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Regular convex cones

De�nition
A regular convex cone K ⊂ Rn is a closed convex cone having
nonempty interior and containing no lines.

The dual cone

K ∗ = {s ∈ Rn | 〈x , s〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.

the dual cone is located in the dual vector space



Automorphisms

De�nition
Let K ⊂ Rn be a regular convex cone. An automorphism of K is a
linear map A : Rn → Rn such that A[K ] = K .

an automorphism A of K induces an automorphism B = A−T of
K ∗ which preserves the dual pairing:

〈A(x),B(s)〉 = 〈x , s〉



Conic programs

De�nition
A conic program over a regular convex cone K ⊂ Rn is an
optimization problem of the form

min
x∈K
〈c , x〉 : Ax = b.

every convex program can be transformed into a conic program

the dual program
max

s=−(AT z−c)∈K∗
〈b, z〉

is a conic program over the dual cone

primal-dual methods solve both problems simultaneously



Logarithmically homogeneous barriers

De�nition (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone. A (self-concordant
logarithmically homogeneous) barrier on K is a smooth function
F : K o → R on the interior of K such that

I F (αx) = −ν logα + F (x) (logarithmic homogeneity)

I F ′′(x) � 0 (convexity)

I limx→∂K F (x) = +∞ (boundary behaviour)

I |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)

for all tangent vectors h at x .
The homogeneity parameter ν is called the barrier parameter.

the Hessian F ′′ de�nes a Riemannian metric on the interior K o of K



Dual barrier

Theorem (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone and F : K o → R a barrier on

K with parameter ν. Then the Legendre transform

F ∗(p) = sup
x∈K

(〈x ,−p〉 − F (x))

is a barrier on K ∗ with parameter ν.

the map D : x 7→ p = −F ′(x) is an isometry between K o and
(K ∗)o with respect to the Hessian metrics de�ned by F ′′, (F ∗)′′

we have 〈x ,D(x)〉 = ν



Central path

consider the a�ne subspace A = {(x , s) |Ax = b, s = c − AT z}

the intersection A∩ (K ×K ∗) is the set of primal-dual feasible pairs

the set {(x , s) ∈ A ∩ (K × K ∗)o | ∃ µ > 0 : s = µD(x)} is called
the central path and can be parameterized by µ
note 〈x , s〉 = µν on the central path

the conditions

(x , s) ∈ A ∩ (K × K ∗), 〈x , s〉 = 0

are su�cient for optimality
hence the central path tends to an optimal solution for µ→ 0

path-following methods make discrete steps in the vicinity of the
central path while advancing towards the solution



Symmetric cones

De�nition
A self-dual, homogeneous convex cone is called symmetric.

[Vinberg, 1960; Koecher, 1962] every symmetric cone is a product
of the following irreducible symmetric cones:

I Lorentz (or second order) cone

Ln =
{

(x0, . . . , xn−1) | x0 ≥
√
x21 + · · ·+ x2n−1

}
I matrix cones S+(n), H+(n), Q+(n) of real, complex, or

quaternionic hermitian positive semi-de�nite matrices

I Albert cone O+(3) of octonionic hermitian positive
semi-de�nite 3× 3 matrices



Jordan algebras

De�nition
A commutative algebra J satisfying the condition

(x • x) • (x • y) = x • ((x • x) • y)

for all x , y ∈ J is called a Jordan algebra.
A Jordan algebra is Euclidean if

∑n
k=1 xk • xk = 0 implies xk = 0

for all k = 1, . . . , n.

the symmetric cones can be represented exactly as the cones of
squares K = {x • x | x ∈ J} of Euclidean Jordan algebras



Automorphisms and duality

for every w ∈ J the map

P(w) : x 7→ 2w • (w • x)− (w • w) • x

is a self-adjoint automorphism of K

the duality D is represented by the inverse: D(x) = x−1

in particular, the central path condition s = µD(x) becomes

x • s = µ · e

with e the identity element in J

Example: semi-de�nite matrix cone

X • Y =
XY + YX

2
, e = I , D(X ) = X−1



Programs over symmetric cones

conic programs over symmetric cones are e�ciently solvable by
interior-point methods [Nesterov, Nemirovski, 1994]

I linear programs (LP) over Rn
+ ∼ 106 variables

I conic quadratic programs (CQP) over Ln ∼ 104 variables

I semi-de�nite programs (SDP) over S+(n) ∼ 102 variables

structure can greatly increase tractable sizes

free (CLP, SDPT3, SeDuMi, SDPA, ...) and commercial (CPLEX,
MOSEK, ...) solvers available



Self-scaled barriers

De�nition
Let K ⊂ Rn be a regular convex cone, let K ∗ be its dual cone, let
F be a self-concordant barrier on K with parameter ν, and let F ∗

be the dual barrier on K ∗. Then F is called self-scaled if for every
x ,w ∈ K o we have

s = F ′′(w)x ∈ intK ∗, F ∗(s) = F (x)− 2F (w)− ν.

