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Chapter 1

Introduction

The principle of signal acquisition is to convert an analogical signal into a digital signal. Numerical
signal processing is the set of operations that are done on the signal among which the most pop-
ular ones are spectral analysis, linear and non linear filtering, modulation, detection, parameters
extraction. The digitalization of the signal is made of two steps: sampling and coding are essential
and need to be clearly analyzed.

To start with we will recall, in chapter 1, basics on Hilbert spaces that will be used throughout the
course. For signal sampling the theory of distribution is essential, and will be introduced briefly
in chapter 2. Then, we will recall some properties on the Fourier transform of distributions in the
same chapter. In chapter 3, we finally introduce filtering in that context.

The advent of digital signal processing is essentially related to the development of fast algorithms
like the short time Fourier transform which will be studied in chapter 4.
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Chapter 2

Hilbert Spaces

Let H be a vector space on K =R or C.

2.1 Definitions

Definition 1 An inner product on H is an application H x H — K (denoted by (z,y) — (z,y))
satisfying:

(i) VI peK Va,y,z € H, (Av + py, 2) = Mz, 2) + 1y, 2)

(it) Va,y € H, (z,y) = (y,2)
(i) Yo € H, (z,x) >0

(iv) Ve e H, (x,2) =0<=x=0

Proposition 1

One has:

1) Cauchy-Schwarz inequality:
Vl‘,y € Ha |<$7y>|2 < (x,x> : <y7y>
(equality when x and y are colinear)

2) Parallelogram identity: If one denotes ||z|| = /(z, x), one has:

2 2 2 2
2 (Jlel + 1) = llz+ yl> + llz — vl

Proof If (z,y) =0, it is clear; otherwise let t € C.
0<(z+ty,z+ty) = (z,2)+t(y,z)+I{xy) +]t Yy
= (z,2) +2Re (t(y,x)) + [t|* (v, )

9
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36 € [0,2n] and r > 0 such that (y,z) = r-e?. Let us take t = s- ™ with s € R. (z,z) + 2rs +
s2(y,y) > 0. The discriminant of this polynomial with respect to the variable s has to be negative.

Proposition 2

H The application z — +/(z,z) = ||z|| is a norm on H.

Proof
lz+yl> = (v,2)+ (,9) + ¥, 2) + (. y)
Iz]|* + 2 Re(z, y) + ||y]|?
Iz l” + 1yl + 2 (||| |y
(Nl + llyl)?

VAN

Definition 2 A prehilbertian space is a vector space H equipped with an inner product. If this space
is complete for the norm associated with the inner product, one says that H is an Hilbert space.

Examples 1

n
1) H=RN, K=R, (z,9) = Z:):jyj is an Hilbert space.
j=1

n
2) H=CN,K=C, (z,y) = ijjj is an Hilbert space.
j=1

3) Let Q C RN be a bounded open set.
H=L*Q),K=C, (z,y) = / z (t)y (t) dt is an Hilbert space.
Q

4) H = l(% (N) ={z = (xn)neN | Vn, x, € (C,Z ’mn’2 < 4oo}, (z,y) = an% is an

n>0 n>0
Hilbert space.

Definition 3 Let H be a prehilbertian space.
1) z,y € H are orthogonal if (x,y) = 0.

2) Let AC H,A# (). One calls the orthogonal to the set A in H, the set denoted by At such
that:

At ={zxcH | VyeA, (z,y) =0}
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Proposition 3

Let H be a prehilbertian space
1) Let AC H,A# (. Then At is a closed subspace of H.

2) Let A\ BC H,A# 0 and A C B, then B+ C AL,
3) Let AC H,A#0, then AC (A1)

4) Let A be a subspace of H. If H is complete then A = (AL)J'.

2.2 Projection on a convex set

Theorem 1  Projection on a closed convex set

Let H be an Hilbert space, and C' C H a closed non empty convex set. Then for all z € H,
there exists a unique a € C such that:

—al|=d(z,C) = inf ||z —
lz —all = d (@, C) = inf Jlz —y]

Proof

e Existence:

Let (yn),en @ sequence of elements in C' such that ||z —y,|| — d(z,C).

1 Yo+ Ym ||
Vi, 3 I =l = b =l + = i - 2 o = 2
As WTym € C because C' is convex, one has ||z — yn+ymH > d(z,C). We may then

deduce that:
1
0< =y — ymll® < & — ynll* + 2 — ym|® — 2d (2,C)?

—0
n,m—-+oo

and thus (yn),cy is a Cauchy sequence. As H is complete, there exists a € H such that
limy, = a, and finally as C is closed, a € C. d(z,C) = liI_’I_l |z — ynll = ||z — al
n—-+0oo

o Unicity :
Let us suppose that there exist a and b € C such that ||z —a|| = ||z — b|| = d(z,C). Then
we define the sequence (y,),, oy of elements of C' by: y2, = a and yp11 = b. We have that
|z — yn|| — d(x,C), meaning (y,) is a Cauchy sequence in H (complete), and thus a = b
by unicity of the limit.
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Theorem 2  Characterization of the projection

Let H be an Hilbert space, and C' C H a closed non empty convex set. We have the
following equivalence:

(i) a € C is the projection of x on C

(ii) a € C such that Vy € C, Re (zr —a,y —a) <0

Proof

o i)=1ii), Let yc C and let t €]0,1]. (1 —t)a+ty € C as C is convex. We first remark that

Hw—ﬂl—ﬂa+ﬁMPgH$—aW-Bmv
[z = (1 =tatty)l” = [r—a—t(y—a
=z —all* +# |y —al* = 2 Re (t(z — a,y — a)).

2

So Vt €]0,1],2 Re (t{x — a,y — a)) < t?||y — a|?, from this we deduce that ¥t €]0,1], 2 Re (z—
a,y —a) < t|ly —al|*. Then making ¢t —s 0, we get Re (z —a,y — a) < 0.

e ii)=1). Let y e C, ||x — y||2 =l|lz—a+a-— yH2 = ||z — a||2 + |ly — a||2 —2Re(x —a,y — a).
Using if) we get [z~ y|> > |z —al*+ ly — all* > [l — af/*, and thus: |1z ]| = inf [z — ]
ye

Proposition 4

Let H be an Hilbert space. and C € H a closed non empty convex set. For x € H, we
denote by P.z the projection of z on C. One has:

V1,12 € H, ||Pexy — Pexol| < [|71 — 22|

Proof Let us put a; = Pe.xj pour j =1,2. |ja; — a2|]2 = (a1 — ag, a1 — a2) = Re(a; —az,a; — az)
= Re(a; — x1,a1 — ag) +Re{x1 — x2,a1 — a2) + Re(xa — a2, a; — az) using theorem 2 (page 12)

-

<0 <0
< Re(z1 — x2,a1 — ag) < ||z1 — 2| ||a1 — az|| from Cauchy-Schwarz theorem.
Corollary 1
Let H be an Hilbert space and F' a closed subspace of H (F' is thus convex).

a€cF

1) a = Pp x is characterized by: { VyeF (x—ay) =0

2) Pr is linear and continuous

3) H=F g F*
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Proof

1) a = Pp x is characterized by:

Vy e F, Re(x —a,y —a) <0 from the theorem 2 (page 12)
(1) acF

This is equivalent to:

2) a€F
VyeF, (x—a,y) =0
Indeed:

e (2)=(1).VyeF, (zx—a,y—a)=0asy—ac€ F, we have Re(zx —a,y —a) <0

e (1) = (2). One has Vy € F, Re(x —a,y+a—a) < 0asy+a € Fie Vy €
F, Re(x —a,y) < 0. But if y € F, then —y € F, and thus Re(x — a,—y) < 0 Finally,
VyeF, Re(z —a,y) = 0.

Ify € Fyiy € F, Re(x — a,iy) = 0 and thus Im(x —a,y) =0

2) Let z,2’ € H,\, u € C. We would like to show that: Pp (Az + pa’) = APrpz+ uPpa’. Using 1)
we get Vy € F, (Ax+ pz’ — Pp (Ax + px') ,y) = 0 and Vy € F, (A\x + pz’ — \Ppx — uPrx’,y) =
M — Ppx,y) + p(z' — Ppz,y) =0

3) FNF+={0},V2 € H, x = Ppx+x — Ppx
~— Y~

EF eFL

Remark 1 In Theorem 1 (page 11), one can alternatively assume H is prehilbertian and C C H
a non empty convex complete set.

2.3 Riesz Representation

Theorem 3  Riesz Theorem
Let L € L (H,K) = H', H Hilbert. There exists a unique a € H such that:

Ve e H, L(x)={(z,a)

Furthermore: |||L]|| = ||al

Proof
Let us denote F' = L~!(0), which is closed since L is continuous.

1. If F = H, then L =0 and one can consider a = 0.

2. Otherwise, let z € F-\{0} (a basis of F* since its dimension is 1)
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e Existence:

Ve e H, I\ € K,y € F,such that x =y + Az

CHAPTER 2. HILBERT SPACES

FL

H= F@Vect( )

L(z)
L =L AL AL =
(1) = L)+ A-L()=A-L() o
L
0=(y.2) = (w— 2B 2,2) = (w,2) — 5D - ||2|”
L@) = £ - (2,2) = (2,15} - 2)
One takes a = (Z2
El
e Unicity :
Ve e H, (z,a) = (x,d/) <= Vax e H, (z,a—d)=0<=a=d
From Cauchy-Schwarz inequality:
|L(x)] = [{z,a)] <[] - [lal = [L][] < [la
If L =0, then |||L||| = ||a|]| = 0. Otherwise, a # 0 et L <’ H> = lla|]| = ||| L]| | = ||al|

2.4 Hilbertian Basis

Definition 4 Let H be an Hilbert space, and (H.

n)nen @ sequence of closed subspaces of H. One

says that H is an Hilbertian sum of the H,, denoted by: H = @Hn if:

1)Vn#m,VYxe€ H, Yy € Hy, (r,y) =0

n>0

2) The space F generated by the Hy, is dense in H

(F' is the set of all the finite linear combinations of elements in Hy,,n € N).
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Theorem 4

One supposes that H = EB H,. If x € H, we denote x,, = Py, .
n>0

Then, one has:

, : N
1) 2=350%n (i.e.x = Ngrfw Y ne0®n)

2) ||z||> = 3 ||@n||* (Bessel-Parseval identity)
n>0

Conversely, let (zy)nen a sequence of elements in H such that:
VneN, x, € H,

and satisfying :

> llanl® < +oe,

n>0

then the series Z o, converges in H and if z =} -, xp, then Vn >0, z, = Py,

n>0
Proof
N N
1) Let us define for N € N, Sy = > Pp,. lf x € H, Syx = > x5, and we would like to show:
n=0 n=0

lim ||z — Syz|| — 0
N—+o00

|Snz||* = (Syz, Syz) = Zmn,an = Z (T, Tp) Z [EME
n=0

which we could have directly proven using Pythagore theorem.

Let ¢ > 0, as F is dense is H, there exists z* € F such that ||z —z*|| < /2, and then
NoeN, VN >Ny, Syz*=z*. Let N > Ny,

[Snz —xf| < ||Sve — Sna™| + || Snva* — x|
= [[Svz — Sna™| + [lz — 7|
< |l —z*|| + ||z — 2*|| as Sy is a projection operator
< €
2) (4) = [lz]* = D llanll?
n>0
N
Conversely Let us put uy = »_ x,, and consider p > ¢ in N :
n=0
2
) p P
lup = ugl* = || D @al| = D llaal® ———=0

—+00
n=q+1 n=q+1 pa
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So, u is a Cauchy sequence, and thus converges. and thus, one can put:

x:E Tn

n>0
N
Let z, € Hp, (x — @, 2n) = (x,2n) — (Tp,2n) and (z,2,) = lim (p, 2n) = (Tpn,2zn) (When
N—>+oop:0
N > n).
Thus,

V2, € Hy, ( —xp,2,) =0
From corollary 1 (page 12) (with =, € Hy), one has: z,, = Py, x

Definition 5 One calls hilbertian basis of an Hilbert space H, a sequence (ey),~q of elements in
H such that:

1) VYn#m, (en,em) =0 and ¥ n, {e,,e,) =1

2) The space generated by the (en), oy is dense in H.

