Scaling points and reach for non-self-scaled barriers

Roland Hildebrand

Laboratoire Jean Kuntzmann / CNRS

Grenoble Optimization Days 2018 June 29, 2018

Outline

Conic optimization

- Conic programs
- Barriers
- Symmetric cones
- Scaling points

Scaling points and reach

- Scaling points as geodesic means
- Structures on primal-dual product
- Scaling points as orthogonal projections
- Reach property

Regular convex cones

Definition
A regular convex cone $K \subset \mathbb{R}^{n}$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$
K^{*}=\left\{s \in \mathbb{R}_{n} \mid\langle x, s\rangle \geq 0 \quad \forall x \in K\right\}
$$

of a regular convex cone K is also regular.
the dual cone is located in the dual vector space

Automorphisms

Definition

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. An automorphism of K is a linear map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $A[K]=K$.
an automorphism A of K induces an automorphism $B=A^{-T}$ of K^{*} which preserves the dual pairing:

$$
\langle A(x), B(s)\rangle=\langle x, s\rangle
$$

Conic programs

Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^{n}$ is an optimization problem of the form

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

every convex program can be transformed into a conic program
the dual program

$$
\max _{s=-\left(A^{T} z-c\right) \in K^{*}}\langle b, z\rangle
$$

is a conic program over the dual cone
primal-dual methods solve both problems simultaneously

Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is a smooth function $F: K^{\circ} \rightarrow \mathbb{R}$ on the interior of K such that

- $F(\alpha x)=-\nu \log \alpha+F(x)$ (logarithmic homogeneity)
- $F^{\prime \prime}(x) \succ 0$ (convexity)
- $\lim _{x \rightarrow \partial K} F(x)=+\infty$ (boundary behaviour)
- $\left|F^{\prime \prime \prime}(x)[h, h, h]\right| \leq 2\left(F^{\prime \prime}(x)[h, h]\right)^{3 / 2}$ (self-concordance)
for all tangent vectors h at x.
The homogeneity parameter ν is called the barrier parameter.
the Hessian $F^{\prime \prime}$ defines a Riemannian metric on the interior K° of K

Dual barrier

Theorem (Nesterov, Nemirovski 1994)
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a barrier on K with parameter ν. Then the Legendre transform

$$
F^{*}(p)=\sup _{x \in K}(\langle x,-p\rangle-F(x))
$$

is a barrier on K^{*} with parameter ν.
the map $\mathcal{D}: x \mapsto p=-F^{\prime}(x)$ is an isometry between K° and $\left(K^{*}\right)^{\circ}$ with respect to the Hessian metrics defined by $F^{\prime \prime},\left(F^{*}\right)^{\prime \prime}$ we have $\langle x, \mathcal{D}(x)\rangle=\nu$

Central path

consider the affine subspace $\mathcal{A}=\left\{(x, s) \mid A x=b, s=c-A^{T} z\right\}$ the intersection $\mathcal{A} \cap\left(K \times K^{*}\right)$ is the set of primal-dual feasible pairs the set $\left\{(x, s) \in \mathcal{A} \cap\left(K \times K^{*}\right)^{o} \mid \exists \mu>0: s=\mu \mathcal{D}(x)\right\}$ is called the central path and can be parameterized by μ note $\langle x, s\rangle=\mu \nu$ on the central path
the conditions

$$
(x, s) \in \mathcal{A} \cap\left(K \times K^{*}\right), \quad\langle x, s\rangle=0
$$

are sufficient for optimality hence the central path tends to an optimal solution for $\mu \rightarrow 0$ path-following methods make discrete steps in the vicinity of the central path while advancing towards the solution

Symmetric cones

Definition

A self-dual, homogeneous convex cone is called symmetric.
[Vinberg, 1960; Koecher, 1962] every symmetric cone is a product of the following irreducible symmetric cones:

- Lorentz (or second order) cone

$$
L_{n}=\left\{\left(x_{0}, \ldots, x_{n-1}\right) \mid x_{0} \geq \sqrt{x_{1}^{2}+\cdots+x_{n-1}^{2}}\right\}
$$

- matrix cones $S_{+}(n), H_{+}(n), Q_{+}(n)$ of real, complex, or quaternionic hermitian positive semi-definite matrices
- Albert cone $O_{+}(3)$ of octonionic hermitian positive semi-definite 3×3 matrices

