Weierstrass Institute for

Applied Analysis and Stochastics

## Canonical barriers on regular convex cones

Roland Hildebrand

## Outline

1 Conic optimization

- Definition

■ Logarithmically homogeneous barriers
■ Different barrier constructions

2 Geometric view on the canonical barrier
■ Splitting of Hessian metric
■ Para-Kähler space form
■ Barriers and Lagrangian submanifolds

3 3-dimensional cones

## Optimization problems

- ubiquitous in science and engineering

■ main division: convex vs. non-convex optimization problems
convex programs minimize objective function with respect to constraints

$$
\min _{x \in X} f(x)
$$

$f$ and $X$ are assumed convex
$X \subset \mathbb{R}^{n}$ is called the feasible set
examples

- linear programs (LP)
- second-order cone programs (SOCP)
- semi-definite programs (SDP)

■ geometric programs (GP)
properties

- duality theory
- global solutions

$f(x)$ can be assumed linear
otherwise minimize $t$ over the epigraph

Definition
A regular convex cone $K \subset \mathbb{R}^{n}$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$
K^{*}=\left\{y \in \mathbb{R}_{n} \mid\langle x, y\rangle \geq 0 \quad \forall x \in K\right\}
$$

of a regular convex cone $K$ is also regular.

## Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^{n}$ is an optimization problem of the form

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

every convex optimization problem can be written as a conic program

the feasible set is the intersection of $K$ with an affine subspace

$$
\min _{x}\left\langle c^{\prime}, x\right\rangle: A^{\prime} x+b^{\prime} \in K
$$

explicit parametrization

## Hidden non-convexity

Definition
A real symmetric $n \times n$ matrix $A$ such that $x^{T} A x \geq 0$ for all $x \in \mathbb{R}_{+}^{n}$ is called copositive.
the set of all such matrices is a regular convex cone, the copositive cone $\mathcal{C}_{n}$

## Theorem (Murty, Kabadi 1987)

Checking whether an $n \times n$ integer matrix is not copositive is NP-complete.

## Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic objective function can be written as a copositive program

$$
\min _{x \in \mathcal{C}_{n}}\langle c, x\rangle: \quad A x=b
$$

## Definition (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on $K$ is a smooth function $F: K^{o} \rightarrow \mathbb{R}$ on the interior of $K$ such that

■ $F(\alpha x)=-\nu \log \alpha+F(x)$ (logarithmic homogeneity)

- $F^{\prime \prime}(x) \succ 0$ (convexity)
- $\lim _{x \rightarrow \partial K} F(x)=+\infty$ (boundary behaviour)
- $\left|F^{\prime \prime \prime}(x)[h, h, h]\right| \leq 2\left(F^{\prime \prime}(x)[h, h]\right)^{3 / 2}$ (self-concordance)
for all tangent vectors $h$ at $x$.
The homogeneity parameter $\nu$ is called the barrier parameter.


## Theorem (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a barrier on $K$ with parameter $\nu$. Then the Legendre transform $F^{*}$ is a barrier on $-K^{*}$ with parameter $\nu$.

- the map $x \mapsto F^{\prime}(x)$ takes the level surfaces of $F$ to the level surfaces of $F^{*}$

■ the map $x \mapsto-F^{\prime}(x)$ is an isometry between $K^{o}$ and $\left(K^{*}\right)^{o}$ with respect to the Hessian metrics defined by $F^{\prime \prime},\left(F^{*}\right)^{\prime \prime}$
let $K \subset \mathbb{R}^{n}$ be a regular convex cone
let $F: K^{o} \rightarrow \mathbb{R}$ be a barrier on $K$
consider the conic program

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

for $\tau>0$, solve instead the unconstrained problem

$$
\min _{x \in \mathbb{R}^{n}} \tau\langle c, x\rangle+F(x): \quad A x=b
$$

- unique minimizer $x^{*}(\tau) \in K^{o}$ for every $\tau>0$
- solution depends continuously on $\tau$ (central path)

■ $x^{*}(\tau) \rightarrow x^{*}$ as $\tau \rightarrow \infty$
path-following methods:
alternate Newton steps and increments of $\tau$
the smaller the barrier parameter $\nu$, the faster we can increase $\tau$ safely

volume function $V: K^{o} \ni x \mapsto \operatorname{Vol}\left\{p \in K^{*} \mid\langle x, p\rangle<1\right\}$

## Universal barrier

Theorem (Nesterov, Nemirovski 1994)
There exists an absolute constant $c>0$ such that

$$
F(x)=c \log V(x)
$$

is a $(c \cdot n)$-self-concordant barrier on $K \subset \mathbb{R}^{n}$.

