
Weierstrass Institute for
Applied Analysis and Stochastics

Periodic discrete dynamical systems and

copositive matrices with circulant zero patterns

Roland Hildebrand

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de

SIGOPT Conference, Trier, April 6, 2016



Outline

1 Copositive matrices
Approximations and extreme rays
Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices
Periodic systems
Zero sets with circulant supports

Copositive matrices and periodic dynamical systems · SIGOPT Conference, Trier, April 6, 2016 · Page
2 (28)



Copositive cone

Definition

A real symmetric n× n matrix A such that xTAx ≥ 0 for all x ∈ Rn+ is called copositive.

the set of all such matrices is a regular convex cone, the copositive cone Cn

related cones

� completely positive cone C∗n = conv{xxT |x ≥ 0}
� sumNn + S+n of nonnegative and positive semi-definite cone

� doubly nonnegative coneNn ∩ S+n

C∗n ⊂ Nn ∩ S+n ⊂ Nn + S+n ⊂ Cn

Nn + S+n is an inner approximation of Cn
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NP-hardness

Theorem (Murty, Kabadi 1987)

Checking whether an n× n integer matrix is not copositive is NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic
objective function can be written as a copositive program

min
x∈Cn

〈c, x〉 : Ax = b

the approximationNn + S+n is semi-definite representable
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Exceptional matrices

Theorem (Diananda 1962)

Let n ≤ 4. Then the copositive cone Cn equals the sum of the nonnegative coneNn and the positive
semi-definite cone S+n .

the Horn form (discovered by Alfred Horn)

H =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


is an example of a matrix in C5 \ (N5 + S+5 )

matrices in Cn \ (Nn + S+n ) are called exceptional
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Extreme rays

Definition

Let K ⊂ Rn be a regular convex cone. An nonzero element u ∈ K is called extreme if it cannot be
decomposed into a non-trivial sum of linearly independent elements of K.

in [Hall, Newman 63] the extreme rays of Cn belonging toNn + S+n have been described:

� the extreme rays ofNn, generated by Eii and Eij + Eji

� rank 1 matrices A = xxT with x having both positive and negative elements

in [Hoffman, Pereira 1973] the extreme elements of Cn with entries in {−1, 0,+1} have been described

every feasible copositive program has an extremal solution

exceptional extreme rays of particular importance: their knowledge allows to check whether inner
approximations of Cn are exact
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Dimension 5: extreme rays

Theorem (H. 2012)

The extreme elementsA ∈ C5 \ (N5 + S+5 ) of C5 are exactly the matricesDPMPTD, whereD is a
diagonal positive definite matrix, P is a permutation matrix, andM is either the Horn formH or is given by
a matrix

T =


1 − cosψ4 cos(ψ4+ψ5) cos(ψ2+ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5+ψ1) cos(ψ3+ψ4)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1 cos(ψ1+ψ2)

cos(ψ2+ψ3) cos(ψ5+ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3+ψ4) cos(ψ1+ψ2) − cosψ2 1

 ,

where ψk > 0 for k = 1, . . . , 5 and
∑5
k=1 ψk < π.

� the set of matrices DPHPTD has codimension 10

� the set of matrices DPTPTD has codimension 5
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Zeros and zero patterns

let A ∈ Cn be a copositive matrix

� a non-zero vector x ≥ 0 is called a zero of A if xTAx = 0

� the set suppx = {i |xi > 0} is called the support of x

� the set VA = {suppx |x is a zero of A} is called the zero pattern of A

Example: Horn form

A = H =


1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1

 : x =


a

a+ b

b

0

0

 ,
a, b ≥ 0,

a+ b > 0

and cyclically permuted vectors
VH consists of {1, 2}, {1, 2, 3} and cyclically permuted sets
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Zero pattern of T-matrices

T =


1 − cosψ4 cos(ψ4+ψ5) cos(ψ2+ψ3) − cosψ3

− cosψ4 1 − cosψ5 cos(ψ5+ψ1) cos(ψ3+ψ4)

cos(ψ4+ψ5) − cosψ5 1 − cosψ1 cos(ψ1+ψ2)

cos(ψ2+ψ3) cos(ψ5+ψ1) − cosψ1 1 − cosψ2

− cosψ3 cos(ψ3+ψ4) cos(ψ1+ψ2) − cosψ2 1


has zeros given by the columns of the matrix

sinψ5 0 0 sinψ2 sin(ψ3+ψ4)

sin(ψ4+ψ5) sinψ1 0 0 sinψ3

sinψ4 sin(ψ1+ψ5) sinψ2 0 0

0 sinψ5 sin(ψ1+ψ2) sinψ3 0

0 0 sinψ1 sin(ψ2+ψ3) sinψ4


and homothetic images
the zero pattern is VT = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}}

Copositive matrices and periodic dynamical systems · SIGOPT Conference, Trier, April 6, 2016 · Page
9 (28)



Minimal zeros

let A ∈ Cn be a copositive matrix

� a zero u of a A is called minimal if there exists no zero v of A such that the inclusion
supp v ⊂ suppu holds strictly

� the set Vmin(A) = {suppx |x is a minimal zero of A} is called the minimal zero pattern of A

every zero of A is a convex combination of minimal zeros

Lemma (H. 2014)

Let A be a copositive matrix, and let u, v be minimal zeros of A with suppu = supp v. Then u, v differ
by a positive multiplicative factor.
In particular, the number of minimal zeros of A is finite up to homothety.

