

Weierstrass Institute for Applied Analysis and Stochastics

Periodic discrete dynamical systems and copositive matrices with circulant zero patterns

Roland Hildebrand

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de SIGOPT Conference, Trier, April 6, 2016

1 Copositive matrices

- Approximations and extreme rays
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems
- Zero sets with circulant supports

Definition

A real symmetric $n \times n$ matrix A such that $x^T A x \ge 0$ for all $x \in \mathbb{R}^n_+$ is called copositive.

the set of all such matrices is a regular convex cone, the copositive cone \mathcal{C}_n

related cones

- sum $\mathcal{N}_n + \mathcal{S}_n^+$ of nonnegative and positive semi-definite cone
- doubly nonnegative cone $\mathcal{N}_n \cap \mathcal{S}_n^+$

$$\mathcal{C}_n^* \subset \mathcal{N}_n \cap \mathcal{S}_n^+ \subset \mathcal{N}_n + \mathcal{S}_n^+ \subset \mathcal{C}_n$$

 $\mathcal{N}_n + \mathcal{S}_n^+$ is an inner approximation of \mathcal{C}_n

Theorem (Murty, Kabadi 1987)

Checking whether an $n \times n$ integer matrix is not copositive is NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic objective function can be written as a copositive program

$$\min_{c \in \mathcal{C}_n} \langle c, x \rangle : \qquad Ax = b$$

the approximation $\mathcal{N}_n + \mathcal{S}_n^+$ is semi-definite representable

Theorem (Diananda 1962)

Let $n \leq 4$. Then the copositive cone C_n equals the sum of the nonnegative cone \mathcal{N}_n and the positive semi-definite cone S_n^+ .

the Horn form (discovered by Alfred Horn)

$$H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix}$$

is an example of a matrix in $\mathcal{C}_5 \setminus (\mathcal{N}_5 + \mathcal{S}_5^+)$

matrices in $\mathcal{C}_n \setminus (\mathcal{N}_n + \mathcal{S}_n^+)$ are called exceptional

Definition

Let $K \subset \mathbb{R}^n$ be a regular convex cone. An nonzero element $u \in K$ is called extreme if it cannot be decomposed into a non-trivial sum of linearly independent elements of K.

in [Hall, Newman 63] the extreme rays of \mathcal{C}_n belonging to $\mathcal{N}_n + \mathcal{S}_n^+$ have been described:

- the extreme rays of \mathcal{N}_n , generated by E_{ii} and $E_{ij} + E_{ji}$
- rank 1 matrices $A = xx^T$ with x having both positive and negative elements

in [Hoffman, Pereira 1973] the extreme elements of \mathcal{C}_n with entries in $\{-1,0,+1\}$ have been described

every feasible copositive program has an extremal solution

exceptional extreme rays of particular importance: their knowledge allows to check whether inner approximations of \mathcal{C}_n are exact

Theorem (H. 2012)

The extreme elements $A \in C_5 \setminus (N_5 + S_5^+)$ of C_5 are exactly the matrices $DPMP^TD$, where D is a diagonal positive definite matrix, P is a permutation matrix, and M is either the Horn form H or is given by a matrix

$$T = \begin{pmatrix} 1 & -\cos\psi_4 & \cos(\psi_4 + \psi_5) & \cos(\psi_2 + \psi_3) & -\cos\psi_3 \\ -\cos\psi_4 & 1 & -\cos\psi_5 & \cos(\psi_5 + \psi_1) & \cos(\psi_3 + \psi_4) \\ \cos(\psi_4 + \psi_5) & -\cos\psi_5 & 1 & -\cos\psi_1 & \cos(\psi_1 + \psi_2) \\ \cos(\psi_2 + \psi_3) & \cos(\psi_5 + \psi_1) & -\cos\psi_1 & 1 & -\cos\psi_2 \\ -\cos\psi_3 & \cos(\psi_3 + \psi_4) & \cos(\psi_1 + \psi_2) & -\cos\psi_2 & 1 \end{pmatrix},$$

where $\psi_k > 0$ for $k = 1, \dots, 5$ and $\sum_{k=1}^5 \psi_k < \pi$.