## Lemma (Güler 1996)

The universal barrier equals $c \log \varphi(x)$ up to an additive constant, where

$$
\varphi(x)=\int_{K^{*}} e^{-\langle x, p\rangle} d p
$$

is the characteristic function of the cone.

■ invariant under the action of $S L(\mathbb{R}, n)$

- fixed under unimodular automorphisms of $K$
- additive under the operation of taking products
- has barrier parameter $O(n)$
not invariant under duality


## Theorem (Bubeck, Eldan 2014)

Let $K \subset \mathbb{R}^{n}$ be a convex body (compact with non-empty interior). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
f(\theta)=\log \left(\int_{x \in K} e^{\langle\theta, x\rangle} d x\right)
$$

Then the Fenchel dual $f^{*}: K^{o} \rightarrow \mathbb{R}$ defined by $f^{*}(x)=\sup _{\theta \in \mathbb{R}^{n}}\langle\theta, x\rangle-f(\theta)$ is a $\left(1+\varepsilon_{n}\right) \cdot n$-self-concordant barrier on $K$, with $\varepsilon_{n} \leq 100 \sqrt{\frac{\log n}{n}}$, for any $n \geq 80$.
originally defined for convex bodies, but can be extended to cones by homogenization main ingredient of proof: Brunn-Minkowski inequality

- invariant under the action of $S L(\mathbb{R}, n)$
- fixed under unimodular automorphisms of $K$
- additive under the operation of taking products
- has barrier parameter $n+O(\log n \sqrt{n})$
not invariant under duality
homogeneous cones:
if the automorphism group of $K$ acts transitively on $K^{o}$, then $K$ is called homogeneous homogeneous cones are related to $T$-algebras and a rank can be associated with them [Vinberg 1962]


## Lemma (Güler, Tunçel 1998)

Let $K$ be a homogeneous convex cone with rank $r$.
Then the optimal barrier parameter on $K$ equals $r$.
cones with corners:

Lemma (Nesterov, Nemirovski 1994)
Let $K$ be a regular convex cone, $z \in \partial K, U \subset \mathbb{R}^{n}$ a neighbourhood of $z, A_{1}, \ldots, A_{k} \subset \mathbb{R}^{n}$ closed affine half-spaces with $z \in \partial A_{i}$ for all $i$ such that the normals to the half-spaces at $z$ are linearly independent and the intersection $U \cap K$ equals the intersection $U \cap A_{1} \cap \cdots \cap A_{k}$. Then a lower bound on the barrier parameter of any barrier on $K$ is given by $\nu_{*}=k$.

consider a non-degenerate convex hypersurface in $\mathbb{R}^{n}$

the affine normal is the tangent to the curve made of the gravity centers of the sections a (proper) affine hypersphere is a hypersurface such that all affine normals meet at a point for a hyperbolic affine hypersphere the affine normals meet outside of the convex hull
hyperbolic affine hyperspheres:

- equi-affinely invariant
- solutions to a certain Monge-Ampère equation
- invariant under the conormal map
- Ricci curvature is non-positive (Calabi 1972)

Theorem (Calabi conjecture; Fefferman 76, Cheng-Yau 86, Li 90, and others)
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then there exists a unique foliation of $K^{o}$ by a homothetic family of affine complete and Euclidean complete hyperbolic affine hyperspheres which are asymptotic to $\partial K$.

Every affine complete, Euclidean complete hyperbolic affine hypersphere is asymptotic to the boundary of a regular convex cone.