Remark 2 Let H be an Hilbert space and (en)nen an hilbertian basis of H. From Theorem 4 with
H, =Ke,, any x € H can be written:

T = Z(a}, €n)en

n>0

and

lz]* =) [z, en)[?

n>0

The (x,en) are called the Fourier coefficients of x with respect to the hilbertian basis (en),>-

Conversely If A = ()\,) € [% (N), then the series Z)\nen is converging to an element x € H
n>0
1
AV n, Ay = (z,€,) and ||z]> =) [\f le: Ay = —— (n>0)).
and V' n, (x,en) and ||z|] Z| |“ (example i (n>0))

n>0
Remark 3 FEvery separable Hilbert space admits an hilbertian basis.

H is separable if there exists a countable subset D C H dense in H. D = {vg,v1,...,Vp,...} with
vj # 0 for all j. F,11 = Vect(vg,vi,...,vp), U F,, is dense in H.

n>1
In F1, one takes a vector e; with norm 1. Then, one defines F5 such that dim Fo = dim F; +1 =2
by considering the vector es with unit norm and orthogonal to e, etc.



2.5. THE SPACE L*(I) 17

2.5 The space L*(])

2.5.1 Definitions

Definition 6 L%(I) is the space of functions f : I — C such that |f|2 is integrable.

Definition 7 Inner product on L*(I)

Vf,g € L*(I),(f,g9) = [, f(x)g(z)dz is an inner product on L*(I) and the corresponding norm
a2 2
satisfies: |[f3 = [ 1f(2)| do

2.5.2 Properties

Theorem 5

’ (L*(I),]|l,) is an Hilbert space

2.6 Hilbertian basis in L?(I)

2.6.1 Definition
Definition 8 Let B = (¢n), ey »on € L*(I). B is an hilbertian basis L*(I) if and only if:

1. Vn,m € N, (¢n, om) = Onm
2. The finite linear combinations of functions ¢, are dense in L*(I)

Bt ={geL’(I)|VneN,(g,¢n) =0} = {0}
2.6.2 Parseval Theorem

Theorem 6

B = (¢n),cy is an hilbertian basis if it satisfies one of the following two equivalent prop-
erties:

1. Convergence of the series in L?(I) :

VEeLPX(I),f =) (f en)en

neN

v e LX), [1fll3 =Y 1(f,en)l”

neN

Remark 4 If the series was converging pointwise then we could have written that:

Veel, f(z) = Z(fv ©n)n(T)

neN
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When considering hilbertian basis, the convergence has to be understood in the L? sense, namely:

N N
_ 2 : _ : _
f= Z Cnon dans L°(I) < Nl—lg—loo f- Z Cnipn|| =0 Nl—lgloo chgon =0
neN n=0 2 n=0
2.7 Fourier Series
One considers the space L?(]0,T[) equipped with the inner product (f, g) fo dx

Theorem 7

.2

B = (en) ez With ey (x) = e":/? is an hilbertian basis of L?(]0,T[) thus

Vf € L2000, T]), en(f) = (f, en) = /f e

= Z cn(f)en

neL

/ DEde =3 len(f)

nez

For the proof, we are going to use the two following lemma:

Lemma 1 B est orthonormal

Proof

2z

T 6z(n m)=5E p 5
<€n,€m> \/0 # T = Om,n

Theorem 8
Let ¢ € C2°(]0,T), and then define :

T
Vn € Z, cn(p) :/0 ()

Then:

=2 cnl®)

neL

and the series uniformly converges on [0, 7

Proof
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e Uniform convergence

eZTLT

Then the series > ¢, (¢)< 7 converges normaly, and thus uniformely.

N .
e Let us then compute Y. e
=_N

N 2N ;
S it = NS gind N 1- el(QN':l)e
n=—N n=0 1—e
i(2N+1g _i(2N+1yg +i(2N+1g
_Neel( 2 )(e l( 2 )—e l( 2 )) SIH(N—I-%)H
= (& - =

ei0/2 (efiG/Q _ ei9/2) sin%

This last expression is called the Féjer kernel. From this we deduce that

N

(S e)a- 5 (/f ) -

n=—N

and thus

d0:1.

~

1 [T sin (V +
0 sin T2
With this in mind, let us write:

N in 27t

e T N T e_mT ez’n—
p(t)— D calyp) g = el > (/0 Pl)— = d:v) v

=N n=N
N
= o) —/OT “”éf) <n:ZNe““T‘>> dz
— o) - /OT wéfc) sin (iﬁ @%(:{(;)— t) .
1 Tsin((sm(;) w)t D oty - /OT ola) <<N ?T(; f (;) D) ga

T Jo

_ ;OTSE - 2)81n<<1v+;>2;(x—t)>dm

T—t sin 1y 2m,,

T ], sin (%u)

As t €]0,T] and since %)%_u";(t) ~0 %go’ (t), the function is continuous and Riemann-Lebesgue

theorem enables us to conclude.
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Proof of the theorem
1. €2°(]0,T]) is dense in L?(]0, T[), that is to say for all f € L?(]0,T][), one has the property:
Ve > 0,3p € CE(0, T |f = ¢ll 2 <€
2. (Fjer-Dirichlet theorem)
o € C2(0,T]),e > 0,3Ng, YN > N, o — Snpll. <,

where Sy is the projection operator on the H,, defined by the e,. Then

T
lo=Swlle = [ 1o(w) = Snple)do < Tllp = Sl < 2n

Conclusion:

Vf € L*(]0,T[),Ve > 0, VN > Ny,

If=Snflle = IIf—¢+e—Svp+Sve —Snflly
< Nf=elly + o= Snelly + [1Sve — Sn fll
< 25—1—\/?5-:,

using the fact that Sy being a projection operator on a convex set, it is 1-Lipschitz.

Another important theorem related to Fourier series is when function is periodic and piecewise
differentiable, for which we have the following;:

Theorem 9 Dirichlet Theorem

+ -
Let f be a function piecewise C! then the Fourier series converges at zg to w

In particular, at each point & where f is C', we may write:

27
Z?’T/TZ’

VT

In the next chapter we are going to see how to compute approximations of Fourier coefficients using
the so called discrete Fourier transform.

e

@) =Y eal)

2.8 exercices

Exercise 1

Let H be a prehilbertian space

1. A C H such that A # (), then At is closed
2. A C B such that A # (), then B+ C At

3. Ac (AH)t VACH

4.4 =4t
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5. If A is a subspace of H and if H is complete then A = (A+)+

Exercise 2

Let H be ans Hilbert space on R. We denote by (.,.) the inner product on H and |.|| the corre-
sponding norm. Let a1, as,- - , a;,, be m real strictly positive numbers, we denote by H; the space
H equipped with inner product

<x7y>i = O[i<.’1§',y>

and H= Hj x Hy X --- x Hp, the product space. For X = (1,22, -+ ,2y) and Y = (y1,y2, "+ , Ym)
in H, let us put

m

(X YY) = Y (i, gl

=1

1. Show that the application (X,Y) — ((X,Y)) is an inner product on H. Check that #H is an
Hilbert space for this inner product.

2. Let A be the subspace of H defined by:

A:{X:(J?l,l'%..-’;pm)‘xl :xQZme}

e Show that A is closed in ‘H
e Let At be the orthogonal of A in H. Show that:

m
AL = {Y = (1,92, ym)| Do iy = 0}
i=1

e Let S € H. Show that there exist X € A and Y € A unique such that S = X 4+ Y.

3. Compute X et Y.

Exercise 3
Let H be an Hilbert space, and T € L(H) satisfying the following property:

M > 0 such that |[Tz|| > M|z|| Yxe H

1. Show that T is injective

2. Let us denote Im(T) = {y € H;3 =z € H such that Tx = y}. Show that Im(T) is complete
in H.

3. Show that for all z € H, there exists b € Im(T") unique such that

—bll= inf —
|z — b ye}gL(T)Hz yll
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4. We assume that T is self-adjoint, meaning that it satisfies the following property:
(Tx,y) = (x,Ty) Ve,yec€ H
Show that T is bijective.
5. Let A € L(H), self-adjoint, satisfying the following property:

3C > 0 such that ||11H1f1| <Az,x>|=

Show that A est bijective.

Exercise 4
Define the orthogonal projection onto a closed affine subspace.

Exercise 5
Let us define

xn n€eN; Z ’xn’2 < o0
n>0

1. Show that [2(N) is a vector space.

2. For x = (z,) € [, we put ||z| = ( \an) . Show that |.|| is a norm and that [%(N) is
complete for this norm. Deduce that l(c (N) is an Hilbert space for a specific inner product.
Exercise 6
Let us introduce the space of functions

H= {f —m,7m] = R; f€L¥[-n,n]) andfodd}

1. Show that H, equipped with the inner product:

(f.o)= [ F@gteyia

is an Hilbert space.
2. Show that the family B = (ﬁ sinnx),>1 is an Hilbertian basis of H.

3. Let f be a function defined on [—m, 7| by

Lo+ si z
ﬂm—{‘“‘+> o

(m—z) st x>0

N[ —=

sin nx

Compute the coefficients ¢, of f on the basis B : f =) 2 ¢, 22LE NG

4. What can be said about the convergence of the series Ii’i cnsm% in terms of :

a) point-wise convergence,
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b) normal convergence,
¢) convergence in the space H ?

Exercise 7

Haar basis

Let us consider the space L?([0,1]) equipped with the usual inner product. Lety be the indicator
function of [0, 1] and % the function defined by:

P(x) = ¢(2z) — (22 — 1) (2.1)
1. Plot ¥ and check that ¢ and v are orthogonal.
We define, for j >0and 0 < k <2/ —1:

bjp(z) = 20292 x — k) (2.2)

2. Show that the the family (¢, ;%) is an Hilbertian basis of L2([0, 1]).

3. Show that the function v;, is the interval I ; = [k277, (k+1)277]. Deduce that if f is constant
on the intervall [a,b] C [0,1], then (f,v;) = 0if I; C [a,b].

4. Write an algorithm of any function f on the finite dimensional basis (¢, ¥;x)o<j<J-

Exercise 8
Legendre polynomial
For n € N and = € [—1, 1], one defines:

Po@) = (a2~ 1)") (2.3
" anp) dgn ’
1. Show that P, is a degree n polynomial.
2. Show that (P,) is orthogonal in L?([—1,1]) for the usual inner product.