� Horn form: Vmin(H) = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {1, 5}}
� T-matrices: Vmin(T ) = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}, {4, 5, 1}, {5, 1, 2}}

Generalization to higher dimensions?
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Framework

scalar discrete-time time-variant dynamical system

xt+d +

d−1∑
i=0

ct,ixt+i = 0, t ≥ 1

coefficients n-periodic, ct+n,i = ct,i

� solution space L is d-dimensional, n > d

� L can be parameterized by initial values x1, . . . , xd

� if ct,0 6= 0 for all t, then the system is time-reversible

� system may or may not have n-periodic solutions

let Lper be the subspace of n-periodic solutions
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Monodromy

let x = (xt)t≥1 be a solution

then y = (xt+n)t≥1 is also a solution

Definition

The linear map M : L → L taking x to y is called the monodromy of the periodic system.
Its eigenvalues are called Floquet multipliers.

� x is periodic if and only if it is an eigenvector of M with eigenvalue 1

� detM = (−1)nd
∏n
t=1 ct,0
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Evaluation functionals

let x = (xt)t≥1 be a solution

for every t, define a linear map et by et(x) = xt

� et belongs to the dual space L∗

� et+n = M∗et

� e1, . . . , ed span L∗

et evolves according to

et+d +

d−1∑
i=0

ct,iet+i = 0
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Shift-invariant forms

� a linear form on L∗ is a solution x ∈ L
� a bilinear form on L∗ is a linear combination of tensor products x⊗ y, x, y ∈ L
� a symmetric bilinear form on L is a linear combination of x⊗ x, x ∈ L

Definition

A symmetric bilinear form B on L∗ is called shift-invariant if

B(et+n, es+n) = B(et, es) ∀ t, s ≥ 1

� B is shift-invariant if and only if B(w,w′) = B(M∗w,M∗w′) for all w,w′ ∈ L∗

� B = x⊗ x for x periodic are shift-invariant
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Zero sets with circulant supports

let n ≥ 5 and let u = {u1, . . . , un} ⊂ Rn+ with

suppu1 = {1, 2, . . . , n− 2} =: I1

suppu2 = {2, 3, . . . , n− 1} =: I2

...

suppun = {n, 1, . . . , n− 3} =: In

Problem: Characterize copositive matrices with zeros u1, . . . , un.

Definition

Let A ∈ Cn be exceptional, and let u1, . . . , un be among its zeros.
We call A regular if every zero of A is proportional to one of the zeros uj .
We call A degenerate if there are zeros of A which are not proportional to one of the zeros uj .
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Correspondence between systems and matrices : overview

� let Fu be the face of Cn of matrices having u1, . . . , un among their zeros

� let Pu be the sub-face of positive semi-definite matrices

Matrices Systems

zero subset u periodic dynamical system Su

copositive matrices A ∈ Fu bilinear symmetric forms B ∈ Fu satisfying a certain LMI
entry Aij value B(ei, ej) on evaluation functionals
subset Pu of positive semi-definite matrices convex hull Pu of {x⊗ x |x ∈ Lper}
regular matrices positive definite forms
degenerate matrices corank 1 positive semi-definite forms

� Horn form H is the prototype of the degenerate matrices

� T -matrices are the prototype of the regular matrices
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Dynamical system Su

to a collection u of nonnegative vectors u1, . . . , un with suppuk = Ik associate the n-periodic
dynamical system Su given by

d∑
i=0

ct,ixt+i = 0

with ct = (ut)It , t = 1, . . . , n

� order d = n− 3

� system is time-reversible

� all coefficients are positive

� detM =
∏n
j=1 u

j
j/u

j
j+d > 0
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Symmetric bilinear forms

letAu ⊂ Sn be the linear subspace of symmetric n× n matrices A satisfying (Auk)Ik = 0

to every A ∈ Au associate a symmetric bilinear form B on the dual solution space L∗ by

B(et, es) = Ats, t, s = 1, . . . , d

let Λ : A 7→ B be the corresponding linear map

Λ maps quadratic forms on Rn to quadratic forms on Rd

Lemma

The linear map Λ is injective and its image consists of those shift-invariant symmetric bilinear forms B
which satisfy

B(et, es) = B(et+n, es) ∀ t, s ≥ 1 : 3 ≤ s− t ≤ n− 3

� the image of Λ may be {0}
� effectively finite number of linear conditions
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Construction of the LMI

Theorem

Let Fu be the set of positive semi-definite shift-invariant symmetric bilinear forms B on L∗u satisfying the
linear equality relations

B(et, es) = B(et+n, es), 1 ≤ t < s ≤ n : 3 ≤ s− t ≤ n− 3

and the linear inequalities

B(et, et+2) ≥ B(et+n, et+2), t = 1, . . . , n.