A cone K admitting a self-scaled barrier is called self-scaled cone.

Hauser, Güler, Lim, Schmieta 1998 � 2002:

I self-scaled cone ⇔ symmetric cone

I self-scaled barriers on products are sums of self-scaled barriers
on irreducible components

I self-scaled barriers on irreducible cones are log-determinants



Scalings

let F be a self-scaled barrier on a symmetric cone

for every (x , s) ∈ (K × K ∗)o there exists a unique scaling point
w ∈ K o such that

F ′′(w)x = s

equivalently, there exists a self-adjoint automorphism A = P(w−1)
of K with induced automorphism B = A−T = P(w) of K ∗ such
that

B(s) = A(x)

Nesterov-Todd type methods proceed from one primal-dual iterate
(x , s) to the next by solving a linearized version of the system

[P(w−1)](x) • [P(w)](s) = µ · e

while staying in A ∩ (K × K ∗)o



Geometric interpretation

M = {(x , s) | ∃ µ > 0 : s = µD(x)}
ML is a linear approximation of M at (w ,w−1)
dimA = n, dimM = n + 1



Generalization to non self-scaled barriers?

the geometric interpretation works independently of the self-scaled
property

provided we �nd an adequate generalization of the scaling point w
corresponding to a primal-dual pair (x , s)



Scaling point as geodesic mean

the graph Γ(D) of the duality map inherits the metric of F ′′ on K o

the point (w ,D(w)) on Γ(D) is the geodesic mean between the
projections (x ,D(x)), (D−1(s), s) of the primal-dual iterate (x , s)



Scaling point as nearest point

in order for the linear approximation to be accurate the scaling pair
(w ,D(w)) has to be close to the current iterate

in the product metric on (K × K ∗)o we have also to compute
geodesic lengths � di�cult



Product of dual pair of spaces

Is there a better choice of a metric in Rn × Rn?

neither the vector space Rn nor its dual Rn carry a canonical metric,
only a family of equivalent metrics which all lead to the same �at
a�ne connection

the product Rn × Rn has a lot more structure

I �at pseudo-Riemannian metric
G ((x , p); (y , q)) = 1

2(〈x , q〉+ 〈y , p〉)
I dist((x , p); (y , q)) = 〈x − y , p − q〉
I symplectic form ω((x , p); (y , q)) = 1

2(〈x , q〉 − 〈y , p〉)

Rn × Rn is a �at para-Kähler space form



Duality graph as Lagrangian submanifold

let D be the duality map of a self-concordant barrier with
parameter ν

I the duality graph Γ(D) is a Lagrangian submanifold of Rn×Rn

I the metric on Γ(D) equals ν times the submanifold metric
induced by Rn × Rn

I the curvature of Γ(D) is globally bounded by
√
ν

similar assertions hold when passing to the product
RPn−1 × RPn−1 of projective spaces

for self-scaled barriers in the projective setting the scaling pair is
indeed the nearest point in the pseudo-Riemannian metric of the
para-Kähler space



Existence of nearest point

obstacles for the existence of a nearest point:

I global: points far away on the submanifold are close in
ambient space

I local: curvature of the manifold



Reach property

De�nition (Federer 1959)

Let A ⊂ E be a subset of a Euclidean space.
A unique closest point of A is a point x ∈ E such that there exists
a unique point a ∈ A with ||x − a|| = d(x ,A).
The reach of a point a ∈ A is the largest r ≥ 0 such that the open
ball Bo

r (a) around a consists of unique closest points.
The reach of A is the in�mum over a ∈ A of the reach of a.

I A as in�nite reach if and only if A is closed convex

I smooth compact connected submanifolds have positive reach

I the reach of a is continuous on A

I for smooth manifolds A the inverse of the reach is bounded
from below by the curvature of A

I can be generalized to subsets of Riemannian manifolds



Reach in pseudo-Riemannian space forms

De�nition
Let M ⊂M be negative de�nite of maximal dimension.
A unique closest point of M is a point x ∈M such that there
exists a unique point z ∈ M with (a; x) = infz ′∈M d(x , z ′).
The reach of a point z ∈ M is the largest r ≥ 0 such that the open
ball Bo

r (z) around z in the normal submanifold to M at z consists
of unique closest points.
The reach of M is the in�mum over z ∈ M of the reach of z .



Main result

Theorem
Let K ⊂ Rn be a regular convex cone and F a self-concordant

barrier on K with parameter ν.
The corresponding Lagrangian submanifold Γ(D) ⊂ Rn × Rn has

reach ν−1/2.
The corresponding Lagrangian submanifold in RPn−1 × RPn−1 has

reach arccos
√

ν−1
ν .

in particular, in a tube of corresponding radius scaling points
de�ned via the nearest point on the graph Γ(D) exist and are
unique
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