Jordan algebras

Definition

A commutative algebra J satisfying the condition

$$
(x \bullet x) \bullet(x \bullet y)=x \bullet((x \bullet x) \bullet y)
$$

for all $x, y \in J$ is called a Jordan algebra.
A Jordan algebra is Euclidean if $\sum_{k=1}^{n} x_{k} \bullet x_{k}=0$ implies $x_{k}=0$ for all $k=1, \ldots, n$.
the symmetric cones can be represented exactly as the cones of squares $K=\{x \bullet x \mid x \in J\}$ of Euclidean Jordan algebras

Automorphisms and duality

for every $w \in J$ the map

$$
P(w): x \mapsto 2 w \bullet(w \bullet x)-(w \bullet w) \bullet x
$$

is a self-adjoint automorphism of K
the duality \mathcal{D} is represented by the inverse: $\mathcal{D}(x)=x^{-1}$
in particular, the central path condition $s=\mu \mathcal{D}(x)$ becomes

$$
x \bullet s=\mu \cdot e
$$

with e the identity element in J

Example: semi-definite matrix cone

$$
X \bullet Y=\frac{X Y+Y X}{2}, \quad e=I, \quad \mathcal{D}(X)=X^{-1}
$$

Programs over symmetric cones

conic programs over symmetric cones are efficiently solvable by interior-point methods [Nesterov, Nemirovski, 1994]

- linear programs (LP) over $\mathbb{R}_{+}^{n} \sim 10^{6}$ variables
- conic quadratic programs (CQP) over $L_{n} \sim 10^{4}$ variables
- semi-definite programs (SDP) over $S_{+}(n) \sim 10^{2}$ variables
structure can greatly increase tractable sizes
free (CLP, SDPT3, SeDuMi, SDPA, ...) and commercial (CPLEX, MOSEK, ...) solvers available

Self-scaled barriers

Definition

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone, let K^{*} be its dual cone, let F be a self-concordant barrier on K with parameter ν, and let F^{*} be the dual barrier on K^{*}. Then F is called self-scaled if for every $x, w \in K^{o}$ we have

$$
s=F^{\prime \prime}(w) x \in \operatorname{int} K^{*}, \quad F^{*}(s)=F(x)-2 F(w)-\nu
$$

A cone K admitting a self-scaled barrier is called self-scaled cone.
Hauser, Güler, Lim, Schmieta 1998-2002:

- self-scaled cone \Leftrightarrow symmetric cone
- self-scaled barriers on products are sums of self-scaled barriers on irreducible components
- self-scaled barriers on irreducible cones are log-determinants

Scalings

let F be a self-scaled barrier on a symmetric cone for every $(x, s) \in\left(K \times K^{*}\right)^{\circ}$ there exists a unique scaling point $w \in K^{\circ}$ such that

$$
F^{\prime \prime}(w) x=s
$$

equivalently, there exists a self-adjoint automorphism $A=P\left(w^{-1}\right)$ of K with induced automorphism $B=A^{-T}=P(w)$ of K^{*} such that

$$
B(s)=A(x)
$$

Nesterov-Todd type methods proceed from one primal-dual iterate (x, s) to the next by solving a linearized version of the system

$$
\left[P\left(w^{-1}\right)\right](x) \bullet[P(w)](s)=\mu \cdot e
$$

while staying in $\mathcal{A} \cap\left(K \times K^{*}\right)^{\circ}$

Geometric interpretation

$M=\{(x, s) \mid \exists \mu>0: s=\mu \mathcal{D}(x)\}$
M_{L} is a linear approximation of M at $\left(w, w^{-1}\right)$ $\operatorname{dim} \mathcal{A}=n, \operatorname{dim} M=n+1$

Generalization to non self-scaled barriers?

the geometric interpretation works independently of the self-scaled property
provided we find an adequate generalization of the scaling point w corresponding to a primal-dual pair (x, s)

Scaling point as geodesic mean

the graph $\Gamma(\mathcal{D})$ of the duality map inherits the metric of $F^{\prime \prime}$ on K^{o} the point $(w, \mathcal{D}(w))$ on $\Gamma(\mathcal{D})$ is the geodesic mean between the projections $(x, \mathcal{D}(x)),\left(\mathcal{D}^{-1}(s), s\right)$ of the primal-dual iterate (x, s)