3. Show that

1
2
2 —
/_1 Py(x)*dx = 1 (2.4)

2
5. Show that (P,) satisfies the following recurring relation:

4. Deduce that (y/2%FLP,) is an Hilbertian basis of L?([—1,1]).

P(]:l; P1:{L‘
Pn:2n_1wpn—1_L_1Pn—2 n>2

n n

6. Show that the P, are solution of the differential equation:

(1—a?)y" —2zy +n(n+1)y=0

Exercise 9

Chebyshev polynomials
We define for f and g in the space L*(] — 1,1]) :

1
(f.9) Z/_lf(fv)g(w)\/ldfizz (2.5)
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1. Show that the application (f,g) — (f,g) is an inner product on L?(] — 1, 1]).
One defines for n > 0 the following sequence:

T, (z) = cos(narccosx) (2.6)

2. Show that the family (\/%To, \/ng) is an Hilbertian basis of L?(] — 1,1]).
3. Show that T,, satisfies the following recurring relation:

T():l; T1:£B
T, =2xTp_1—Tp—9 n>2

4. Show that T,,(1) =1, T),(—1) = (=1)", T5,(0) = (—1)", T2p+1(0) = 0.
5. Show that the T}, are solutions to the following differential equation:

(1—a?)y" —ay +n’y=0



Chapter 3

Discrete Fourier Transform

3.1 DFT definition and properties

3.1.1 Definition

Definition 1 Let X = (29,71, ,on_1) a vector of CN. We call discrete Fourier transform

(DFT) of X the vector X = (&g, &, ,in_1) defined by:

N-1 .

~ 9y En

Tp = g Tpe "N k=0,1---,N—1
n=0

which admits as inverse transform:
1= i
. n

Ty = — E 2e®™ N n=0,1--- ,N—1

N k=0

The proof is left as an exercise.

3.2 Properties of DFT

We have the property of norm conservation:

Theorem 1  (Parseval formula)

One has the relation:

N—-1 1 N—-1
n=0 k=0

and consequently

N-1 1 N-1

> aal? = D Ef
N

n=0 k=0

25
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Proposition 1

Periodising (x,) with period N over all Z, one also periodizes (Zx) with period N. The
sequences (z,) and (Zj) are thus extended to Z by periodization of length N. Let

(2n) "5 (24) then:

1 (z_n) PE Gy

2. () "5 (G p)

3. (@=) "5 (@)

Proposition 2

Using the same notation one has:

i) (zp) is even (resp. odd) < (&) is even (resp. odd)

ii) (z,)isreal @ Vk € Z &), = Iy,

11

v

) (an)
) (@n)
) (zn) is even and real < (&) is real and even
) (@)

xy,) is real and odd < (%) is odd and imaginary.

3.3 Applications

3.3.1 Approximation of Fourier coefficients using DFT

On seek to compute an approximation of the Fourier coefficients of f tperiodic with period T', Let
(we use the normalization used by the physicists) ¢ = % fOT f(t)e= % T 4t for —% <k< % Using
the left rectangle method to approximate the integral we get:

oz

N-1 N-1
C’“:NE f(W)BQTN:NE Yynwy™, —§§k<
n=0 n=0

Putting y, = f(%) and wy = ¢ . Then calling Y}, the DFT of y,, /N, we obtain that ¢, =~ ¢, = Y}
ifo<k< % and ¢, = ¢ = Ygyn si —% < k < 0. So the approximation of Fourier coefficients using
the left rectangle method corresponds to the DET of the sampled signal (modulo the transformation
of Y into ¢, fftshift command in Matlab).

3.3.2 Relation between Fourier coefficients and DFT

Let us consider the Fourier series of a signal f assumed to be periodic with period T

n=-+oo

f(t)z Z Cn62i7rn%

n=—oo
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where we assume, for the sake of simplicity that the series converges normaly:

n=-+oo

Z |en| < 400,

n=—oo

which is the case if f is continuous and piecewise C''. One can group the indices as follows:

1. n. oy, 1M 1 N e
_Jn k _ k
L LT 3 Vil ( opon I

m=—00 n=—N/2 \g=—00

from which we deduce using the inverse DFT:

g=+o0
En = 5 Cn+qN
g=—00
leading to:
Cp — Cp, = E CntgN-
q#0

We deduce from this that for a fixed N the approximation ¢, ~ &, for —& < n < & is all the

2 2
better that the Fourier coefficients tend faster to 0 when n tends to +oo.

3.3.3 Computation of the Fourier transform of finitely supported signals

Let f be a function compactly supported on [0,7] and integrable on that interval. Then, we may
write:

. T ' N-1 o
f({) — / f(t)e—Qzﬂ'tfdt ~ % Z f(kWT)e_Z“er
0 k=0

From this we deduce that )
) 1 ~—

T)NT

kn

kiT)e—Qzﬁrﬁ

N

MZ

I

B
Il

0

So (f(%))n:(]’...7]\771 can be approximated by the DFT of (& f(%L))s=... n—1. However, note that
due to periodicity of the obtained approximation, the approximation is valid only for the % first
coefficients. The last N/2 coefficients are the conjugate of the Fourier transform obtained for
negative frequencies, due to symmetry properties of the DFT.

3.4 FFT algorithm

This algorithm was initially proposed by Cooley and Tuckey (1965). Let us suppose that N = 2m
and then set wy = eN . In 2, Let us group the terms with even indices and those with odd indices.

T = P + w&kfk

with
N-2)k

—(N-2)k

P, = xo+x2w&2k+-~+x]\772w&(
Ik = a:l—i—xgw;,Qk—i-”‘—i-xN_le

(k+m) k

We remark that Py, = P, and also that Ij,, = I;. Furthermore as wy = —wy , We can

save some computational time. For k = 0,--- ,m — 1, one successively computes:
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1. One computes P and wEkI k
2. Then one writes z = Py + w&kfk
3. And then one deduces T4, = Py — w]f,klk

The computational cost of this first step is 2(m —1)? +m — 1 so approximative %N 2 multiplications
while N? multiplications are needed for a direct computation.

Then, we remark that P, and I are Fourier transforms, independent one from another. So we
propose to do the carry out the previous decomposition assuming m is still even. To go from stage
(vector of length m) to another (vecteur of length 2m) is carried out using the following formulae

{ T = P+ w;[kfk
Tham = Po—wylly

Computational cost of the algorithm:
For N = 2P, let us denote M), the number of multiplications used by this algorithm, and let denote
by by A, the number of additions:

e Computational cost for Py : [Mp_1, Ap_1]
e Computational cost for I : [Mp_1, Ap_1]
e Multiplications by wy", k > 1: [2P7! — 1,0]
e Additions : [0, 2P].

From this we deduce the following relations:

M, = 0 A = 2
M, = 2M, 1+2P71 -1 A, = 24, 1+2°

Finally we get:
M, = (p—2)2r-t+1
A, = p2P

or with respect to N: [N/2(log2(N) —2) + 1, Nloga(N)].



Chapter 4

Continuous time Fourier transform

4.1 Fourier transform in L'(R)

4.1.1 Density theorems

Definition 1 Let f be a continuons function on a open set Q of RN. The support of the function
f which we denote by Supp(f) is the complement set in Q of the largest open set on which f is null.

Supp (f) ={z€Q | f(z)=0}

Definition 2 C.(2) stands for the vector space of the functions continuous on € and compactly
supported, i.e. :

C.()={feC() | IKcompact set ,K C Qs.t. x € Q\K f(z) =0}

Theorem 1  Density theorem

Let Q C RY be an open set. C,(Q) is dense in LP(2) for p € {1,2} i.e. :

Vpe{l,2}, Ve >0,V feLl(Q),3ge Cc(Q)If —gll, <¢

Remark: This theorem remains true for functions in C*(Q), k < oco.

4.1.2 Definition of the Fourier transform in L'(R)
Definition 3 (Fourier Transform) Let f € L'(R), we define the Fourier transform f of f as:

boydet [T o
Vv eR, f(v) :/ f(z)e =™ dx

—0o0

v is called the frequency (Hz) The application: F : f f is called Fourier transform.

4.1.3 Riemann-Lebesgue Theorem

29
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Theorem 2  (Riemann-Lebesgue)

1. F: f— fis a linear application, continuous from L*(R) onto L>®(R).

2. if f € L*(R), then f is continuous on R and lim f(v) = 0.

v—to0

Proof

1. e Fis linear (linearity of [).
e To show the continuity of F it suffices to prove the result at 0:

VfeL'R), |F()lrem < Cllfllnm

Y,

sl = |[ sl < [l = 1l

— 00

so f € L=(R) et || fllpoo(m) < £l 2t (w)-

2. Let g € CL(R), then

. iy e~ 2imvx +oo , e~ 2imvz
o) = [ atae Md:cz[gm ] S G

-2y -y
1

27 o] /R ’g'(x)‘ dx —— 0 since HngLl(R) < 400.

v—+o00

But C}(R) is dense in LY(R), so : Vf € LY(R), Ve > 0, 39 € CX(R), ||f — Il <e
Then, as

W< =gl +19@),

we get Vgrinoof(l/) =0.

4.1.4 Example

H:]l]_

SIS

; v

D=

X SO -
ap () = [ 2 e2imva gy — S cardinal sine function.
2
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4.1.5 Other Properties

Proposition 1 (delay)

feL'R), T 6 R
Vo € R, g(z) = f(x —7) for g € L (R), then Vv € R, F(g)(v) = §(v) = e 27 f(v)

Proposition 2

f e LY (R), a>0.
Vz € R, g(x) = f(ax) with g € L'(R). Vv € R, F(g9(v)) = L f(%).

Theorem 3

if 2 — 2F f(z) is in L'(R) for k € {0,--- ,n} then f is n times differentiable, and one

CIf f € LY(R) N C™(R) and if f*) € L'(R) then for all k € {1,--- ,n} one has:

If f € LY(R) and if supp(f) is bounded, then f € C=(R).

has: R
fPw)=gv) WweR
where gi(z) = (—2imz)k f(z)

—

f® W) = 2im) fr) YweR

Proof

—2iTvx :L‘)E 2iTvax

1. Forall k < n, % is continuous for all » and almost all z. Furthermore, |T =

|(—2imz)* f(z)| belongs to L'(R) and f belongs to C* and then one applies the theorem on
the differentiation of an integral dependent on a parameter.

. Let us compute f’ By integrating by parts, we get that:

Fw) = [f@e 2™ P + [ fla)(@im)e ™.
R
Here we need to remark that if f is integrable and belongs to C!, and is such that f’ is also

integrable then
x
+ / f(t)dt
a

As f’ is integrable, the integral has a limit when z tends to +o0o, so f(z) has a limit when
z tends to infinity. Moreover, this limit is necessarily null since f is integrable. We thus get
f'(v) = (2imv) f(v). Reasoning by induction, we get the expected result.
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Compute the following Fourier transform

e Let —oo <a <b<+ooet =X

e We denote u(t) the Heavydide function (equal to 1 if ¢ > 0 et 0 otherwise). sign(t) is the sign
function. Let o be a complex number with positive real part. Compute the following Fourier
transforms:

e Compute F(f) with f: 2 — e ™

Proposition 3

Let f,g € LY(R), then f§ et fg both belong to L*(R) and one has:

Am=éﬁ

4.1.6 Inversion of the Fourier transform in L'(R)

Definition 4 For any function f belonging to L'(R) let us write:

FN) = [ f@)d.
R
One then have the following inversion theorem:

Theorem 4

1. Let f € LY(R). Let us assume f is continuous at # € R and that fe L'(R). Then,

2. Let f € LY(R) and f € L'(R) then

]:f(x) = f(x) for almost all =

Proof 1) Let us first prove the first point. For n € N*, let us define g, (z) = e~ w12l for which we

get gn(v) = %MLQVQ Since g, is in L'(R), we can write:

/R F () g ()25 dy = /R )G — )
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The term on the left hand side tends to F f () using the dominated convergence theorem. Let us
show that the term on the right hand side tends to f(x). As [ gn(v)dv = 1, one may write

/ fW)gn(v = z)dv — f(z) = /(f(V +x) = f(2))gn(v)dv.
R R

Let € > 0, there exists n = (e, z) such that |y — 2| < n = |f(y) — f(x)] < € (f continuous at x).
One can then write:

/R(f (x +v) = f(x))gn(v)dv = /

lv|<n

(f(@ +v) = f(2)gn(v) + / (f (@ +v) = f(2)gn(v).