- the set of matrices $DPHP^TD$ has codimension 10
- the set of matrices $DPTP^TD$ has codimension 5

Zeros and zero patterns

let $A \in \mathcal{C}_n$ be a copositive matrix

- **a** non-zero vector $x \ge 0$ is called a zero of A if $x^T A x = 0$
- the set $\operatorname{supp} x = \{i \, | \, x_i > 0\}$ is called the support of x
- the set $\mathcal{V}_A = \{ \sup x \mid x \text{ is a zero of } A \}$ is called the zero pattern of A

Example: Horn form

$$A = H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix} : \quad x = \begin{pmatrix} a \\ a+b \\ b \\ 0 \\ 0 \end{pmatrix}, \quad a,b \ge 0, \\ a+b > 0$$

and cyclically permuted vectors

 \mathcal{V}_H consists of $\{1,2\},\{1,2,3\}$ and cyclically permuted sets

 $T = \begin{pmatrix} 1 & -\cos\psi_4 & \cos(\psi_4 + \psi_5) & \cos(\psi_2 + \psi_3) & -\cos\psi_3 \\ -\cos\psi_4 & 1 & -\cos\psi_5 & \cos(\psi_5 + \psi_1) & \cos(\psi_3 + \psi_4) \\ \cos(\psi_4 + \psi_5) & -\cos\psi_5 & 1 & -\cos\psi_1 & \cos(\psi_1 + \psi_2) \\ \cos(\psi_2 + \psi_3) & \cos(\psi_5 + \psi_1) & -\cos\psi_1 & 1 & -\cos\psi_2 \\ -\cos\psi_3 & \cos(\psi_3 + \psi_4) & \cos(\psi_1 + \psi_2) & -\cos\psi_2 & 1 \end{pmatrix}$

has zeros given by the columns of the matrix

$$\begin{pmatrix} \sin\psi_5 & 0 & 0 & \sin\psi_2 & \sin(\psi_3+\psi_4) \\ \sin(\psi_4+\psi_5) & \sin\psi_1 & 0 & 0 & \sin\psi_3 \\ \sin\psi_4 & \sin(\psi_1+\psi_5) & \sin\psi_2 & 0 & 0 \\ 0 & \sin\psi_5 & \sin(\psi_1+\psi_2) & \sin\psi_3 & 0 \\ 0 & 0 & \sin\psi_1 & \sin(\psi_2+\psi_3) & \sin\psi_4 \end{pmatrix}$$

and homothetic images

the zero pattern is $\mathcal{V}_T = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{4, 5, 1\}, \{5, 1, 2\}\}$

Minimal zeros

let $A \in \mathcal{C}_n$ be a copositive matrix

- a zero u of a A is called minimal if there exists no zero v of A such that the inclusion $\operatorname{supp} v \subset \operatorname{supp} u$ holds strictly
- the set $\mathcal{V}_{\min}(A) = \{ \operatorname{supp} x \, | \, x \text{ is a minimal zero of } A \}$ is called the minimal zero pattern of A

every zero of \boldsymbol{A} is a convex combination of minimal zeros

Lemma (H. 2014)

Let *A* be a copositive matrix, and let u, v be minimal zeros of *A* with supp u = supp v. Then u, v differ by a positive multiplicative factor.

In particular, the number of minimal zeros of A is finite up to homothety.

- Horn form: $\mathcal{V}_{\min}(H) = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 5\}, \{1, 5\}\}$
- T-matrices: $\mathcal{V}_{\min}(T) = \{\{1, 2, 3\}, \{2, 3, 4\}, \{3, 4, 5\}, \{4, 5, 1\}, \{5, 1, 2\}\}$

Generalization to higher dimensions?

1 Copositive matrices

- Approximations and extreme rays
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems
- Zero sets with circulant supports

Framework

scalar discrete-time time-variant dynamical system

$$x_{t+d} + \sum_{i=0}^{d-1} c_{t,i} x_{t+i} = 0, \quad t \ge 1$$

coefficients *n*-periodic, $c_{t+n,i} = c_{t,i}$

- solution space \mathcal{L} is d-dimensional, n > d
- \blacksquare \mathcal{L} can be parameterized by initial values x_1, \ldots, x_d
- if $c_{t,0} \neq 0$ for all t, then the system is time-reversible
- system may or may not have n-periodic solutions

let \mathcal{L}_{per} be the subspace of n-periodic solutions

Monodromy

let $x = (x_t)_{t \ge 1}$ be a solution

then $y = (x_{t+n})_{t \ge 1}$ is also a solution

Definition

The linear map $\mathfrak{M}: \mathcal{L} \to \mathcal{L}$ taking x to y is called the monodromy of the periodic system. Its eigenvalues are called Floquet multipliers.

