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◮ Copositive cone
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◮ Automorphism group

Minimal zeros

◮ Simple properties
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◮ Minimal zeros with small supports

◮ Linear relations in trigonometric representation

◮ Classification in low dimensions



Copositive cone

Definition
A real symmetric n × n matrix A such that xTAx ≥ 0 for all
x ∈ R

n
+ is called copositive.

the set of all such matrices is a regular convex cone, the copositive
cone Cn

◮ many applications in optimization

◮ difficult to describe

related cones

◮ completely positive cone C∗
n

◮ sum Nn + S+
n of nonnegative and positive semi-definite cone

◮ doubly nonnegative cone Nn ∩ S+
n

C∗
n ⊂ Nn ∩ S+

n ⊂ Nn + S+
n ⊂ Cn



Extreme rays

Definition
Let K ⊂ R

n be a regular convex cone. An nonzero element u ∈ K

is called extreme if it cannot be decomposed into a sum of other
elements of K in a non-trivial manner. In other words, u = v + w

with v ,w ∈ K imply v = αu, w = βu for some α, β ≥ 0.

in [Hall, Newman 63] the extreme rays of Cn belonging to Nn +S+
n

have been described:

◮ the extreme rays of Nn: Eii and Eij + Eji

◮ rank 1 matrices A = xxT with x having both positive and
negative elements

the other extreme rays of Cn are called exceptional

Perspective goal: Describe the exceptional extreme rays of Cn.



Reduced rays

Definition (Diananda 62, Baumert 65)

A copositive matrix A ∈ Cn is called reduced if it cannot be
represented as a sum of a copositive and a nonnegative matrix in a
non-trivial manner. In other words, A = B + C with B ∈ Cn and
C ∈ Nn imply B = A and C = 0.

Lemma
Let A ∈ Cn be an extreme matrix. Then A is either reduced or

nonnegative.

exceptional extreme rays have to be reduced

[Hall, Newman 1963] reduced matrices satisfy Aij ≤
√

AiiAjj



Zero patterns

zero patterns helpful in the description of reducedness

Definition (Baumert 65)

Let A ∈ Cn be a copositive matrix. A nonzero nonnegative vector
u ∈ R

n
+ is called zero of A if uTAu = 0. The index set

supp u = {i | ui > 0} is called the support of u.
The set of supports of all zeros of A is called the zero pattern of A.

the zero pattern is a set of subsets of {1, . . . , n}

Theorem (Diananda 62)

Let A ∈ Cn be a copositive matrix, u a zero and I = supp u its

support.

Then the principal submatrix AI = (Aij)i ,j∈I is positive
semi-definite.



Size of supports

Lemma (Baumert 65)

Let A ∈ Cn be irreducible with respect to the cone of nonnegative

matrices. If there exists a zero u of A with | supp u| ≥ n − 1, then
A ∈ Sn

+.

zeros u of exceptional extreme copositive matrices with nonzero
diagonal satisfy 2 ≤ | supp u| ≤ n − 2



General reduced rays

Definition (Dür et al, 2013)

A copositive matrix A ∈ Cn is called reduced with respect to a
subset M ⊂ Sn if it cannot be in a non-trivial manner represented
as a sum A = B + C with B copositive and C ∈ M.

Lemma
Let A ∈ Cn be an extreme matrix. Then A is either reduced with

respect to Sn
+ +Nn or in Sn

+ +Nn.

exceptional extreme rays are reduced with respect to Sn
+ +Nn



Description of general irreducibility

Theorem (Dickinson, H. 2014)

Let A ∈ Cn. Then for a matrix B ∈ Sn there exists δ > 0 such that

A+ δB ∈ Cn if and only if uTBu ≥ 0 for all zeros u of A, and

(Bu)i ≥ 0 for all zeros u of A such that uTBu = 0 and all i such

that (Au)i = 0.