## Theorem (H., 2014; independently D. Fox, 2015)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then there exists a logarithmically homogeneous self-concordant barrier $F$ on $K^{o}$ with parameter $\nu=n$ such that the level surfaces of $F$ are hyperbolic affine hyperspheres.
this barrier is called the canonical barrier main idea of proof:
use non-positivity of the Ricci curvature

$$
4 F_{, i j} \succeq F^{, u v} F^{, r s} F_{, i u r} F_{, j v s}
$$

convex solution of the PDE

$$
\log \operatorname{det} F^{\prime \prime}=2 F,\left.\quad F\right|_{\partial K}=+\infty
$$

already conjectured by O . Güler

- invariant under the action of $S L(\mathbb{R}, n)$
- fixed under unimodular automorphisms of $K$
- additive under the operation of taking products
- has barrier parameter $n$
- invariant under duality

| Property | Universal barrier | Entropic barrier | Canonical barrier |
| :---: | :---: | :---: | :---: |
| $S L(\mathbb{R}, n)$-invariance | Yes | Yes | Yes |
| Aut $(K)$-invariance | Yes | Yes | Yes |
| product additivity | Yes | Yes | Yes |
| parameter | $O(n)$ | $n+O(\log n \sqrt{n})$ | $n$ |
| duality | No | No | Yes |
| computability | No | No | No |

for $K \subset \mathbb{R}^{3}$ with non-trivial automorphism group, the canonical barrier is given generically by elliptic integrals (H., 2014)
for homogeneous cones all three constructions coincide

## Outline

1 Conic optimization

- Definition

■ Logarithmically homogeneous barriers
■ Different barrier constructions

2 Geometric view on the canonical barrier
■ Splitting of Hessian metric
■ Para-Kähler space form
■ Barriers and Lagrangian submanifolds

3 3-dimensional cones

## Splitting theorem

Theorem (Tsuji 1982; Loftin 2002)
Let $K \subset \mathbb{R}^{n+1}$ be a regular convex cone, and $F: K^{o} \rightarrow \mathbb{R}$ a locally strongly convex logarithmically homogeneous function.
Then the Hessian metric on $K^{o}$ splits into a direct product of a radial 1-dimensional part and a transversal $n$-dimensional part. The submanifolds corresponding to the radial part are rays, the submanifolds corresponding to the transversal part are level surfaces of $F$.
all nontrivial information contained in the transversal part


X

## Projective images of cones

let $\mathbb{R} P^{n}, \mathbb{R} P_{n}$ be the primal and dual real projective space - lines and hyperplanes through the origin of $\mathbb{R}^{n+1}$
let $F: K^{o} \rightarrow \mathbb{R}$ be a barrier on a regular convex cone $K \subset \mathbb{R}^{n+1}$
the canonical projection $\Pi: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} P^{n}$ maps $K \backslash\{0\}$ to a compact convex subset $C \subset \mathbb{R} P^{n}$
the canonical projection $\Pi^{*}: \mathbb{R}_{n+1} \backslash\{0\} \rightarrow \mathbb{R} P_{n}$ maps $K^{*} \backslash\{0\}$ to a compact convex subset $C^{*} \subset \mathbb{R} P_{n}$
the interiors of $C, C^{*}$ are isomorphic to the transversal factors of $K^{o},\left(K^{*}\right)^{o}$ and acquire the metric of these factors

passing to the projective space removes the radial factor

## Theorem

Let $K \subset \mathbb{R}^{n+1}, n \geq 2$, a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a logarithmically homogeneous locally strongly convex function with homogeneity parameter $\nu$. Then $F$ is self-concordant if and only if

$$
\left|F^{\prime \prime \prime}(x)[h, h, h]\right| \leq 2 \frac{\gamma}{\sqrt{\nu}}\left(F^{\prime \prime}(x)[h, h]\right)^{3 / 2}
$$

for all tangent vectors $h$ which are parallel to the level surfaces of $F$. Here $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$.
this is a condition on the transversal factor only

## Corollary

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone, and $n \geq 3$. Let $F: K^{o} \rightarrow \mathbb{R}$ be a self-concordant barrier on $K$. Then $F$ has parameter $\nu \geq 2$, with equality if and only if $K$ is the Lorentz cone and $F$ the canonical barrier on $K$.

