (Beltrami)

If the Lagrangian does not depend on s then the Euler-Lagrange equation is equivalent to the
following Beltrami equation:

L(v(s), v′(s))− ∂L
∂v′

(v(s), v′(s))v′(s) = C

proof Remarking that we have

d

ds
L(v(s), v′(s)) =

∂L
∂v

(v(s), v′(s))v′(s) +
∂L
∂v′

(v(s), v′(s))v′′(s)

we deduce from the Euler Lagrange equation that

∂L
∂v

(v(s), v′(s))v′(s) =
d

ds

∂L
∂v′

v′(s) =
d

ds
L(v(s), v′(s)))− ∂L

∂v′
(v(s), v′(s))v′′(s)

Thus

d

ds
L(v(s), v′(s))) =

d

ds

∂L
∂v′

(v(s), v′(s))v′(s) +
∂L
∂v′

(v(s), v′(s))v′′(s) =
d

ds

(
∂L
∂v′

(v(s), v′(s))v′(s)

)
.

Hence the result.

The Hamiltonian is then given by H = ∂L
∂v′ (v(s), v′(s))v′(s)−L(v(s), v′(s))is a constant independent

from s in that case. Thus the Hamiltonian can be rewritten as:

H = α‖v′‖2 − λg(‖∇u(v(s))‖)2
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So we are looking for the minimizing the energy above under the constraint that H = E0. Choosing
E0 = 0, one then easily see that the energy minimization amounts to minimizing the following
problem: ∫ 1

0
g(‖∇u(v(s))‖)‖v′(s)‖ds.

This approach to active contour is implemented in Matlab. Here is an illustration of how the
procedure works:

I = imread(’coins.png’);

imshow(I)

title(’Original Image’)

% Computation of the mask

mask = zeros(size(I));

mask(25:end-25,25:end-25) = 1;

imshow(mask)

title(’Initial Contour Location’)

pause

bw = activecontour(I,mask);

imshow(bw)

title(’Segmented Image, 100 Iterations’)

pause

bw = activecontour(I,mask,300);

imshow(bw)

title(’Segmented Image, 300 Iterations’)

pause
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