[v1=n
For all n € N*, one has:
[ Wasn - @ < e [ G =
lvI<n R

Furthermore,

| f(@)gn(v)ldv < |f(2)|(1 - %atan(nn)),

[vI=n
which tends to 0 when n tends to infinity. Furthermore, as g, is even and decreasing over R™
| s f@+v)gn(W)] < gn)If1]1,
v|>n

this expression tends to 0 when n tends to infinity. This proves the theorem.
2) Let us now show point 2. We multiply the function to be integrated by h.(v) = e

I = /(/ f(u)efﬂe%/zeQiﬂV(xfu)du)dV.
R JR

Then, we have (u,v) — ¢(u,v) = f(u)e*“g”ze%m’(w*“) € LY(R?). By applying Fubini theorem,
we get two different expressions of I:

—7T62 V2 .

.22 o
TE“V eQmude'

i) By integrating with respect to u, one gets I. = [ f(w)e
But since | f(v)e ™" ¢2m2| < | f(v)| which belongs to L'(R), and since 121[1) e~ = 1, by

applying the dominated convergence theorem, we get that 1irré I = [ f (v)e? ™ dy.
€E—

ii) Integrating with respect to v:

I = /f(U) </ e—7r62y262'bu(ac—u)dy> du = / f(U)*e_ﬂ( = )Qdu,
R R R €

using the properties of the Fourier transforms of Gaussian f2unctions and the dilation formula.
Furthermore, we know that the function h(z) = %e‘“(€) has its integral equal to 1. One
then deduce that:

[ =@l = [ [ 160~ s@hii
= [ [ 16— ew - s
R JR
[ 156 = e~ s@hhtin
R

IN

In L'(R), one has the following property:
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Proposition 4

Let f € L'(R), h € R, and define 75, f (z) = f(x—h). Then 7,h € L*(R) et }llin%) lmnf—fll1 =
%
0.

Proof The theorem uses the density of Cp(R) in L'(R). Indeed, let g, be a sequence in
Co(R) tending to f in L'(R), i.e.:

Ve>03INVn>N |f —gnl1 <€

One may then write:

/R Fatn) - f@)] < /R @) — gnle + )] + /R lgn & + 1) — gn(2)] + /R lgn(2) — ()|

Let N be such that |f —gn| < § and choose 7 such that [|gn(z+7) —gn(2)|1 < § (dominated
convergence theorem), hence the result.

Since || f(z—eu)— f(x)|1|h(w)| < 2||f]l1|h(u)| which belongs to L!(R), applying the dominated
convergence theorem, we deduce that: lin% IlIe — f|l1 = 0.
e—

So I. tends to f in L'(R) so there exists a sub-sequence Iy(e) converging to f almost every-
where, hence the result.

4.1.7 Convolution product in L'(R)

Theorem 5 (and definition)

f e L'(R), g€ L'(R). Let us define : Vo € R, (f xg)(z) = [i f(y)g(z — y)dy.
Then (fg) is defined almost everywhere, integrable and || f * gl 1) < Ifll 1) 9]l 1wy -

Proof Using Fubini theorem:

[ ([ wtste—iar)ae = [ 151 ( [ 1ote-iae) ay ()

and by changing variables u = z — y, we obtain:

(41) = /R If(y)|< /R |g<u>rdu) dy = 1/l 1 e 191 gy < o,

since [p |g(u)|du = |lgllp1®)- So = = [g[f(y)g(z —y)|dy is integrable and thus finite almost
everywhere. Consequently (f x g) is defined almost everywhere, integrable and:

/R (F %)@ do < 1 f ey Nolage
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Proposition 5
Let f,g,h € L'(R).
o frg=gxf
o (fxg)xh=fx(gxh)
o (f+g)xh=fxh+g*h

4.1.8 Illustration: moving average

At each point = € R, one replaces f(x) by its average f(x) over an interval of length 7 :

where h : u +—> l]l[,z.z}.
T 272
In pratice
e choice of a more regular window.

e choice for 7 depends on the scale of the phenomena one wants to highlight.

4.1.9 Convolution and Fourier transform

Theorem 6 (Convolution and Fourier transform)

i) Let f € L*(R), h € L*(R). Then Vv € R, F(f «h)(v) = f()h(v).

), h
ii) Let f € L'(R), hel 1(R) such that f and h are also in L'(R), then for almost all
«h = F(fh).

v, one has: f

Example 1 F(f)(v) = h(v)f(v) = sin(mr f( ). his called transfer function. One can then adapt

VT
% to the frequencies of interest in signal f.

Proof i) Applying Tonelli’s theorem: [; ([i |f(y)g(z — y)| dy) |e 2™ | dx = Il Ly 190l 2wy <
+00
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—2im WC’ = 1. Then, from Fubini’s theorem:

Firea0) = [ ([ st - nay) e 2mas
_ / < / f(y)g(x_y)dy> o 2imla—y ) g
= / fy)e Hmy < / g(:c—y)e%w(xwdx) dy
= [ s ([ g ay = foaw

ii) Since f and § are both in L'(R), we get, remarking that F has the same properties as F :
F(fxg) = FHF@)

= fg almost everywhere

since }e

Finally, since f = F( f), f is bounded one can compute the Fourier transform of fg to obtain:

f*g="F(fg).

4.2 Fourier transform on L*(R)

One of the main drawback with considering the Fourier transform in L!(R), is its non invertibility
in general. In what follows, we are going to see how to define the Fourier transform on L?(R) as a
bijective application from L?(R) onto L?(R).

4.2.1 The space L*(R)

Let f,g € L?(R), we recall that L?(R) is equipped with the inner product (f, g) fR
and that the norm on L%(R) is defined by:||f|l, = \/{f, f). L*(R) is an Hilbert space for Wthh one
has the Cauchy-Schwarz theorem:

Theorem 7  (Cauchy-Schwarz)

Let f and g belong to L?(R), we then have the following property:

| /R F(Ha()] < ¢ /R Iflz(t)dt\/ /R lg[2(t)dt

4.2.2 Convolution in L*(R)
Convolution in L?(R) is defined for f and g in L?(R) by = [z f( 9(y)dy, satisfying :

Theorem 8

| F € COR)N L™ (R) \
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Proof F € L*(R) by direct application of Cauchy-Schwarz theorem. Then, we have
Flatn) = F@l = | [ (fe+n=9) =) gwldy
< [If@tn=v = =Py ol

The term depending on 7 tends to 0 with 1 (to prove it we use the density of C.(R) in L?(R)). So,
f is continuous at x.

Example : the correlation in L?(R) is defined by:

which is continuous.

4.2.3 Property of the Fourier Transform in L'(R) () L*(R)

Theorem 9  (Plancherel-Parseval)

Let f and h belonging to L?(R) () L'(R), then one has:

fromwa- [

If f = h, one has the following property : [, |f]* = [, Fik

Proof We first prove that the Fourier transform of a function in L'(R) (| L?(R) is in L?(R) showing
that || f[I3 = [I£13.

2 2
Let us first consider g (z) = e™**", whose Fourier transform is g, (z f e~ "o . Applying the
monotone convergence theorem, one gets:

Laa@li@P =, [ 177 <+

since go(z)|f(x)|? is positive, belongs to L*(R) and is increasing when « decreases.
Moreover, as the function (z,u,y) — f(y)f(u)e?™“¥g,(z) is in L'(R3) (applying Tonnelli’s

theorem).
[ aa@li@P = [ 1w [ T [ eme-g, @ydedyd

= [ 1) | F@iaty = wivau = [ [ s+ wFTadu gatwiy
~ [ Gwiantuay = [ G/ Eperay

G(0) = [I£113,

a—0

061‘2
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the limit being obtained applying the dominated convergence theorem, this means that the Fourier
transform of a function in L*(R) (N L*(R) is in L?(R).

We are now going to show Plancherel formula. Let f and h be in L'(R) () L?(R). fﬁ belongs to
LY(R) as a product of functions in L?*(R). Moreover, defining h(t) = h(—t), one has F(f * h) = fﬁ
which belongs to L'(R). So, from the inversion theorem of the Fourier transform, and as f * A is

continuous being, the convolution of functions in L?*(R), one has f * h(x) = F( f%)(:{:), for all .
Considering its value at x = 0, one gets Plancherel inequality.

4.2.4 Fourier transform in L*(R)

Proposition 6

H LY(R)N L?(R) is dense in L%(R).

Proof Let us define fy(z) = x(_n,n(#)f () which belongs to L!(R) (] L*(R), one checks that fy
tends to f in L%(R).

Let fn be a sequence of functions in LY(R) (N L?*(R) converging to f in L?(R). We have seen that
fn belongs to L2(R), furthermore fy is a Cauchy sequence in L?(R) since
Ifx = fellz = I/~ — fpll2 = 0 when P and N tend to infinity.

We then define fs, the limit in L2(R) of fy.
It remains to show that this limit is independent of the choice of sequence fy tending to f. It
is easing to see that this arises from Parseval equality. Indeed, let fy and fy in L'(R)()L?*(R)
tending to f in L?(R), then:

1fn = fullz = lLfix = flla = 0,
meaning the Fourier transforms have the same limit in L?(R).
We then have the following definition:
Definition 5 The Fourier transform of a function f € L*(R) is defined as the limit in L*(R) of
the Fourier transform of any fx € LY(R)( L*(R) tending to f in L*(R).

In the sequel, we will note F(f) the Fourier transform of f when the latter is in L?(R).
Remark: for the sake of simplicity, one takes fnv = x[—n,n)/-

4.2.5 Property of the Fourier transform in L?(R)

Theorem 10

The Fourier transform (resp F) can be extended into an isometry from L?(R) onto L?(R).
Let us denote F et F, these extensions, one then gets:

e Vf € L*(R) FF(f) = FF(f) = f almost everywhere.

o Vf,9 € L*(R) Jg f(z)g(x)dz = [ F(f)F(g)d¢
o Vf € L2(R) |Ifll2 = IIF (/)2
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Proof The proof stems from the density theorem of functions of L'(R)()L?(R) in L?(R) (the
equalities being true in L!'(R) [ L?(R), they are also true in L*(R)).

4.3 Exercises

Exercise 1 Properties of the Fourier transform F
Show the following properties:
1. F(f+Xg) = f+Ag,Vf,g € L'(R), VA € R.
F[f(az)|(v) = ﬁf(g), Vf € LY(R), Ya € R*.
Ff(x —1)](v) = e 2™ f(v), Vf € L'(R), V7 € R.
Flf'|(v) = 2invf(v), Yfe L'(R)NCHR), such that f' € L'(R).
Compute Flzf(z)](v) as a function of f(v) (hypotheses on f7?).

Ll S

Exercise 2 Computation of simple Fourier transforms
1. Compute Fourier transform of f(z) = e~ 1*|, that of g(z) = U(x)f(z), U Heavyside function.
2. Compute Fourier transform of py,(z) = nll(nz) (II indicator function of [—1/2,1/2]).
3. Plot p, and p,. What happens when n — +00?
4. Modulation :Compute Flcos(2mvpz)f(x)]. Example : f(z) = X|_q,q)(2)-

Exercise 3 Computation of the Fourier transform of f(x) = e~

1. Check that f € L'(R)
2. Show that f is solution to the following differential equation

Y +2rry =0 (4.2)

3. Compute Fourier transform of (4.2) and deduce differential equation satified by f.
4. Deduce the computation of f.

Exercise 4 Door function
1. Compute II. Check that lim, . II(r) = 0.
2. Deduce the value of the integral:

+00 o3
S Ty .
/ eQuwxdx

oo TV

3. Deduce that (difficult question):

4. Compute fj;o 1%(z)dx
5. Deduce that :
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Exercise 5 Hat function

Let A be the piecewise affine function, equal to 0 on | — 0o, —1] and [1, +oo[, with value 1 at z =0
1. Give the expression of A(z).