## Product of projective spaces

between elements of $\mathbb{R} P^{n}, \mathbb{R} P_{n}$ there is no scalar product, but an orthogonality relation the set

$$
\mathcal{M}=\left\{(x, p) \in \mathbb{R} P^{n} \times \mathbb{R} P_{n} \mid x \not \perp p\right\}
$$

is dense in $\mathbb{R} P^{n} \times \mathbb{R} P_{n}$

$$
\partial \mathcal{M}=\left\{(x, p) \in \mathbb{R} P^{n} \times \mathbb{R} P_{n} \mid x \perp p\right\}
$$

is a submanifold of $\mathbb{R} P^{n} \times \mathbb{R} P_{n}$ of codimension 1

## Theorem (Gadea, Montesinos Amilibia 1989)

The space $\mathcal{M}$ is a para-Kähler space form, it carries a natural para-Kähler structure with constant sectional curvature.
para-Kähler manifold:

- even dimension
- pseudo-metric of neutral signature
- symplectic structure satisfying $\nabla \omega=0$

■ para-complex structure $J$ satisfying $g(X, Y)=\omega(J X, Y)$
$J$ is an involution of $T_{x} \mathcal{M}$ with the $\pm 1$ eigenspaces forming $n$-dimensional integrable distributions

$x_{1}, x_{2}, x_{3}, x_{4}$ points on the projective line $\mathbb{R} P^{1}$

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\frac{\left(x_{1}-x_{3}\right)\left(x_{2}-x_{4}\right)}{\left(x_{2}-x_{3}\right)\left(x_{1}-x_{4}\right)}
$$

[Ariyawansa, Davidon, McKennon 1999]: instead of 4 collinear points use 2 points and 2 dual points

$\left(u, x^{\prime} ; u^{\prime}, x\right)$ - quadra-bracket of $x, p, x^{\prime}, p^{\prime}$
let $z=(x, p), z^{\prime}=\left(x^{\prime}, p^{\prime}\right) \in \mathcal{M} \subset \mathbb{R} P^{n} \times \mathbb{R} P_{n}$
define a symmetric function $(\cdot ; \cdot): \mathcal{M} \times \mathcal{M} \rightarrow \mathbb{R}$ by

$$
\left(z ; z^{\prime}\right)=\left(z^{\prime} ; z\right):=\left(u, x^{\prime} ; u^{\prime}, x\right)
$$

$\left(z ; z^{\prime}\right)$ is the only projective invariant of a pair of points in $\mathcal{M}$
$\lim _{z \rightarrow \partial \mathcal{M}}\left(z ; z^{\prime}\right)= \pm \infty$
the pseudo-metric $g$ on $\mathcal{M}$ is such that
■ If $\left(z ; z^{\prime}\right)>0$, then the velocity vector of the geodesic linking $z, z^{\prime}$ has positive square and $d\left(z, z^{\prime}\right)=\arcsin \sqrt{\left(z ; z^{\prime}\right)}$.
■ If $\left(z ; z^{\prime}\right)=0$ the geodesic linking $z, z^{\prime}$ is light-like.

- If $\left(z ; z^{\prime}\right)<0$, then the velocity vector of the geodesic linking $z, z^{\prime}$ has negative square and $d\left(z, z^{\prime}\right)=\operatorname{arcsinh} \sqrt{-\left(z ; z^{\prime}\right)}$.
the tangent space to $\mathcal{M}$ at $z=(x, p) \in \mathcal{M}$ is a direct product of two subspaces which are parallel to the factors $\mathbb{R} P^{n}, \mathbb{R} P_{n}: h=\left(h_{x}, h_{p}\right)$
the para-complex structure $J: T \mathcal{M} \rightarrow T \mathcal{M}$ acts by $h=\left(h_{x}, h_{p}\right) \mapsto\left(h_{x},-h_{p}\right)$