\blacksquare x is periodic if and only if it is an eigenvector of \mathfrak{M} with eigenvalue 1

• det $\mathfrak{M} = (-1)^{nd} \prod_{t=1}^{n} c_{t,0}$

Evaluation functionals

let $x = (x_t)_{t \ge 1}$ be a solution

for every t, define a linear map \mathbf{e}_t by $\mathbf{e}_t(x) = x_t$

- \mathbf{e}_t belongs to the dual space \mathcal{L}^*
- $\bullet \mathbf{e}_{t+n} = \mathfrak{M}^* \mathbf{e}_t$
- $\mathbf{I} \mathbf{e}_1, \dots, \mathbf{e}_d$ span \mathcal{L}^*

 \mathbf{e}_t evolves according to

$$\mathbf{e}_{t+d} + \sum_{i=0}^{d-1} c_{t,i} \mathbf{e}_{t+i} = 0$$

- $\blacksquare\,$ a linear form on \mathcal{L}^* is a solution $x\in\mathcal{L}$
- **a** bilinear form on \mathcal{L}^* is a linear combination of tensor products $x\otimes y, x, y\in \mathcal{L}$
- **a** symmetric bilinear form on \mathcal{L} is a linear combination of $x \otimes x, x \in \mathcal{L}$

Definition

A symmetric bilinear form B on \mathcal{L}^* is called shift-invariant if

$$B(\mathbf{e}_{t+n}, \mathbf{e}_{s+n}) = B(\mathbf{e}_t, \mathbf{e}_s) \quad \forall t, s \ge 1$$

- B is shift-invariant if and only if $B(w,w') = B(\mathfrak{M}^*w,\mathfrak{M}^*w')$ for all $w,w' \in \mathcal{L}^*$
- $\blacksquare \ B = x \otimes x \text{ for } x \text{ periodic are shift-invariant}$

Zero sets with circulant supports

let $n \geq 5$ and let $\mathbf{u} = \{u^1, \dots, u^n\} \subset \mathbb{R}^n_+$ with

$$\sup u^{1} = \{1, 2, \dots, n-2\} =: I_{1}$$
$$\sup u^{2} = \{2, 3, \dots, n-1\} =: I_{2}$$
$$\vdots$$
$$\sup u^{n} = \{n, 1, \dots, n-3\} =: I_{n}$$

Problem: Characterize copositive matrices with zeros u^1, \ldots, u^n .

Definition

Let $A \in C_n$ be exceptional, and let u^1, \ldots, u^n be among its zeros. We call A regular if every zero of A is proportional to one of the zeros u^j . We call A degenerate if there are zeros of A which are not proportional to one of the zeros u^j .

- \blacksquare let $F_{\mathbf{u}}$ be the face of \mathcal{C}_n of matrices having u^1,\ldots,u^n among their zeros
- \blacksquare let $P_{\boldsymbol{u}}$ be the sub-face of positive semi-definite matrices

Matrices	Systems
zero subset u	periodic dynamical system ${f S}_{f u}$
copositive matrices $A \in F_{\mathbf{u}}$	bilinear symmetric forms $B\in\mathcal{F}_{\mathbf{u}}$ satisfying a certain LMI
entry A_{ij}	value $B(\mathbf{e}_i,\mathbf{e}_j)$ on evaluation functionals
subset $P_{\mathbf{u}}$ of positive semi-definite matrices	convex hull $\mathcal{P}_{\mathbf{u}}$ of $\{x\otimes x x\in\mathcal{L}_{per}\}$
regular matrices	positive definite forms
degenerate matrices	corank 1 positive semi-definite forms

- Horn form *H* is the prototype of the degenerate matrices
- T-matrices are the prototype of the regular matrices

Dynamical system $\mathbf{S}_{\mathbf{u}}$

to a collection ${\bf u}$ of nonnegative vectors u^1,\ldots,u^n with ${\rm supp}\, u^k=I_k$ associate the *n*-periodic dynamical system ${f S}_{{\bf u}}$ given by

$$\sum_{i=0}^{d} c_{t,i} x_{t+i} = 0$$

with $c_t = (u^t)_{I_t}, t = 1, \dots, n$

- order d = n 3
- system is time-reversible
- all coefficients are positive
- $\blacksquare \det \mathfrak{M} = \prod_{j=1}^n u_j^j / u_{j+d}^j > 0$

Symmetric bilinear forms

Lnibriz

let $\mathcal{A}_{\mathbf{u}}\subset\mathcal{S}_n$ be the linear subspace of symmetric $n\times n$ matrices A satisfying $(Au^k)_{I_k}=0$

to every $A\in\mathcal{A}_{\mathbf{u}}$ associate a symmetric bilinear form B on the dual solution space \mathcal{L}^* by

$$B(\mathbf{e}_t, \mathbf{e}_s) = A_{ts}, \qquad t, s = 1, \dots, d$$

let $\Lambda: A \mapsto B$ be the corresponding linear map

 Λ maps quadratic forms on \mathbb{R}^n to quadratic forms on \mathbb{R}^d

Lemma

The linear map Λ is injective and its image consists of those shift-invariant symmetric bilinear forms B which satisfy

$$B(\mathbf{e}_t, \mathbf{e}_s) = B(\mathbf{e}_{t+n}, \mathbf{e}_s) \qquad \forall t, s \ge 1 : \ 3 \le s - t \le n - 3$$