Scaling point as nearest point

in order for the linear approximation to be accurate the scaling pair ($w, \mathcal{D}(w)$) has to be close to the current iterate

in the product metric on $\left(K \times K^{*}\right)^{0}$ we have also to compute geodesic lengths - difficult

Product of dual pair of spaces

Is there a better choice of a metric in $\mathbb{R}^{n} \times \mathbb{R}_{n}$?
neither the vector space \mathbb{R}^{n} nor its dual \mathbb{R}_{n} carry a canonical metric, only a family of equivalent metrics which all lead to the same flat affine connection
the product $\mathbb{R}^{n} \times \mathbb{R}_{n}$ has a lot more structure

- flat pseudo-Riemannian metric

$$
G((x, p) ;(y, q))=\frac{1}{2}(\langle x, q\rangle+\langle y, p\rangle)
$$

- $\operatorname{dist}((x, p) ;(y, q))=\langle x-y, p-q\rangle$
- symplectic form $\omega((x, p) ;(y, q))=\frac{1}{2}(\langle x, q\rangle-\langle y, p\rangle)$
$\mathbb{R}^{n} \times \mathbb{R}_{n}$ is a flat para-Kähler space form

Duality graph as Lagrangian submanifold

let \mathcal{D} be the duality map of a self-concordant barrier with parameter ν

- the duality graph $\Gamma(\mathcal{D})$ is a Lagrangian submanifold of $\mathbb{R}^{n} \times \mathbb{R}_{n}$
- the metric on $\Gamma(\mathcal{D})$ equals ν times the submanifold metric induced by $\mathbb{R}^{n} \times \mathbb{R}_{n}$
- the curvature of $\Gamma(\mathcal{D})$ is globally bounded by $\sqrt{\nu}$
similar assertions hold when passing to the product $\mathbb{R} P^{n-1} \times \mathbb{R} P_{n-1}$ of projective spaces
for self-scaled barriers in the projective setting the scaling pair is indeed the nearest point in the pseudo-Riemannian metric of the para-Kähler space

Existence of nearest point

obstacles for the existence of a nearest point:

- global: points far away on the submanifold are close in ambient space
- local: curvature of the manifold

Reach property

Definition (Federer 1959)

Let $A \subset E$ be a subset of a Euclidean space.
A unique closest point of A is a point $x \in E$ such that there exists a unique point $a \in A$ with $\|x-a\|=d(x, A)$.
The reach of a point $a \in A$ is the largest $r \geq 0$ such that the open ball $B_{r}^{o}(a)$ around a consists of unique closest points.
The reach of A is the infimum over $a \in A$ of the reach of a.

- A as infinite reach if and only if A is closed convex
- smooth compact connected submanifolds have positive reach
- the reach of a is continuous on A
- for smooth manifolds A the inverse of the reach is bounded from below by the curvature of A
- can be generalized to subsets of Riemannian manifolds

Reach in pseudo-Riemannian space forms

Definition

Let $M \subset \mathcal{M}$ be negative definite of maximal dimension.
A unique closest point of M is a point $x \in \mathcal{M}$ such that there exists a unique point $z \in M$ with $(a ; x)=\inf _{z^{\prime} \in M} d\left(x, z^{\prime}\right)$.
The reach of a point $z \in M$ is the largest $r \geq 0$ such that the open ball $B_{r}^{\circ}(z)$ around z in the normal submanifold to M at z consists of unique closest points.
The reach of M is the infimum over $z \in M$ of the reach of z.

Main result

Theorem
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and F a self-concordant barrier on K with parameter ν.
The corresponding Lagrangian submanifold $\Gamma(\mathcal{D}) \subset \mathbb{R}^{n} \times \mathbb{R}_{n}$ has reach $\nu^{-1 / 2}$.
The corresponding Lagrangian submanifold in $\mathbb{R} P^{n-1} \times \mathbb{R} P_{n-1}$ has reach $\arccos \sqrt{\frac{\nu-1}{\nu}}$.
in particular, in a tube of corresponding radius scaling points defined via the nearest point on the graph $\Gamma(\mathcal{D})$ exist and are unique

Thank you