2. Show that A'(z) = H(z + 1/2) — II(z — 1/2).
3. Compute the Fourier transform of A’. Deduce that of A.

Exercise 6 On the relation between Fourier transform and Fourier coefficients
fo a function of L!(R), null outside the interval [0,T]. f T-periodic extension of f:

f@) =" fo(x +nT)
nez

1. Since f periodic function integrable on [0, 7], show that Fourier coefficients of f, ¢, (f) satisfy

() = o)

T
where fg is the Fourier transform of function fj.

Exercise 7 Let us define

1. Show that f € L'(RY).
2. Compute f. Deduce that f(z) = v/2me 1?1,

S}glx and f(z) = e*)"””'Si‘%'x (A>0).
1. Show that f and fy belong to L?(R), and that if A tends to 0, f) converges to f in L2(R).
2. Compute of a fixed &, a%fA(f). Deduce fy(§) and then f(&).

Exercise 8 Let f(x)

Exercise 9 Let a and b two real numbers such that a,b > 0 et a # b.
1. Compute the Fourier transform of e

—alz|
2. Deduce the values of the following convolution products: M#ZEQ * ﬁ and el e~0l2l,
Exercise 10 Heat equation de la chaleur

Let us consider the following partial derivatives equation:

2f _of

ox? — 0Ot

f(,0) = o(z)
where ¢ belongs to C2°(R). Let us define:

F(v,t) = /+<><> flx,t) e 2™ dy

o0

1. Let us assume f € L'(R). Check that F satisfies:

F
a(?t + 4722 F =0

2. Deduce F, and then f.
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Fourier transform of discrete
sequences

The Fourier transform of Discrete sequences makes use of the theory of distributions of which we
give a brief introduction.

5.1 Motivations for the introduction of distributions

The theory of distributions has been introduced to extend the notions of functions and that of
derivation. It is the basis to the unification of discrete and continuous phenomena, and are widely
used in mechanical physics, electronic, and probabilities.

To model impulses, the physician P. Dirac had the idea, around 1920 to use a pseudo-fonction,
already introduced by par O. Heaviside, now known as the Dirac distribution and assumed to
satisfy:

+ooif xz=a
da(z) = { 0 otherwise

and, for any continuous function ¢

dq 1s definitely not a function but one had to wait until the years 1945-1950, and the work by L.
Schwartz, for a proper mathematical definition of this object. This is the main motivation to the
introduction of distribution theory.

5.1.1 The space of test functions

The distributions are going to be defined as applications on a function space which is called the
space of test functions.

Definition 1 One defines D(Q) (also denoted C§°(S2)) the set of smooth functions (admitting

derivatives of any orders) defined on , with values in C, and compactly supported in 2.

D(Q) is a vector space.

41
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0 six € R\ Supp (p)

Remark 1 Letp € D(Q2). Su 18 a compact set and Su c Q. If o(x) = i
¢ € D(2). Supp (¢) p pp () fé(z) { o(z) siz € Supp ()

then ¢ € D(R).

expﬁ si||z]] <1

Example 1 ¢(z) = { 0 si ||z]] > 1

v € D(R), Supp () = B(0,1)

Definition 2 Convergence in D(2) Let @, and ¢ € D(2). ¢, converges to ¢ in D(Q) if:

e 3K a compact set , K C Q such that ¥ n, Supp (¢n) C K

o Vae NV, 0%, — 0% uniformly.

Theorem 1

’ D(Q) is dense in LP(2), 1 < p < +o0.

5.1.2 Definitions of the distribution space

Definition 3 A distribution T on 2 is a linear form continuous on D(Q), i.e.
(1) ¥ o1,02 € D(Q), VA € C, T(o1 4+ Ap2) = T(p1) + AT (p2)
(ii) If o, — @ in D(Q), then T(py) — T(p) in C

One notes (T, ) or T'(¢p).

Remark 2 Point ii) is equivalent to showing: for any compact set K C ), there exists C > 0
and k € N such that for all ¢ € D(Q) with Supp (p) C K, one has (T, ¢) < Cillollcr k), with

= ()
Iillox ) = max 9 o

One denotes D’ (Q2) the set of distributions on €2, which is a vector space.
Examples

1. L}

loc
1 1

N € L,,.(R)).
Let f € L},.(Q). For ¢ € D(Q) one puts: (Tf, ) = [, f(z)p(z) dx

loc

Tf € D/(Q) :

(Q): set of mesurable functions on €2, integrable on any compact set of Q (for instance,

o T is well defined since

| (2)e(@)] < 0lloo Tsupp(e) (@)If ()] € LH(R)
e T is linear (linearity of the integral).

e T} is continuous on D() :
Let ¢y, € D(Q2) be such that ¢, — 0 dans D().

\<Tf,son>|=' /ﬂ F(@)pn(x)da| < / F@)] ()] d < [lnlla /K (@) da
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2. Let a € R. For all ¢ € D(R) one puts: (4, ¢) = ¢(a)
do € D'(R) :

e Linearity :

(0a, 1 + Ap2) = (1 + Ap2)(a) = p1(a) + Apa(a) = (0a, p1) + Mda, ¥2)
e Continuity :

If on — 0'in D(R) : [(da, pn)| = [en(a)] < [l@nlloe — 0

When a = 0, we put § = dp.

Proposition 1

H The application from Lj (2) on D'(Q2) which maps f to Ty is linear and injective.

Proof

o Vfi,foE L} (Q)v vVAeC, Tf1+>\f2 = Tf1 +)‘Tf2

loc

Indeed, let ¢ € D(Q),

<Tf1+/\f2a<P>:/Q(f1+)\f2)80:/ﬂf1<ﬁ+)\/gf280:<Tf1a90>+)\<Tf2a90>

o IfVp € D(Q), (T}, p) = / f(x)p(x)dr = 0, alors f = 0. Indeed, since D() is dense in L?(Q),
Q

letting ¢, a sequence coverging to f in L?, then [, f(z)¢n(z) = 0 tends to [, |f(2)]* =0 and
so f is null almost everywhere.

Remark 3 The application defined by proposition 1 is not surjective, but enables to identify L}OC(Q)
to a subspace D'(Q) called regular distributions.

5.1.3 Convergence in the distribution space

Definition 4 A sequence of distribution T,, € D'(2) converges to the distribution T € D'(Q) if for
all p € D(Q), (Tn,p) —> (T, ).

P
ZT" is said to converge and sums to T if the sequence S, = ZTn converges to T'.
n>0 n=0

Examples 2

1. Let fn(z) = cos(nz), fn € L. (R). Ty, € D'(R).

loc

lim Ty, =0 (because ¥V o € D(R), (T},, ) = [ cos(nz)p(z)de —— 0).

n——+00 n—o00
2. Letn € N, 6, — 0 in D'(R).
Let ¢ € D(R), (0n, ) = p(n) =0 for a large enough n (since ¢ is compactly).
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Theorem 2

Lot T, € D'(Q), n € N,
If for all p € D(Q), (T),, ¢) has a limit in C, then T,, has a limit in D'(Q).

Proof
e © € D(Q) implies limy,—, 4 oo (Th, @) exists.
v1,02 € D(Q) et A € C.

lim (T, 01 + Ap2) =

lim
n—+oo n—+oo
the linearity.

T, 1) + MTh, 02) = ngffoo<Tn, o1) + )\HE{{IOO(Tn, ©2), hence

e The continuity of lim 7}, is a consequence of Banach-Steinhaus theorem (admitted)
n
Example 3 V n, T,, = Z 6, € D'(R). Indeed, let ¢ € D(R), Exercise n, € NSupp (¢) C
p=0

no no

[—n0,n0]. (Th,p) = o(p) —— E ©(p), so there exists T € D(R) such that T, — T dans
n—oo
p=0 p=0
D'(R):T= E Sp-
p=>0

5.1.4 Derivation in the distribution space

Let f € C1(Q) (so € L} (92)). For ¢ € D(Q) :

loc

/ f@)p(a)ds = - / F(@)d (2)dz & (Tpr,0) = —(Ty, )
Q Q

Extending this to more general distributions, we get:

Definition 5 Let T € D'(2), one defines T' as : (T", ) = —(T,¢")

Proposition 2

H T is indefinitely differentiable, and one has: ¥ ¢ € D(Q), (T, @) = (=1)*(T, p(»))

Proof (dul.)
e Let p and ¢y € D(N2), A € C.

<T,a ®+ )‘¢> = _<T> (90 + A¢)/> = _<T7 90, + )‘1//>
= —(T,¢") = NT.¢') =(T",¢) + NT", )

e Let ¢, — 0 in D(Q), then ¢, — 0 in D(Q). One has: (T",¢,) = —(T,¢),) — 0
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Proposition 3

The derivation is a continuous operation on D’'(().
If T,,,T € D'(Q) and T,, — T in D'(Q), then Vo € N, T*) — T(@ in D'(Q).

Proof
Let ¢ € D(Q), (T, ) = (~1)%(Tp, (@) — (~1)*(T, *) = (T, )

Example 4 If f € CY(Q) : (Ty) =Ty, the derivative is still a regular distribution.

1 six>0

Examples 5 Let us define Ty, with Y the Heaviside function defined by: Y (z) = { 0 siz<0

Y € L} (R), soY is a distribution Ty € D'(R). Then, let ¢ € D'(R), we get

loc
+o00
(T, 0) = —(Ty, ) = —/ ¢’ (z)dz = p(0) = (b0, ), meaning that T, = .
0
5.2 Fourier transform of distributions

The Fourier transform of distributions is going to be defined on a subset of D'(R), called tempered
distributions. These are defined as continuous linear forms on the Schwartz space which we first
introduce.

5.3 The Schwartz class
Definition 6 S(R), called the Schwartz class is the set of functions ¢ : R — C such that:
e € C*(R)

e Va €N, neN,3C such that |¢(¥ ()| < W (fast decay)

In other words, the functions in S(R) are C°°(R) functions having all their derivatives with fast
decay.
Example : ¢(x) = e

—z2

Theorem 3

S(R) has the following properties:
1. Vo € S(R), VP eC[X] P¢eSR)
2. V¢ € S(R), ¢ € S(R)

3. 1<p<oo S[R)cCLP(R)
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Theorem 4

F (i.e. the Fourier transform, F(¢) = ¢) is a linear bijection from S(R) onto itself with
inverse F.

Proof Let f € S(R), since for all k, ¥ f(z) is in L'(R), f belongs to C®(R). Let n € N and
p € N, one has:

g fP(e) = €"F((—2imx)? f(z)) by differentiation of an integral depending on a parameter

1
= W}— (((=2imz)? f(2))™) using properties of the Fourier transform of derivatives.

Using the stability properties of S(R) by multiplication with a polynom and by derivation, we
get that the function of which we compute the Fourier transform is in S(R), so that its Fourier
transform is bounded, which proves that f belongs to S(R).

Furthermore, as f and f are in L'(R) and, as f is continuous, one gets f(z) = F(f)(z).