$$
\begin{aligned}
& \mathbb{R} P^{1} \sim S^{1} \\
& \mathbb{R} P^{1} \times \mathbb{R} P_{1} \sim T^{2} \\
& \mathbb{R} P^{1} \text { parameterized by } \phi \\
& \mathbb{R} P_{1} \text { parameterized by } \xi \\
& (\phi, \xi) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right)^{2} \\
& \partial \mathcal{M}=\left\{(\phi, \xi) \left\lvert\, \xi=\phi \pm \frac{\pi}{2}\right.\right\} \\
& \partial \mathcal{M} \sim S^{1} \\
& \mathcal{M} \sim S^{1} \times \mathbb{R} \\
& g=\cos ^{-2}(\phi-\xi) d \phi d \xi
\end{aligned}
$$

the canonical projection $\Pi \times \Pi^{*}:\left(\mathbb{R}^{n+1} \backslash\{0\}\right) \times\left(\mathbb{R}_{n+1} \backslash\{0\}\right) \rightarrow \mathbb{R} P^{n} \times \mathbb{R} P_{n}$ maps the set

$$
\Delta_{K}=\left\{(x, p) \in(\partial K \backslash\{0\}) \times\left(\partial K^{*} \backslash\{0\}\right) \mid x \perp p\right\}
$$

to a set $\delta_{K} \subset \partial \mathcal{M}$

## Lemma

The projections $\pi, \pi^{*}$ of $\mathbb{R} P^{n} \times \mathbb{R} P_{n}$ to the factors map $\delta_{K}$ onto $\partial C$ and $\partial C^{*}$, respectively. If $K$ is smooth, then $\delta_{K}$ is homeomorphic to $S^{n-1}$.
call $\delta_{K}$ the boundary frame corresponding to the cone $K$

the boundary frame $\delta_{K}$ consists of pairs $z=(x, p) \in \partial \mathcal{M}$ where

- the line $x$ contains a ray in $\partial K$
- $p$ is a supporting hyperplane at $x$

the boundary frame of a 2-dimensional cone consists of 2 points which can be linked by a (complete) geodesic with negative squared velocity
let $K \subset \mathbb{R}^{n+1}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a barrier on $K$ the bijection $x \mapsto-F^{\prime}(x)$ factors through to an isometry between $C^{o}$ and $\left(C^{*}\right)^{o}$

$$
\begin{array}{ccc}
K^{o} & \xrightarrow{-F^{\prime}} & \left(K^{*}\right)^{o} \\
\Pi \downarrow & & \Pi^{*} \downarrow \\
C^{o} \sim K^{o} / \mathbb{R}_{+} & \xrightarrow{\mathcal{I}_{F}} & \left(C^{*}\right)^{o} \sim\left(K^{*}\right)^{o} / \mathbb{R}_{+}
\end{array}
$$


define the smooth submanifold $M_{F}$ as the graph of the isometry $\mathcal{I}_{F}$
$M_{F}=\Pi \times \Pi^{*}\left[\left\{\left(x,-F^{\prime}(x)\right) \mid x \in K^{o}\right\}\right] \subset \mathcal{M}$
$\operatorname{dim} M_{F}=n=\frac{1}{2} \operatorname{dim} \mathcal{M}$

the manifold $M_{F}$ consists of pairs $(x, p)$ where
■ $x$ is a line through a point $y \in K^{o}$

- $p$ is parallel to the hyperplane which is tangent to the level surface of $F$ at $y$
if $y \rightarrow \hat{y} \in \partial K$, then $p$ tends to a supporting hyperplane at $\hat{y}$
let $M \subset \mathcal{M}$ be a submanifold of a (pseudo-)Riemannian space
choose a point $x \in M$ and a tangent vector $h \in T_{x} M$
consider the geodesics $\gamma_{M}, \gamma_{\mathcal{M}}$ in $M$ and in $\mathcal{M}$ through $x$ with velocity $h$
there is a second-order deviation

$$
\gamma_{M}(t)-\gamma_{\mathcal{M}}(t)=\left(\left.\frac{d^{2}}{d t^{2}}\right|_{t=0}\left(\gamma_{M}-\gamma_{\mathcal{M}}\right)\right) \cdot \frac{t^{2}}{2}+O\left(t^{3}\right)
$$

whose main term depends quadratically on $h$
the acceleration is called the second fundamental form $I I$ of $M$
$I I_{x}: T_{x} M \times T_{x} M \rightarrow\left(T_{x} M\right)^{\perp}$

the second fundamental form measures the deviation of $M$ from a geodesic submanifold
it is also called the extrinsic curvature