Then the face of Cn defined by the zeros uj , j = 1, . . . , n, is given by Fu = Λ−1[Fu].

Let Pu be the convex hull of the tensor products x⊗ x, x ∈ Lper . Then Pu ⊂ Fu, and
Pu = Λ−1[Pu].

Corollary

Given a vector set u = {u1, . . . , un} ⊂ Rn+, the face Fu of the copositive cone Cn which consists of
matrices having u1, . . . , un as zeros is semi-definite representable.
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Example: T -matrix

n = 5, d = 2, u given by columns of
sinψ5 0 0 sinψ2 sin(ψ3+ψ4)

sin(ψ4+ψ5) sinψ1 0 0 sinψ3

sinψ4 sin(ψ1+ψ5) sinψ2 0 0

0 sinψ5 sin(ψ1+ψ2) sinψ3 0

0 0 sinψ1 sin(ψ2+ψ3) sinψ4


linearly independent solutions of the associated dynamical system are given by

x1 = (1,− cosψ4, cos(ψ4 + ψ5),− cos(ψ4 + ψ5 + ψ1), cos(ψ4 + ψ5 + ψ1 + ψ2), . . . )

x2 = (0, sinψ4,− sin(ψ4 + ψ5), sin(ψ4 + ψ5 + ψ1),− sin(ψ4 + ψ5 + ψ1 + ψ2), . . . )

� the T -matrix corresponds to positive definite bilinear form B = Λ(T ) = x1 ⊗ x1 + x2 ⊗ x2

� the monodromy M is a rotation by π −
∑5
j=1 ψj

� Fu is the conic hull of B

� Pu = {0}
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Classification of faces
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Positive semi-definite faces

Theorem

Let n ≥ 5. Let K ⊂ R3 be a regular polyhedral cone with n extreme rays. Let U ∈ Rn×n be a slack
matrix of K, such that the j-th column uj of U has support Ij . Set u = {u1, . . . , un}.

Then Fu = Pu ' S+n−3.

For every collection u = {u1, . . . , un} such that suppuj = Ij and Fu = Pu ' S+n−3, the zeros
uj are the columns of a slack matrix of a regular polyhedral cone K ⊂ R3 with n extreme rays.

faces Fu = Pu ' S+k with k < n− 3 can be constructed by perturbing some of the zeros uj
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Regular matrices

Theorem

Let A ∈ Fu be an exceptional copositive matrix and set B = Λ(A). Then the following are equivalent:

� A is regular;

� the minimal zero pattern of A is {I1, . . . , In}, with minimal zeros u1, . . . , un;

� B is positive definite;

� the corank of the submatrices AIj equals 1, j = 1, . . . , n.

For even n the matrix A is the sum of a degenerate exceptional copositive matrix and a rank 1 positive
semi-definite matrix.
If n is odd and the monodromy operator M has no eigenvalue equal to−1, then A is extremal.

The matrix A is embedded in a submanifold of codimension n, consisting of regular exceptional matrices.
If A is extremal, then the matrices in the submanifold are also extremal.

no example of a non-extremal regular matrix for odd n found so far
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Degenerate matrices

Theorem

Let A ∈ Fu be an exceptional copositive matrix and set B = Λ(A). Then the following are equivalent:

� A is degenerate;

� the corank of B equals 1;

� the corank of the submatrices AIj equals 2, j = 1, . . . , n;

� the support of any minimal zero of A is a strict subset of one of the index sets I1, . . . , In, and every
index set Ij has exactly two subsets which are supports of minimal zeros of A;

� every non-minimal zero of A has support equal to Ij for some j = 1, . . . , n and is a sum of two
minimal zeros.

In addition, A is extremal.

The matrix A is embedded in a submanifold of codimension 2n, consisting of degenerate extremal
exceptional matrices.

in all examples, there are exactly n minimal zeros (up to multiplication by a positive scalar) with supports
Ij ∩ Ij+1, j = 1, . . . , n− 1, and I1 ∩ In
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Explicit examples

let n ≥ 5, then A ∈ Sn given by

Aij =


2(1 + 2 cos π

n
cos 3π

n
), i = j,

−2(cos π
n

+ cos 3π
n

), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

is degenerate extremal

let n ≥ 5 be odd, then A ∈ Sn given by

Aij =


2(1 + 2 cos π

n+1
cos 3π

n+1
), i = j,

−2(cos π
n+1

+ cos 3π
n+1

), |i− j| ∈ {1, n− 1},
1, |i− j| ∈ {2, n− 2},
0, |i− j| ∈ {3, . . . , n− 3},

is regular extremal
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Dimension n = 6

every degenerate exceptional matrix can be scaled to a matrix of the form

with ϕ1, ϕ2, ϕ3 > 0, ϕ1 + ϕ2 + ϕ3 < π

the minimal zero pattern is {{1, 2, 3}, {2, 3, 4}, . . . , {6, 1, 2}} with zeros being the columns of
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preprint: "Copositive matrices with circulant zero pattern", arXiv 1603.05111

Thank you!
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