The topology of S(R) is not defined by a norm but by a numerable family of norms:

Vo € S(R), Np(¢) = max sup|z®¢P((z)], peN

0<a,8<p zcR

One says that a sequence ¢,, converges to ¢ in S(R) if:
Np(pn, — @) — 0 for all p > 0, when n — oco.
One can alternatively define the convergence in S(R) as follows:

Vo, 8 € N 2209 (z) = 2%¢'®) () uniformly on R

5.4 The space of tempered distributions S'(R)

We need to define the Fourier transform in a more general framework than that of the functions
so that the Fourier transform of sampled signals makes sense. The set of tempered distributions
S'(R) is defined by:
{ T: S(R) - C linear, continuous }
¢ = (T,

Here, the continuity has to be understood in the following sense:
Im, Cp, tel que Vo € S(R), |(T,¢)| < CruiNin(9)

or, using sequences:
¢n — ¢ in S(R) = (T, ¢n) — (T, ¢) in C.
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Remark 4 D(R) C S(R) and if T is continuous for the topology on S(R), it is also continuous for
the topology on D(R), so 8'(R) C D'(R). Furthermore, one can show that D(R) is dense in S(R)
for the topology of S(R). A consequence is that to prove the continuity in S'(R), one can restrain
to functions in D(R), i.e.:

Im, Cy tel que Y € D(R), (T, d)| < CouNin ()
or, using sequences: ¢n € D(R), ¢n — ¢ in S(R) = (T, dn) — (T, ¢) in C
Examples 6
o € LYR), LX(R) ou L®(R) = T} € S'(R)

Dirac 6, € S'(R)

Dirac comb ), ., 0, € S'(R)
E'(R) c S'(R)

Functions of slow increase are in S'(R). A function is of slow increase if:

Je>0 3INeN, VzeR|f(z) <cel+ =)V

If the sequence (Yn)nez is of slow increase (i.e. Im € N, ¢ € R such that |y,| < C(1 +
[n|)™, n € Z), the distribution
T= Z YnOna

nez
is tempered.
5.5 Fourier transform in S’(R)

Definition 7 Let T € S'(R), one defines its Fourier transform as follows

One has: T € S'(R)
Remark 5 e pcSR)=p e SR)

o So T is well defined, linear by linearity of T', continuous using the continuity of T (for that
we use the fact that S(R) is stable through Fourier transform,).

Proposition 4

| T, € S'(R) converges to T in S'(R), if Ve € S(R), (T, 0) = (T, ).

Proposition 5

H The Fourier transform is a continuous application from S’(R) onto itself.
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Proof Let T, tending to 7" in S'(R) then for all ¢ in S(R), one has:

<Tn790> = <Tn7¢> - <T7 @> = <T7 90>

Theorem 5

-
N

17
N

is invertible, and its inverse is:

U

Proof Let T € S'(R), Vp € S(R), (FF(T),p) = (F(T),F(p)) = (T,FF(p)) = (T, p), because
FF =1din S(R).

Examples 7
(i) Let f € L*(R) or L*(R), then Ty € S'(R).

@) = Tr8) = [ 1etay = [ fwetway = T7.9)
S0 7/? = Tf-

Conclusion: if the Fourier transform exists in the functional sense, and is denoted by f, its
Fourier transform in the sense of distributions will be Tf'

(ii) Vi € S(R), (0,9) = (5,¢) = ¢(0) = ["2 p(x)e 2™0%dy = [T p(z)dx = (T1,¢), so
§=1.

(iii) Vo € S(R), (00, 0) = (00, @) = @(a) = [T p(x)e 2™ dz = (7279 o), s0 5, =

Te—2i1ram.
(iv) Yo € S(R), (T 2inkoa, ) = (Tp2inkgz, p) = fjoooo eQiﬂkoy(tb(y)dy = (ko) = (Okg, ), s0
T 2irkgr = Ok, (in particular : T = dp).
(v) Let T be a strictly positive real and (yn)nez a sequence of slow increase, then
]_—(Z yn(SnT) _ Z yne—QiﬂnTz7
neL neL
which is a consequence of the continuity of the Fourier transform on S'(R):

Z/yn\(snT = Z ynSnT = Z yn6*2i7mTz'

nez ne’l nel
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This last example is very important in signal processing, in which community one defines
(often without proof of existence) the so-called discrete time Fourier transform (DTFT), as
follows

Definition 8 The discrete-time Fourier transform (DTFT) of a sequence (xy,) is defined by:

X(€2i7rw) _ Z xne—Qiﬂ'nw (5'1)
nez

which exists in S'(R) as soon as (x,,) is with slow increase.

In particular, when (x,) is in {1(Z), one has normal convergence, and X is continuous. When (z,,)
is in l(Z), X (e*™) can be viewed as a Fourier series of a 1-periodic function and the convergence
takes place in L?([—1/2,1/2]), so that we can write:

1/2 . .
Ty, = X (22 n € 7 (5.2)
~1/2
Another consequence is the Parseval equality when (z,,) is in l3(Z):

1/2 }
/ |X(€2mw)‘2dw22|$n|2.

~1/2
5.5.1 Distributions with compact support
Definition 9 Let T € D'(Q2) andw C Q an open set. T is null on w if for any ¢ € D(w), (T, p) = 0.

Example 8 Let a € R, §, is null on R\ {a}. Ifw C R is an open set and if a ¢ w, then o, is null
on w.

Definition 10 Let T € D'(2), the support of T, denoted Supp (T'), is the complement set (in )
of the largest open set w on which T is null.

One can show that w exists.

Examples 9
e Supp (0a) = {a}
e For alla € R and all « € N, one has Supp (0%6,) = {a}

o If f € C°Q) and Supp (f) is a compact set, then Ty € E'(12).

Proposition 6

H Let T € &'(R), then T belongs to C*(R) and is with slow increase.
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5.5.2 Convolution &£'(R) * D'(R)
Let u € Cp(R) and v € L} (R) then for all ¢ € D(R), since (z,y) — u(y)v(z —y)p(r) € L1(R x R),

loc
using Fubini theorem one may write:

/]R </R ulyvie - y>dy> pla)de = /R“(y) </R v(@)p(z + y)dx) dy
- /R“(gc) < /R uly)p(e + y)dy> dz.

which can be rewrite using distributions notations as:

<Tu*v7 90> = <Tm <Tva 90(' + y)>> = <TU7 <Tm QO(' + y)>>

/Ru r 0(@)p(z)dz

One can then generalize this remark through the following definition.
Definition 11 Let S € £'(R) and T € D'(R).

o There exists a distribution, called convolution of S with T which we write ST and such that
for all ¢ € D(R), one has:

(ST, ) = (Si, (To, p(2 + 1)) = (Tus (Sz, p( + w)))

e The application (S,T) — S+ T from E'(R) x D'(R) onto D'(R) is continuous with respect to
each variable.

o IfT € S'(R) then S+« T € S'(R).

Examples: Let T € D'(R), §o « T =T 6, = 7,1
§F) « T =T % §F) = (k)
Proposition 7

Let S and T belonging to D/, (R), the set of distribution with support limited to the left,
then the convolution S * T is still defined.

Proposition 8

Let S € £'(R) and T € S'(R), one has

SxT =8T

5.6 Exercises

Exercise 1
Are the following applications T', defined for ¢ € D(R), distributions?

1. (T,¢) = [, p(x)dz
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Exercise 2
Let ¢ € D(R).
1. Show that there exist a constant C'(¢) such that:

+oo
Vn € Z, '/ e p(x)dr| <

2. Let (an)nez be a bounded sequence. Show that the series with general term:
+oo
an/ e p(x)dx
— o

converges, and that the application which maps ¢ to the sum of this series is a distribution.
3. Show that when the sequence n’a,, is bounded, the distribution is indeed a function.

Exercise 3
Let us consider the regular distributions e***.

1. Show that for all n # 0 :

V(,D € D(] - 77?77[)7 ‘<6m$a(p>‘ <

where C(yp) is a constant which does not depend on ¢.
2. Let us define:

N
UN(ZU): Z eine
n=—N

Show that the sequence of distributions T associated with functions uy converges in the distribu-
tional sense on | — 7, w[. Let T be its limit.
3. Show that:

sin(N + )z

sin(%)

un(z) =

4. Show that if ¢ € D(] — 7, 7[) is such that ¢(0) = 0, then 2l2) elongs to CX(] — m,7w[) (we

sin(3)

recall that S22 is a smoot function).

X
5. Show that if ¢ € D(] — m, 7[) is such that ¢(0) = 0, then (T, ¢) = 0.
6. Deduce that there exists a constant C' such that:

+oo
T= ) " =0Cs.

n=—oo
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We will admit that C = 2x.

Exercise 4
After having shown the following distributions are tempered distributions, compute the Fourier
transform of the following distributions:

1.1

2. 2"

3. 6

4. e2i7ruozc

Exercise 5
Compute, using the definition of the Fourier transforms of distributions the following integral:

/ e cos(2mx)dz
R

Exercise 6

Show that if f belongs to L*(R) or L?(R) that T; =T;.

Exercise 7
Fourier transform of vp(1/x)
1. Show that vp(1/x) is a tempered distribution
2. We recall that zvp(1/x) = 1, deduce the Fourier transform of vp(1/x)

Exercise 8
Fourier transform of the Heavyside function
Remarking that U(z) = 3(sign(z) + 1), compute its Fourier transform.



Chapter 6

z-transform

6.1 Discrete signal definition

We study in this chapter, the signal x that are defined in the following manner:

n=-4oo
T = Z TnOna
n=-—oo
with a fixed. We denote by X, the set of these signals:
n=-+oo
Xo={z€DR),z= )  znna}
n=—00

This is a vector space which is equipped with the same notion of convergence as the one on D’:

(:L‘NB/)I) s (WneZ Nz,

6.2 z-transform

As we have noticed that the convergence of the Fourier transform of distribution is not automatic
in a functional space, one replaces in the definition of DTFT e?™® by a complex z, to obtain the
so-called Z-transform of the signal x :

In what follows, X (z) denotes the z-transform of (x,,).

To show the practical interest of such a transform, let us consider the Heaviside sequence u,, = 1
if n > 0 and 0 otherwise. We notice that U(z) = ;—— if |2| € [0,1[, while the DTFT does not
converge in that case.

In general, when it exists the z-transform converges on a ring r < |z| < R. To study discrete signal,
one replaces the Fourier transform of discrete signals by the z-transform.

e Show that the z-transform of x,, = d,, p, is 27" X (2)

#, for ’Z’ > .

e Show that the z-transform of z,, = a"u, is X(2) = 7

for |z] < a.

e Show that the z-transform of =, = —a"u_,_1 is X(z) = ﬁ,
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6.3 Rational z-transform

An important class of z-transforms consists of those that are rational functions, which could be
written under the form
B(z)

HE = 30)

where A(z) and B(z) are polynomials in z~! with no common roots, of degree N and M respectively,
the degree satisfies M < N, otherwise polynomial division would lead to sum of polynomial that
and a rational function satisfying this constraint. The zeros of the numerator B(z) and denominator
A(z) are called the zeros and poles of H.

M
Consider a finite sequence h = (h;)i—o,... m, then H(z) = > hgz~*, which has M poles at z = 0
k=0

and M zeros at the roots {zj }x=1,... ps. Therefore we may write:

M M
thM_k ho H (Z — Zk) M
H(z) = =2 ] = k:1zM =ho [J(1 =2z
k=1
Consequently:
M
bo [T (1 —2zz7")
H(Z) _ B(Z) _ k=1
A(z) N
ap JT (1 —prz=1)
k=1

where {2 }g=1... m and {pg}r=1,. n are the zeros and the poles of H respectively.