Theorem (H., 2011)
Let $F: K^{o} \rightarrow \mathbb{R}$ be a barrier on a regular convex cone $K \subset \mathbb{R}^{n+1}$ with parameter $\nu$. The manifold $M_{F} \subset \mathbb{R} P^{n} \times \mathbb{R} P_{n}$ is

- a nondegenerate Lagrangian submanifold of $\mathcal{M}$
- bounded by $\delta_{K}$ in $\mathbb{R} P^{n} \times \mathbb{R} P_{n}$
- its induced metric is $-\nu$ times the metric generated by $C^{o},\left(C^{*}\right)^{o}$
- its second fundamental form II satisfies

$$
F^{\prime \prime \prime}\left[h, h, h^{\prime}\right]=2 \omega\left(I I(\tilde{h}, \tilde{h}), \tilde{h}^{\prime}\right)
$$

for all vectors $h, h^{\prime}$ tangent to the level surfaces of $F$ and their images $\tilde{h}, \tilde{h}^{\prime}$ on the tangent bundle $T M_{F}$.

## Corollary

Let $K \subset \mathbb{R}^{n+1}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a locally strongly convex logarithmically homogeneous function with parameter $\nu$.
Then $F$ is self-concordant if and only if the Lagrangian submanifold $M_{F} \subset \mathcal{M}$ has its second fundamental form bounded by $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$.
the barrier parameter determines how close $M_{F}$ is to a geodesic submanifold


- complete negative definite Lagrangian submanifold
- bounded by $\delta_{K}$

■ second fundamental form bounded by $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$

Definition
Let $\mathcal{M}$ be a pseudo-Riemannian manifold. Then $M \subset \mathcal{M}$ is a minimal submanifold if $M$ is a stationary point of the volume functional with respect to variations with compact support.
a submanifold is minimal if and only if its mean curvature vanishes identically

## Theorem (H., 2011)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ be a barrier on $K$.
Then the submanifold $M_{F} \subset \mathcal{M}$ is minimal if and only if the level surfaces of $F$ are affine hyperspheres.
the canonical barrier is given by the unique minimal complete negative definite Lagrangian submanifold which can be inscribed in the boundary frame $\delta_{K} \subset \partial \mathcal{M}$

## Outline

1 Conic optimization

- Definition

■ Logarithmically homogeneous barriers
■ Different barrier constructions

2 Geometric view on the canonical barrier
■ Splitting of Hessian metric
■ Para-Kähler space form
■ Barriers and Lagrangian submanifolds

3 3-dimensional cones
for three-dimensional cones $K$ the submanifolds $M_{F}$ are two-dimensional hence $M_{F}$ is a complete non-compact simply connected Riemann surface

Uniformization theorem: Every simply connected Riemann surface is conformally equivalent to either the unit disc $\mathbb{D}$, or the complex plane $\mathbb{C}$, or the Riemann sphere $S$, equipped with either the hyperbolic metric, or the flat (parabolic) metric, or the spherical (elliptic) metric, respectively.
due to Klein, Riemann, Schwarz, Koebe, Poincaré, Hilbert, Weyl, Radó ... 1880-1920

- there exists an oriented atlas of charts on $M_{F}$ such that $h=e^{2 \phi}\left(d x_{1}^{2}+d x_{2}^{2}\right)$

■ each chart parameterized by one complex parameter $z=x_{1}+i x_{2}, h=e^{2 \phi}|d z|^{2}$

- transition maps holomorphic (conformal + oriented $=$ holomorphic)