[Dickinson, H.: Considering copositivity locally (submitted)]



Automorphism group

the group R
n
++ acts on Cn by d : A 7→ diag(d)A diag(d)

for every A ∈ Cn, there exists a normalized A′ in the orbit of A
such that

diagA′ ∈ {0, 1}n

if diagA′ 6> 0, then diagA 6> 0 and A ∈ Cn−1 +Nn

we may assume diagA = 1 w.l.o.g.

the permutation group Sn acts on Cn by P : A 7→ PAPT

this action respects the property of being normalized with respect
to the action of Rn

++

these groups leave also Nn and S+
n invariant ⇒ they respect the

property of being reduced with respect to Nn + S+
n



Extreme rays in low dimensions

Theorem (Diananda 1962)

For n ≤ 4 the relation Cn = Sn
+ +Nn holds.

no exceptional extreme rays for n ≤ 4

Theorem (H., 2011)

Let A ∈ C5 be an exceptional extreme ray. Then A is in the orbit of

a T -matrix with ψ = (ψ1, . . . , ψ5) ∈ R
5
++ and ψ1 + · · ·+ ψ5 < π

or in the orbit of the Horm matrix with respect to the action of

Aut(C5).



T -matrices

a T -matrix is a matrix of the form

with ψ1, . . . , ψ5 ≥ 0 and
∑5

k=1 ψ ≤ π

the Horn matrix is of the form T (ψ) with ψ = 0



Approach:

Find necessary conditions on the minimal zero

pattern of matrices which are reduced with

respect to Sn
+.

For every pattern found, find the extremal
matrices corresponding to it.



Minimal zeros

Definition
A zero u of a copositive matrix A is called minimal if there exists no
zero v of A such that the inclusion supp v ⊂ supp u holds strictly.

Lemma
Let A ∈ Cn and let I ⊂ {1, . . . , n} be a nonempty index set. Then

the following are equivalent:

◮ A has a minimal zero with support I ,

◮ the principal submatrix AI is positive semi-definite with corank

1, and the generator of the kernel of AI can be chosen such

that all its elements are positive.



Consequences of a minimal zero

let A ∈ Cn and let u be a minimal zero of A with support I

◮ for every index subset such that J ⊂ I strictly, AJ ≻ 0

◮ the subvector uI of the zero generates the kernel of AI

◮ the minimal zero with support I is unique up to scaling

◮ I not comparable by inclusion to the support of any other
minimal zero

Corollary

The number of minimal zeros of a copositive matrix is finite up to

scaling.

convenient for treatment with combinatorial methods



Decomposition of zeros

Lemma
Let A ∈ Cn and let u be a zero of A with support I . Then the set of

zeros v of A with support supp v ⊂ I is a polyhedral cone, namely

vI is in the intersection of kerAI with the nonnegative orthant R
|I |
+ .

The extreme rays of this cone are generated exactly by the minimal

zeros v of A with supp v ⊂ I .

Corollary

Every zero of A can be represented as a convex combination of

minimal zeros.



Sufficient condition for minimality

Lemma
Let A ∈ Cn and u be a zero of A with support I . Suppose that AI

has a principal submatrix of size |I | − 1 which is positive definite.

Then u is a minimal zero.

sufficient if there exists a minimal zero v with support J 6⊂ I such
that |I \ J| = 1



Overlapping zeros

Theorem
Let A ∈ Cn and I ⊂ {1, . . . , n} an index set such that AI ≻ 0. Let
u1, . . . , um be zeros of A such that (supp ul) \ I = {k l} consists of

exactly one element, u1, . . . , um are mutually different modulo

scaling, and supp u1 ∩ I ⊂ · · · ⊂ supp um ∩ I for all

r = 1, . . . ,m − 1.
Then k1, . . . , km are mutually different, and u1, . . . , um are

minimal. If v is a zero of A with supp v ⊂ I ∪ {k1, . . . , km}, then
v =

∑m
i=1 αiu

i for some nonnegative scalars αi . If in addition v is

minimal, then v is proportional to one of the uk .

note: condition AI ≻ 0 guaranteed by existence of a minimal zero
u such that I ⊂ supp u strictly