6.4 Inversion of the z-transform

Given a z-transform and its ring of convergence (ROC) how do we invert the z-transform? The
general inversion formula for the z-transform involves contour integration which is a standard topic
of complex analysis. However, most z-transforms encountered in practice can be inverted using
simpler methods, which we now discuss.

6.4.1 Inversion by inspection

This method is just a way of recognizing certain z-transform pairs. For example, we see that the
z-transform

has the form of 1/(1 — az~!) with a = 1/4. One recognizes that H(z) is generated by:

1 n
<4> uy, if |2| > 1/4

— (i) U_p—1 if |2| < 1/4
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6.4.2 Inversion using partial fraction expansion

When the z-transform is given as a rational function, partial fraction expansion results in a sum of
terms, each of which can be inverted by inspection. Here we consider cases in which the numerator

and denominator are polynomials in z7".

(i)

(iii)

1

M < N, simple poles: if all the N poles are of the first order, we can express X (z) as
Ay
X(z) = P

Each term has a simple inverse z-transform, which depends on the the ROC of X (z). The
ROC takes one of the following forms:

{2, 2] <Ipal}
ROC = § {7 |prl < 2] <|prsal}
{2, [zl > Ipnl},
where we have assumed that |p1| < |p2] < --- < |pn], for simplicity. Each distinct ROC
corresponds to a different sequence. Note that when the ROC is {z, |z| > |pn|}, one has

N
T =Y Ag(pr) un
k=1

M < N, poles with multiplicity: suppose that X (z) has pole p; of order s > 1, in general the
tth term is replaced by s terms:
G
(= pir

k=1
The k = 1 term is inverted as before, and the terms for & > 1 are inverted using differentiation
rules (see Properties of z-transform).

M > N. Assume that all the poles are of the first order; multiplicities can be interpreted as
above. Using polynomial division, we can write X (z) as

M—-N N A
S
X(Z) = B]CZ + W
k=0 k=1

There are many possible ROCs, each determining a distinct sequence corresponding to the
second summation. When the ROC is outside the largest pole, we get that:

M-N N
Tn= Y Bibn_i+ Y Ar(pr)"tn
k=0 k=1

Example: (Inversion suing partial fraction expansion). Given

1—21 1—271 -1 2

T 1-5z 14622 (1—22"1)(1-32"1)  1-2z71 Tz 3271

X(2)

The original sequence is then

(2" —2-3")u_p_1, if ROC = {z, |2| < 2}
Tp =1 —2"up —2-3"u_p_1, if ROC = {z,2 < |z|] < 3}
(=27 + 2 3")uy, if ROC = {2, |2| > 3}
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6.5 Properties of the z-transform

Here we list the most important properties of the z-transform:
i) Linearity: ax, + By, = aX(z) + Y (2), ROC, NROC, C ROCyyz4sy
ii) Scaling in time:

27k

N-1 .
— Tnp — & 2 X(WE2YN) on (ROC,)YN with Wk = e~
k=0

[ N, n/N €Z N N
{ 0, otherwise — X(z%) on (ROC,)

iii) Scaling in z: oz, — X (a™'2);|a|ROC,.
iv) Time reversal: x_,, — X (271); W

k

Ty — (—1)F2F X)), ROC,

v) Differentiation: n Er

vi) Moments: Computation of the kth moment using the z-transform results in

I N N (. LOFX (2)
' Z ' (Z ' >|z:1 << 1) 02k >|z:1

nel nez
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Discrete-time filtering

7.1 Definition of discrete filters

One defines discrete filters in the following way:

Definition 1 One calls discrete filter an application D : X — X, linear, continuous and invariant
through translations Ty, k € 7Z, where X is a subspace of X, containing dg, invariant through
translations Tiq, i.e. D(Tpqx) = Tpo D(x) and equipped with the same notion of convergence as X,.

Proposition 1
Let: D : X — X,, a discrete filter and h = Ddy (h is called the impulsional response to
the filter h). Then D can be written in the convolution form:

Vee X Dr=hx*xzx

in the following two cases:
i) X = X, and h is finite
ii) X = X, ND/, and h belongs to this set.

In both cases, one can check that one has y = Dx = h*xx = Y. ypOng with y, =
E€Z
+o0 "
> hpZp—k which is a finite sum.
k=—00

Now the convolution can also be defined when the support of z and h extends from —oo to +oc.
in particular, we have the following proposition:

o7



o8 CHAPTER 7. DISCRETE-TIME FILTERING

Proposition 2

k=400 n=+oo

Consider the two discrete signals h = Y. hpdp, and £ = Y z,0pq, such that (hg) is
k=—00 n=-—00

with fast decay and (z,,) is with slow increase. The convolution h * z is defined, and we

have:

i) h* x is a tempered distribution
n=+0o k=+oc0

i) hxx = . Ynlpg withy, = > hgx,_k, the series defining y,, converging absolutely
n=—00 k=—00

e T A/\
iii) h*x = hZ.

Other very important situations involve the spaces

n=+oo n=+oo
r= {x = Z TnOna, Z |z, P < +oo}

n=-—o00 n=-—00
n=—4oo

12 = {x = Z ZnOna, SUP|Ty| < +oo}
n=—oo

One can show that we have I} % 19° C1S°, 1212 C I and I} 12 C I} %1 C I

7.2 Stability and causality of discrete filters
Let us start with the notion of causality:
Definition 2

( The filter D : X — X, is realizable ) < ((Vn <0, z,=0)= (¥n<0, (Dz),=0))
The stability of filters as follows:
Definition 3

( The filter D : X — X, is stable ) < (3A > 0,Vz € X NI, | Dz|loc < A||%|/oo)

To summarize the discrete filter:

D:X—= X,
x— D(z)=hx*zx

is defined in the following seven cases:
1. h is finite, X = X,
2. h is causal and, X = X, N D/, (causal entries)

3. h is with fast decay, X = X, NS’ (slowly increasing entries)

4 hell, X =1
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5. hel?2, X =12
6. helX, X =12

7. he X, X = X,NE (finite entries)

Theorem 1

Let us consider a filter with impulse response h corresponding to one of the seven above
cases, then one has:

i) D is stable & " |hy| < 400
nez

ii) Discausal ©Vn <0 h,=0

Proof i) when the convolution exists, one can write:

ynl < S il el < sup zal 3 Il
n

keZ kEZ

so D is stable.

The reciprocal is trivial if D is finite. In the case 3 and 4, h is in [!. In the case 2, h and z are with
support bounded to the left (one can assume without any loss of generality that h is supported in
N).

Let p belonging to N, and zP defined by:

Y
T, =

sign(hy,_p,) si0<n <pethy, ,#0
0 sinon

These signals are finite and thus causal and ||2P||s < 1. We can then write

o0
=Y hysign(hy k).
k=0

p o]
Thus, yb = > |hg]| < A, for all p> 0 and, Y |hg| < +oo.
k=0 k=0
Note that this proof holds in the case 5, 6, 7 since the entries zP are finite. ii) If D is realizable,
h = Dég satisfies h,, = 0 for all n. Conversely, If this property holds we easily get that the filter is

realizable.

7.3 Analyzing filter using z-transform

The distributions gives us a very nice setting for the existence of the convolution, Now to analyse
the properties of the discrete filters the z-transform is the most commonly used tool since we have,
as soon as the convolution of x et h exists, the very useful property:
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Theorem 2

Let h = Y hyd, and © = > x,0,, such that the convolution exists. Then, denote y this
ne’ ne’
convolution we have:

¥z € ROC, [ |ROCy, Y(z) = H(2)X(2)

Remark 1 Note that the definition domain is potentially empty.

7.3.1 Filters governed by a linear difference equation

A very important class of filters are governed by a linear difference of the type:

p q
Yn = Z ajTn—j — Z brYn—k = Z hizn g
=0 k=1

kEZ

Let us compute the z-transform of the system, to get:

(Z bkzk> Y(z)= Zajzfj X(z)
k=0 =0

from which we may write :

p .

> a;z
H(z) ="
z bkz_k
k=0

which is a fractional rational z-transform encountered in the previous chapter. From H(z) we can
study the stability of filters, which leads to the following theorem:

Theorem 3

i) A filter is stable if and only if the ring of convergence contains the unit circle.

ii) If the filter is realizable, it is stable if and only the poles of H(z) are located inside
the unit circle.

To find the impulse response depending on the ROC we refer to the previous chapter. However,
when the thought filter h is causal, one can determine the components of h through the following
recurring principle:

ho = ag

n
hyp = an — Zbkhn—k n=12---
k=1
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7.4 Convolution using finite impulse response filter

We have seen in the previous section that the filter corresponding to linear difference equation is
associated with infinite impulse response h, and thus in practice the filtering process never uses the
impulse response. But though one never uses the impulse response, one can characterize the nature
of the filter, i.e. stability and realizability.

Another very important class of filtering process is when both h and x are finite with the length of h
much smaller that N of x, in which case the convolution is carried out through circular convolution.

7.4.1 On the relation between convolution and circular convolution

Let us introduce:

Definition 4 The circular convolution between sequence h € I} and x a periodic sequence with
period N :

(h®x)n = > Tkhnk mod N

0<k<N—1

= Z L(n—k)mod N (71)
0<k<N-1

Remark 2 This sequence is itself periodic with period N .

The relation between convolution and circular convolution is then the following. Let us define

hN,n = Z hn—kNa (72)
kEZ

then one has the following property:

Proposition 3

Let x be a discrete signal periodic with period N de taille N, then one has the following
property:

(h*x)n = (hN®T)s (7.3)

7.4.2 DFT and circular convolution
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Theorem 4

Let (zx) and (hg) be two complex sequences, with period N, and let us denote by (Z,,) et
(hy) their DFT.
i) The sequence (z,) define through circular convolution
2 = (2@ h)n
has for DF'T
2y = Tihy,
ii) the sequence
Pn = Tnh
has for DF'T
(Z@ )k

From this one can view the convolution as the product of two DFTs followed by an inverse DFT. If
one carries out the direct computation, the convolution requires O(N?) operations, but using the
FFT this can be carried using in O(N log2(N)) operations.

7.5 Exercises

Exercise 1
Compute the impulse response corresponding to a causal version of the filter given by the following

z-transform:

-1
H(z) = 15 e

Is this filter stable?

Exercise 2
We sample the RC filter, RCv' +v = f as RC¥—»=L 4y, = x,,.
1. Write the filter as a linear difference equation
2. Deduce the transfert function of the filter
3. Compute the impulse response of the filter. Check that this filter is causal and stable.
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Shannon sampling theorem

One of the key issues we have not dealt with up to now is how to sample the signal to switch from
the analogic representation to the digital one. The most important result is due to Shannon and
tells us how to sample a signal given its frequency bandwidth. The Shannon theorem is based on
Poisson formulae whose descriptions follow.