■ global chart with values in $\mathbb{D}, \mathbb{C}$, or $S$ exists and is unique up to automorphisms
$\square \mathbb{D}: h=e^{2 \tilde{\phi}} \frac{4|d z|^{2}}{\left(1-|z|^{2}\right)^{2}}$ with $\tilde{\phi}$ uniquely defined scalar field on $M_{F}$
■ $\mathbb{C}: h=e^{2 \tilde{\phi}}|d z|^{2}$ with $\tilde{\phi}$ scalar field defined up to additive constant
■ non-compactness of $M$ rules out elliptic case $S$
consider a conformal chart on $M_{F}$ such that $h=e^{2 \phi}\left(d x_{1}^{2}+d x_{2}^{2}\right)$
the cubic form $C=\nu^{-1} F^{\prime \prime \prime}$ can be decomposed as

$$
\left.C=\left[\begin{array}{cc}
\frac{3}{4} e^{2 \phi} T_{1}+U_{1} & \frac{1}{4} e^{2 \phi} T_{2}-U_{2} \\
\frac{1}{4} e^{2 \phi} T_{2}-U_{2} & \frac{1}{4} e^{2 \phi} T_{1}-U_{1}
\end{array}\right), \quad\left(\begin{array}{ll}
\frac{1}{4} e^{2 \phi} T_{2}-U_{2} & \frac{1}{4} e^{2 \phi} T_{1}-U_{1} \\
\frac{1}{4} e^{2 \phi} T_{1}-U_{1} & \frac{3}{4} e^{2 \phi} T_{2}+U_{2}
\end{array}\right)\right]
$$

$T$ is the Tchebycheff form and represents the trace part of $C$; define $E=\frac{1}{4}\left(T_{1}-i T_{2}\right)$ $U=U_{1}+i U_{2}$ is a cubic differential representing the trace-free part of $C, U(w)=U(z)\left(\frac{d z}{d w}\right)^{3}$ compatibility requirements on $\phi, C$ [Liu, Wang 1997]:
the form $T$ is closed with (real) potential $t$, then $E=\frac{1}{2} \frac{\partial t}{\partial z}$ and

$$
\begin{aligned}
\frac{\partial U}{\partial \bar{z}} & =e^{4 \phi} \frac{\partial}{\partial z}\left(e^{-2 \phi} E\right) \\
|U|^{2} & =2 e^{6 \phi}+e^{4 \phi}|E|^{2}-8 e^{4 \phi} \frac{\partial^{2} \phi}{\partial z \partial \bar{z}}
\end{aligned}
$$

here $\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right), \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{1}}+i \frac{\partial}{\partial x_{2}}\right)$
the barrier $F$ is canonical if and only if the Tchebycheff form $T$ vanishes: $E=0$ and $U$ holomorphic

## Canonical barriers

Theorem (follows from (Simon, Wang 1993))

- Let $K \subset \mathbb{R}^{3}$ be a regular convex cone. Then the canonical barrier on $K$ defines a unique complete canonical Riemannian metric $h=e^{2 \phi}|d z|^{2}$ on the Riemann surface $M_{F}$ and an associated holomorphic cubic differential $U$ satisfying the relation

$$
|U|^{2}=2 e^{6 \phi}-2 e^{4 \phi} \Delta \phi=2 e^{6 \phi}(1+\mathbf{K})
$$

where $\Delta$ is the ordinary Laplacian and $\mathbf{K}$ the Gaussian curvature.

- Every simply connected non-compact Riemann surface with complete metric $h=e^{2 \phi}|d z|^{2}$ and holomorphic cubic differential $U$ satisfying above relation defines a regular convex cone $K \subset \mathbb{R}^{3}$ with its canonical barrier.
- level surfaces of $F$ can be recovered from $(h, U)$ by solving a Cauchy initial value problem of a PDE
- [Simon, Wang 1993] gives a necessary and sufficient integrability condition on $\phi$

■ for given $\phi, U$ is determined up to a constant factor $e^{i \varphi}$

- for given $U$, there exists at most one solution $\phi$ (maximum principle)