Two overlapping zeros

Corollary

Let A ∈ Cn and u, v minimal zeros of A with supports supp u = I ,

supp v = J. Suppose |J \ I | = 1 consists of one element. Then

every zero w of A with support suppw ⊂ I ∪ J can be represented

as a convex conic combination w = αu + βv with α, β ≥ 0.

no minimal zeros w with suppw ⊂ I ∪ J other than u and v



Irreducibility with respect to Sn
+

Theorem
A copositive matrix A ∈ Cn is irreducible with respect to the cone

Sn
+ if and only if the linear span of the minimal zeros of A equals

R
n. Equivalently, the number of linearly independent minimal zeros

is at least n.

in particular, the number of minimal zeros is at least n



Supports of size 2

Lemma
Let A ∈ Cn with diagA = 1. Let u be a zero of A with

supp u = {i , j}.
Then u is minimal and ui = uj .

without loss of generality we may assume ui = uj = 1

Consequence: Aij = −1 if and only if {i , j} is a minimal zero
support
then Aik + Ajk ≥ 0 for all k

define αij =
1
π
arccos(−Aij)

for reduced matrices αij ∈ [0, 1] and above conditions become
αij = 0 (αij > 0) and αik + αjk ≥ 1



Supports of size 3

the set {A ∈ S+
3 | diagA = 1} is bounded by the Cayley surface

the element-wise map x 7→ 2
π
arcsin x transforms it into a

tetrahedron with the same vertices

define αij =
1
π
arccos(−Aij)

Corollary

Let A ∈ Cn be reduced with diagA = 1. Let u be a zero of A with

supp u = {i , j , k}. Then αij + αjk + αik = 1. If {i , j , k} does not

contain a minimal zero support, then αij + αjk + αik > 1.



MAXCUT polytope

Definition
The MAXCUT polytope MCn ⊂ Sn

+ is the convex hull of all
matrices A ∈ Sn

+ such that Aij ∈ {−1,+1} for all i , j = 1, . . . , n,
i.e., all matrices of the form vvT , v ∈ {−1,+1}n.

Lemma (Hirschfeld 2004; Goemans, Williamson 1995)

Let A ∈ Sn
+ be a positive semi-definite matrix with Aii = 1,

i = 1, . . . , n. Let B be the real symmetric n × n matrix defined

entry-wise by Bij = 2αij − 1 = 2
π
arcsinAij , i , j = 1, . . . , n. Then

B ∈ MCn.



Linear relations

Corollary

Let A ∈ Cn be reduced with diagA = 1. Let I ⊂ {1, . . . , n} be the

support of some minimal zero of A. Define

Bij = 2αij − 1 = 2
π
arcsinAij , B = (Bij).

Then BI ∈ MC|I |. If J ⊂ I strictly, then BJ ∈ relintMC |J|.

gives strict and nonstrict linear inequalities on αij

for every pairwise distinct indices i1, . . . , i5 ∈ {1, . . . , n} we have
∑

1≤j<k≤5 αij ik ≥ 4



Low dimensions

the number of equivalence classes (with respect to the action of
Sn) of minimal zero patterns of matrices A ∈ Cn which satisfy all
restrictions is

◮ 0 for n ≤ 4

◮ 2 for n = 5

◮ 44 for n = 6

◮ 12378 for n = 7

hence Cn cannot have exceptional extreme rays for n ≤ 4, proving
quickly Dianandas theorem



Cone C5

the two equivalence classes of minimal zero patterns have
representatives

{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}},

{{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {1, 4, 5}, {1, 2, 5}}

realized by the Horn form and the T -matrices, respectively

these are the exceptional extreme rays of C5



Cone C6

minimal zero patterns satisfying all necessary conditions



Website http://nadezhdaa.wix.com/copositiv



Example of family of extreme rays

the minimal zero pattern
{{1, 2, 3},{2, 3, 4},{3, 4, 5},{1, 4, 5},{1, 2, 5},{3, 4, 6},{1, 4, 6},{1, 2, 6}}
corresponds to the extremal matrices

with φ1, . . . , φ5 > 0,
∑5

i=1 φi < π, ξ ∈ (−φ3, φ2)
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