8.1 Poisson formula in S'(R)

8.1.1 Dual formulation of Poisson formula

To sample a signal f every a seconds consists in considering a piecewise constant approximation
for the signal at location (na) and then replace the value of the function by that of the integral of

the latter, i.e. afA, =a Y, f(na)ong.
nez
Assume f is a tempered distribution such that its Fourier transform satisfies:

Supp (f) C [=Aes Acls
ie fe E'(R), so that f is a C*° slow increasing function belonging to S'(R):

afAs = a)_ f(na)in. € S'(R), (8.1)

neL

so considering the Fourier transform in S'(R), one gets:

af/A\a(f) = aZf(na)e_Qmmé. (8.2)

nel

Furtehrmore, considering the Fourier transform of distributions in &'(R) * S’(R), one obtains:
f * Aa =f Ag.
Thus:

a f/A\a(f ) = fxA (&)Properties of the Fourier transform of a Dirac comb
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Using the expressions given by the expressions (8.1) and (8.3), one obtains the dual formulation of
Poisson formula (true in 8'(R)):

Soraf©) = @) flnajeines (5.4

nez ne”L

8.1.2 Direct formulation of Poisson formula

The direct formulation of Poisson formula corresponds to:

n=-+oo n=-4o0o
Z Tnaf Z f 2”m7 (85)

By analogy with the dual formulation, let us suppose that f is compactly supported (f € &'(R)),
Then, one can write:

8.2 Poisson formula in L!(R)

Theorem 1

Let f € LY(R) and F(t) = Jgio f(t —na), then

n=—00
1. F € L,)(0,a) (periodic with period a) and the series converges in L'(0, a).
2. The formula (8.5) is true in S'(R).

3. If furthermore f’ (the derivative being considered in the sense of distributions) is in

+oo
L'(R), then F is continuous on R and Y. f(t —na) converges normally and (8.5)

n=-—oo
is true for all ¢ (property of Fourier series).

8.3 Shannon Theorem

Shannon theorem expresses how to reconstruct a function in L?(R) whose Fourier transform is
compactly supported by means of its samples.
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Theorem 2  (Shannon)

Let f be a function in L?(R) such that its Fourier transform is supported in the interval

[—Ac, Ac]. One can sample f with a sampling step a without any loss of information if
1>2).
In this case, one has:

f@)=3 fna) - sin(>(z - na)

Z échantillons

Shannoninterpolationbasis

Proof As f is slowly increasing it satisfies the dual formulation of Poisson formula:

f&) =a)_ f(na)e ™ =3 "7u f(¢).

nel nez

As f is in L?(IR) and is compactly supported, one can easily show that the previous equality is also

true in Lg(—i, »). With the hypothesis made on a, one has in Lg(—%, =

with period 1/a and square integrable over a period):

) (periodic functions

f&) =a)  flna)e ™™y 1 1 (€).

" 2a’2a
nel

Finally, using the continuity of the Fourier transform on L?(R), one obtains:

f@) = a X fna)F ! (e mesy 1))

— 5=
nez 2a’2a

= >, f(na)sing(g(z — na))

ne”L

8.4 Exercises

In the following exercises, we will assume that Poisson formula is also valid for a function f in

L'(R).

Exercise 1
Poisson formula in L*(R)

1. On considers the series:

1 2imnt
Ft)= Y g™

n=—oo

Show that F' is continuous
2. Show that ﬁﬂﬁ corresponds to the sampling of the Fourier transform of a function f.
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3. Apply Poisson formula to obtain another expression for F'
4. Then compute F' explicitly.

Exercise 2 )
Let f € L*(R) the signal defined by f(&) = (1 — [£])1[—1,1(¢).

_ sin?(nx)
1. Show that f(x) = .

m2z2
2. Using Shannon formula with a = %, show that

8.’1}2 k=400 1
2 kZ (2k +1)2(22 — (2k + 1)7)

=—00

tan(z) =z —

foerRAwhereA:{%ﬂ;kGZ}

Exercise 3
generalization of Shannon to trigonometric functions
We consider in this exercise the function f(t) = 2™ )\ € R.
1. Let g be a function periodic with period % and equal to f on the interval [—%, %[ For A\ a
real and positive fixed number, show that the Fourier coefficients of f are:

asin(% (X —na))
m(\ —na)

Cnp =

2. Applying Dirichlet theorem, show that:

A s 11
eHTAL — 262262”"‘” smc(g()\ —na)) for all t €] — %4’ %[,
n

which corresponds to Shannon theorem de permuting A and t.

Exercise 4 A A
Let f be a real functionsuch that f € L?(R) and Supp(f(£)) = [f1, fo] for & > 0. We moreover
assume that 2f; > fo.

1. What relation exists between f(¢) and f(—€)?

2. What constraint must satisfy the sampling frequency for Shannon theorem to apply ?

3. Explain how to periodize the signal by using the smallest sampling frequency as possible.

4. Deduce from that a technique for signal reconstruction.
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Linear Time-Frequency Analysis

Here we focus on linear time-frequency techniques, that is we are going to define linear transforms
that map a function to its time-frequency representation. The focus is put on the short-time Fourier
transform both in the continuous and discrete setting. In the latter case, the emphasis will be put
on the relation with the Fourier transform of distributions.

9.1 Linear Time-Frequency analysis: the continuous time frame-
work

Time-Frequency analysis is related to the definition of Short-Time Fourier Transform (STFT), the
definition of which we now recall in different contexts.

9.1.1 Continuous Time Short Time Fourier Transform

Definition 1 The STFT of a given signal f € L*(R) (N L*(R) and g a real window also in L*(R)
s given by:

Vitw) = /Rf(u)g(u — t)e 2wt gy, (9.1)
Remark 1 The existence of the STFT is a direct consequence of Cauchy-Schwarz theorem.

This transform is invertible under some assumptions:

Proposition 1

Assume [, g =1, and that fisin L'(R), the following reconstruction formula holds :

f(t):// Vfg(u,w)ei%w(t_“)dudw.
R2
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Proof Because of the hypothesis made on g, one has: f(t) fR g(t — u)du. Now, the Fourier

transform of f reads:
_ / / f(t)g(t - u)e—2irrw(t—u)dte—2iﬂ'wudu
R JR
= / qu(u,w)e_%wudu.
R
So, since f is in L*(R), it is invertible and we can write: f(¢) = Jpo Vf w, w)eX ™ =1 duy ey,

Proposition 2

Assume ||g||2 = 1, the following reconstruction formula holds (in L?(R)) :

ft) = / V (u,w)g(t — )™ dudw.
R2

Proof The proof uses the fact that {g(t — u)e®>™ (="}, is a frame of L?(R), but it will not be
detailed here.

Proposition 3

If one assumes that f is analytic (namely f (w) =0 if w < 0), g is continuous, iand both f
and g are in L'(R) () L?(R), one may also write:

1

f(t) = 9(0)/0 V];q(t,w)dw.

Proof

V (t,w)dw = f (u— t)e2m(u=t) — F(w)glw — v)* €™ dwdy
0 f 0 R

= we’ZWtw §(v —w)dv =
- / fl)eta /R 3 — w)dv = £(1)g(0),

so one has the following reconstruction formula: f(t) fo Vg (t,w)dw.

9.1.2 Discrete-Time Short-Time Fourier Transform

Since this part of the course is more signal processing oriented, we replace the notation z, for a
sequence by z[n]. For a sequence (f[n])nez in l1(Z), and a discrete real window g also in {1(Z), the
STFT is defined for each w by:

Vim,w) = Y fln m]e”2mw(n=m) (9.2)
nez
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The STFT can be viewed as the Fourier transform of } . f[n]g[n —m]d, times the phase shift
term 2™~ For STFT, we have the following reconstruction formula:

Proposition 4

Assume ¢(0) # 0, then:

Proof Since Vfg’ 4(m,w) is 1-periodic with respect to w, using Fourier series theory we get:

1
fnlgln — m] = / V2 ()2 m) gy,
O b

and then considering n = m and ¢(0) # 0, we obtain:

1o,
flm) = 5 /0 VI, (m,w)d. (9.3)

Proposition 5

Note that with the hypothesis put on g, (Vfgd(m,w))mez is also in [1(Z), and further
assuming ||g|l2 = 1, we get :

1
fln] = /0 Z Vﬂd(m,w)g[n — m]e?m ) gy,

meZ

Proof Indeed, we have:

[ S Viitmln =m0 = 5 gtk =gl —m) [ 0P
0 0

me7 m,kEZ
= > flnlgln—m]* = fln] > glm)* = fIn
meZ mezZ

Proposition 6
Alternatively, if one considers a filter g € [1(Z) such that ) g[m] = 1, the reconstruction
m

of f is as follows:

1
fln] = / g qud(m, w)e2mm=m) gy,
O k)

meEZ
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Proof The proof is similar to the previous one and is thus left as an exercice.

9.1.3 Short-Time Fourier Transform for finite length signal and filter

Now we assume the signal is of length L and that the filter g is supported on {—M,---, M} such
that:

210g2|_2M+1J+1 - N < L, (94)

then we have the following reconstruction formula:

Proposition 7

Assume ¢[0] # 0, then we may write:
N-1 &
= —— %4 — 9.5
[O]N s f,d(m7 N> ( )
Proof Indeed,
k . n—m n
) =D Slnlgln — mle~ 2w Z flm -+ nlglnle=27 %,
neL
2M
_Z»2ﬂ_k(n—1\/1)
=5 fim+n — Mlgln — Mlemi2 "5
n=
Since g isnull on {M +1,--- N —1— M}, the STFT can be rewritten as:
k fZQWM —i2rkn
Vfd( me+n— M]g[n — M]e N,
Using the properties of the discrete Fourier transform, one obtains, for any n € {0,--- ,N — 1}:
1 Nl g k iQﬂ.k(n*M)
flm+n— Mg[n— M| = N Znyd(m,N)e N (9.6)
=0

Finally, taking n = M and assuming g[0] # 0 :

MZ

e
I

Remark 2 To reconstruct f[m], one only needs the knowledge of (Vﬁd(m, %))k, while (Vﬁd(m, %))k

is non zero form € {—M,--- L — 1+ M}, but the transform outside the support of f is not used
in the reconstruction.
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Proposition 8

Now, if ¢ is with unit energy, one has:

m=n-+M

= 2 Z fd n - m]em T,

mnM

Proof Indeed, we may write:

m=n+M  k(nem) m=n+M p=m-+M 1 N-1  knp)
3 Z gl —mle T =SS gl — mlgln -] 3 2
m:n—M m=n—M p=0 k=0
m=n+M m=M
> flnlgln—m)* = fln) > glml)* = fln].
m=n—M m=—M

This time, one needs the knowledge of (Vﬂd(m, %))k for m € {—M,--- L — 1+ M}, while one

would like to be able to reconstruct f using only (ijqd(m, %))k for m € {0,--- , L —1}.

To circumvent this difficulty, one can assume f is L-periodic instead of finite: the STF'T is no longer
in {1(Z) but is also L-periodic (in the sum defining the STFT p varies from m — M to m + M). In
this case, we may write:

Proposition 9

Assuming g is with unit energy, one has the following reconstruction formula assuming f
is L-periodic:

n+M N-1 L eiQﬂ-w
fln] = Z Z V]gd(m mod L, N)g[n - m]T
m=n—M k=0

Note that the hypothesis that f is periodic could be avoided easily as well as on the unit energy
for the filter. Indeed,
Proposition 10

assuming f is null outside its boundary, we have:

2 ¥ Z V7 y(m, 5)gln — m]e* ™~
m=max(n—M,0) k=

fln] =

m=n+M

> glmp?

m=max(n—M,0)
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Proof We may actually write

Similarly to what was done previously in the continuous time case, if we further assume that f is

M
L-periodic, and that >  ¢g(m) =1, one has the following reconstruction formula:
k(p—m)
N .

flrl= > % > Vi (mmod L, N)ezzﬂ

Again, not assuming any periodicity hypothesis we also have.

p+M 1 N-1 k 2 k(p—m)
> v > Vigmmod L, 5)e™™ N
__ m=maz(p—M,0) k=0

> g[p]

m=mazx(p—M,0)

To conclude on this part we have shown different reconstruction procedures for associated with the
STFT and considering different hypothesis on the filter. We are going to use these developments
in the study of reassignment technique in the following chapter.