■ symmetry group of $K=$ symmetry group of $(h, U)$ times homothety subgroup
[Dumas, Wolf 2015] polynomials $U$ of degree $k$ correspond to polyhedral cones $K$ with $k+3$ extreme rays $U=z^{k}$ corresponds to the cone over the regular $(k+3)$-gon
Riemann surface conformally equivalent to $\mathbb{C}$
[Wang 1997; Loftin 2001; Labourie 2007] holomorphic functions on compact Riemann surface of genus $g \geq 2$ form finite-dimensional space
each such function $U$ determines a unique metric $h$ on the surface and its universal cover
the corresponding cone $K$ has an automorphism group with cocompact action on the level surfaces on $F$ $\partial K$ is $C^{1}$, but in general nowhere $C^{2}$
Riemann surface conformally equivalent to $\mathbb{D}$

[Benoist, Hulin 2014] the following are equivalent:

- $k=\sup _{M_{F}} \mathbf{K}<0$
- $M_{F}$ is Gromov hyperbolic (geodesic triangles have bounded width)
- $\mathbb{R}_{+}^{3}$ is not in the closure of the orbit of $K$ under $S L(3, \mathbb{R})$
- $M_{F}$ is conformally equivalent to $\mathbb{D}$ and $U$ is bounded in the hyperbolic metric
- $\partial K$ is $C^{1}$ and quasi-symmetric


## Barrier parameter of canonical barrier

recall: the $\infty$-norm of the cubic form

$$
\gamma=\sup |C(x)[h, h, h]|: \quad x \in M, h \in T_{x} M,\|h\|=1
$$

relates to the barrier parameter $\nu$ of $F$ by

$$
\gamma=\frac{2(\nu-2)}{\sqrt{\nu-1}}, \quad \nu=\frac{\gamma^{2}+16+\gamma \sqrt{\gamma^{2}+16}}{8}
$$

## Lemma (Simon, Wang 1993)

Let $(h, U)$ be a compatible pair of a metric and a holomorphic cubic differential. Then
$|U|^{2}=2(\mathbf{K}+1) e^{6 \phi}$, where $\mathbf{K}$ is the Gaussian curvature, $-1 \leq \mathbf{K} \leq 0$.

## Corollary

Let $K \subset \mathbb{R}^{3}$ be a regular convex cone, $F$ the canonical barrier on it, and $(h, U)$ the metric and holomorphic cubic differential defined by $F$. Then

$$
\nu=\frac{k+9+\sqrt{(k+1)(k+9)}}{4}
$$

where $k=\sup _{M_{F}} \mathbf{K}$ is the supremum of the Gaussian curvature.

extreme cases:
■ $\mathbf{K} \equiv 0$ : flat metric, $K=\mathbb{R}_{+}^{3}$

- $\mathbf{K} \equiv-1$ : hyperbolic metric, $K=L_{3}$
generalize to arbitrary dimension

Cones with $\nu_{\text {opt }}=3$

Lemma (follows from (H., 2013; H., 2014))
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone such that $\mathbb{R}_{+}^{n}$ is in the closure of the orbit of $K$ under $S L(n, \mathbb{R})$. Then $\nu_{o p t}(K)=n$.

## Corollary

Let $K \subset \mathbb{R}^{3}$ be a regular convex cone. Then the following are equivalent:

- $\nu_{\text {opt }}(K)<3$
- $\nu_{\text {can }}(K)<3$

■ $k=\sup _{M_{F}} \mathbf{K}<0$

- $M_{F}$ is Gromov hyperbolic
- $\mathbb{R}_{+}^{3}$ is not in the closure of the orbit of $K$ under $S L(3, \mathbb{R})$
- $M_{F}$ is conformally equivalent to $\mathbb{D}$ and $U$ is bounded in the hyperbolic metric
- $\partial K$ is $C^{1}$ and quasi-symmetric

There is a 1-to-1 correspondence between such cones and bounded holomorphic cubic differentials $U$ on D.

## Open questions

Which cones allow barriers such that the corresponding Riemann surface is conformally equivalent to $\mathbb{C}$ ?

Which entire functions are cubic forms of an affine hypersphere?

Are there cones such that $\nu_{o p t}<\nu_{c a n} ?$ (for $n>3$ there are)

How to compute $\nu_{o p t}$ or $\nu_{c a n}$ from $K$ ?

Hildebrand R. Canonical barriers on convex cones. Math. Oper. Res. 39(3):841-850, 2014.

## Thank you!