• the image of Λ may be $\{0\}$

effectively finite number of linear conditions

Theorem

Let $\mathcal{F}_{\mathbf{u}}$ be the set of positive semi-definite shift-invariant symmetric bilinear forms B on $\mathcal{L}_{\mathbf{u}}^*$ satisfying the linear equality relations

 $B(\mathbf{e}_t, \mathbf{e}_s) = B(\mathbf{e}_{t+n}, \mathbf{e}_s), \quad 1 \le t < s \le n : 3 \le s - t \le n - 3$

and the linear inequalities

$$B(\mathbf{e}_t, \mathbf{e}_{t+2}) \ge B(\mathbf{e}_{t+n}, \mathbf{e}_{t+2}), \qquad t = 1, \dots, n.$$

Then the face of C_n defined by the zeros u^j , j = 1, ..., n, is given by $F_{\mathbf{u}} = \Lambda^{-1}[\mathcal{F}_{\mathbf{u}}]$.

Let $\mathcal{P}_{\mathbf{u}}$ be the convex hull of the tensor products $x \otimes x, x \in \mathcal{L}_{per}$. Then $\mathcal{P}_{\mathbf{u}} \subset \mathcal{F}_{\mathbf{u}}$, and $P_{\mathbf{u}} = \Lambda^{-1}[\mathcal{P}_{\mathbf{u}}]$.

Corollary

Given a vector set $\mathbf{u} = \{u^1, \ldots, u^n\} \subset \mathbb{R}^n_+$, the face $F_{\mathbf{u}}$ of the copositive cone \mathcal{C}_n which consists of matrices having u^1, \ldots, u^n as zeros is semi-definite representable.

$n=5, d=2, {f u}$ given by columns of

$\sin \psi_5$	0	0	$\sin \psi_2$	$\sin(\psi_3 + \psi_4)$
$\sin(\psi_4\!+\!\psi_5)$	$\sin\psi_1$	0	0	$\sin \psi_3$
$\sin\psi_4$	$\sin(\psi_1\!+\!\psi_5)$	$\sin \psi_2$	0	0
0	$\sin \psi_5$	$\sin(\psi_1\!+\!\psi_2)$	$\sin\psi_3$	0
\ 0	0	$\sin \psi_1$	$\sin(\psi_2 + \psi_3)$	$\sin \psi_A$

linearly independent solutions of the associated dynamical system are given by

$$x^{1} = (1, -\cos\psi_{4}, \cos(\psi_{4} + \psi_{5}), -\cos(\psi_{4} + \psi_{5} + \psi_{1}), \cos(\psi_{4} + \psi_{5} + \psi_{1} + \psi_{2}), \dots)$$

$$x^{2} = (0, \sin\psi_{4}, -\sin(\psi_{4} + \psi_{5}), \sin(\psi_{4} + \psi_{5} + \psi_{1}), -\sin(\psi_{4} + \psi_{5} + \psi_{1} + \psi_{2}), \dots)$$

the *T*-matrix corresponds to positive definite bilinear form $B = \Lambda(T) = x^1 \otimes x^1 + x^2 \otimes x^2$

- \blacksquare the monodromy ${\mathfrak M}$ is a rotation by $\pi \sum_{j=1}^5 \psi_j$
- $\blacksquare \ \mathcal{F}_{\mathbf{u}}$ is the conic hull of B

$$\bullet \mathcal{P}_{\mathbf{u}} = \{0\}$$

Theorem

Let $n \geq 5$. Let $K \subset \mathbb{R}^3$ be a regular polyhedral cone with n extreme rays. Let $U \in \mathbb{R}^{n \times n}$ be a slack matrix of K, such that the j-th column u^j of U has support I_j . Set $\mathbf{u} = \{u^1, \ldots, u^n\}$.

Then $F_{\mathbf{u}} = P_{\mathbf{u}} \simeq \mathcal{S}_{n-3}^+$.

For every collection $\mathbf{u} = \{u^1, \ldots, u^n\}$ such that $\operatorname{supp} u^j = I_j$ and $F_{\mathbf{u}} = P_{\mathbf{u}} \simeq S^+_{n-3}$, the zeros u^j are the columns of a slack matrix of a regular polyhedral cone $K \subset \mathbb{R}^3$ with n extreme rays.

faces $F_{\mathbf{u}} = P_{\mathbf{u}} \simeq \mathcal{S}_k^+$ with k < n-3 can be constructed by perturbing some of the zeros u^j

Theorem

Let $A \in F_{\mathbf{u}}$ be an exceptional copositive matrix and set $B = \Lambda(A)$. Then the following are equivalent:

- A is regular;
- the minimal zero pattern of A is $\{I_1, \ldots, I_n\}$, with minimal zeros u^1, \ldots, u^n ;
- B is positive definite;
- the corank of the submatrices A_{I_j} equals 1, $j = 1, \ldots, n$.

For even n the matrix A is the sum of a degenerate exceptional copositive matrix and a rank 1 positive semi-definite matrix.

If n is odd and the monodromy operator \mathfrak{M} has no eigenvalue equal to -1, then A is extremal.

The matrix A is embedded in a submanifold of codimension n, consisting of regular exceptional matrices. If A is extremal, then the matrices in the submanifold are also extremal.

no example of a non-extremal regular matrix for odd n found so far

Lnibniz

Theorem

Let $A \in F_{\mathbf{u}}$ be an exceptional copositive matrix and set $B = \Lambda(A)$. Then the following are equivalent:

- A is degenerate;
- the corank of B equals 1;
- the corank of the submatrices A_{I_j} equals 2, $j = 1, \ldots, n$;
- the support of any minimal zero of A is a strict subset of one of the index sets I₁,..., I_n, and every index set I_j has exactly two subsets which are supports of minimal zeros of A;
- every non-minimal zero of A has support equal to I_j for some j = 1, ..., n and is a sum of two minimal zeros.

In addition, A is extremal.

The matrix A is embedded in a submanifold of codimension 2n, consisting of degenerate extremal exceptional matrices.

in all examples, there are exactly n minimal zeros (up to multiplication by a positive scalar) with supports $I_j \cap I_{j+1}, j = 1, \ldots, n-1$, and $I_1 \cap I_n$

Explicit examples

let $n \geq 5$, then $A \in \mathcal{S}_n$ given by

$$A_{ij} = \begin{cases} 2(1+2\cos\frac{\pi}{n}\cos\frac{3\pi}{n}), & i=j, \\ -2(\cos\frac{\pi}{n}+\cos\frac{3\pi}{n}), & |i-j| \in \{1,n-1\}, \\ 1, & |i-j| \in \{2,n-2\}, \\ 0, & |i-j| \in \{3,\dots,n-3\}, \end{cases}$$

is degenerate extremal

let $n \geq 5$ be odd, then $A \in \mathcal{S}_n$ given by

$$A_{ij} = \begin{cases} 2(1+2\cos\frac{\pi}{n+1}\cos\frac{3\pi}{n+1}), & i=j, \\ -2(\cos\frac{\pi}{n+1}+\cos\frac{3\pi}{n+1}), & |i-j| \in \{1,n-1\}, \\ 1, & |i-j| \in \{2,n-2\}, \\ 0, & |i-j| \in \{3,\dots,n-3\}, \end{cases}$$

is regular extremal

every degenerate exceptional matrix can be scaled to a matrix of the form

with $\varphi_1,\varphi_2,\varphi_3>0, \varphi_1+\varphi_2+\varphi_3<\pi$

the minimal zero pattern is $\{\{1,2,3\},\{2,3,4\},\ldots,\{6,1,2\}\}$ with zeros being the columns of

$$\begin{pmatrix} \sin \varphi_2 & 0 & 0 & 0 & \sin \varphi_2 & \sin(\varphi_1 + \varphi_3) \\ \sin(\varphi_1 + \varphi_2) & \sin \varphi_3 & 0 & 0 & 0 & \sin \varphi_3 \\ \sin \varphi_1 & \sin(\varphi_2 + \varphi_3) & \sin \varphi_1 & 0 & 0 & 0 \\ 0 & \sin \varphi_2 & \sin(\varphi_1 + \varphi_3) & \sin \varphi_2 & 0 & 0 \\ 0 & 0 & \sin \varphi_3 & \sin(\varphi_1 + \varphi_2) & \sin \varphi_3 & 0 \\ 0 & 0 & 0 & \sin \varphi_1 & \sin(\varphi_2 + \varphi_3) & \sin \varphi_1 \end{pmatrix}$$

preprint: "Copositive matrices with circulant zero pattern", arXiv 1603.05111

Thank you!

