Weierstrass Institute for Applied Analysis and Stochastics

Periodic discrete dynamical systems and copositive matrices with circulant zero patterns

Roland Hildebrand

Outline

1 Copositive matrices

- Approximations and extreme rays
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems

■ Zero sets with circulant supports

Definition

A real symmetric $n \times n$ matrix A such that $x^{T} A x \geq 0$ for all $x \in \mathbb{R}_{+}^{n}$ is called copositive.
the set of all such matrices is a regular convex cone, the copositive cone \mathcal{C}_{n}
related cones

- completely positive cone $\mathcal{C}_{n}^{*}=\operatorname{conv}\left\{x x^{T} \mid x \geq 0\right\}$

■ sum $\mathcal{N}_{n}+\mathcal{S}_{n}^{+}$of nonnegative and positive semi-definite cone

- doubly nonnegative cone $\mathcal{N}_{n} \cap \mathcal{S}_{n}^{+}$

$$
\mathcal{C}_{n}^{*} \subset \mathcal{N}_{n} \cap \mathcal{S}_{n}^{+} \subset \mathcal{N}_{n}+\mathcal{S}_{n}^{+} \subset \mathcal{C}_{n}
$$

$\mathcal{N}_{n}+\mathcal{S}_{n}^{+}$is an inner approximation of \mathcal{C}_{n}

NP-hardness

Theorem (Murty, Kabadi 1987)
Checking whether an $n \times n$ integer matrix is not copositive is NP-complete.

Theorem (Burer 2009)

Any mixed binary-continuous optimization problem with linear constraints and (non-convex) quadratic objective function can be written as a copositive program

$$
\min _{x \in \mathcal{C}_{n}}\langle c, x\rangle: \quad A x=b
$$

the approximation $\mathcal{N}_{n}+\mathcal{S}_{n}^{+}$is semi-definite representable

Theorem (Diananda 1962)

Let $n \leq 4$. Then the copositive cone \mathcal{C}_{n} equals the sum of the nonnegative cone \mathcal{N}_{n} and the positive semi-definite cone \mathcal{S}_{n}^{+}.
the Horn form (discovered by Alfred Horn)

$$
H=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

is an example of a matrix in $\mathcal{C}_{5} \backslash\left(\mathcal{N}_{5}+\mathcal{S}_{5}^{+}\right)$
matrices in $\mathcal{C}_{n} \backslash\left(\mathcal{N}_{n}+\mathcal{S}_{n}^{+}\right)$are called exceptional

Extreme rays

Definition
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. An nonzero element $u \in K$ is called extreme if it cannot be decomposed into a non-trivial sum of linearly independent elements of K.
in [Hall, Newman 63] the extreme rays of \mathcal{C}_{n} belonging to $\mathcal{N}_{n}+\mathcal{S}_{n}^{+}$have been described:
\square the extreme rays of \mathcal{N}_{n}, generated by $E_{i i}$ and $E_{i j}+E_{j i}$

- rank 1 matrices $A=x x^{T}$ with x having both positive and negative elements
in [Hoffman, Pereira 1973] the extreme elements of \mathcal{C}_{n} with entries in $\{-1,0,+1\}$ have been described
every feasible copositive program has an extremal solution
exceptional extreme rays of particular importance: their knowledge allows to check whether inner approximations of \mathcal{C}_{n} are exact

Dimension 5: extreme rays

Theorem (H. 2012)
The extreme elements $A \in \mathcal{C}_{5} \backslash\left(\mathcal{N}_{5}+\mathcal{S}_{5}^{+}\right)$of \mathcal{C}_{5} are exactly the matrices $D P M P^{T} D$, where D is a diagonal positive definite matrix, P is a permutation matrix, and M is either the Horn form H or is given by a matrix

$$
T=\left(\begin{array}{ccccc}
1 & -\cos \psi_{4} & \cos \left(\psi_{4}+\psi_{5}\right) & \cos \left(\psi_{2}+\psi_{3}\right) & -\cos \psi_{3} \\
-\cos \psi_{4} & 1 & -\cos \psi_{5} & \cos \left(\psi_{5}+\psi_{1}\right) & \cos \left(\psi_{3}+\psi_{4}\right) \\
\cos \left(\psi_{4}+\psi_{5}\right) & -\cos \psi_{5} & 1 & -\cos \psi_{1} & \cos \left(\psi_{1}+\psi_{2}\right) \\
\cos \left(\psi_{2}+\psi_{3}\right) & \cos \left(\psi_{5}+\psi_{1}\right) & -\cos \psi_{1} & 1 & -\cos \psi_{2} \\
-\cos \psi_{3} & \cos \left(\psi_{3}+\psi_{4}\right) & \cos \left(\psi_{1}+\psi_{2}\right) & -\cos \psi_{2} & 1
\end{array}\right)
$$

where $\psi_{k}>0$ for $k=1, \ldots, 5$ and $\sum_{k=1}^{5} \psi_{k}<\pi$.

■ the set of matrices $D P H P^{T} D$ has codimension 10
■ the set of matrices $D P T P^{T} D$ has codimension 5

Zeros and zero patterns

let $A \in \mathcal{C}_{n}$ be a copositive matrix
■ a nonzero vector $x \geq 0$ is called a zero of A if $x^{T} A x=0$

- the set $\operatorname{supp} x=\left\{i \mid x_{i}>0\right\}$ is called the support of x
- the set $\mathcal{V}_{A}=\{\operatorname{supp} x \mid x$ is a zero of $A\}$ is called the zero pattern of A

Example: Horn form

$$
A=H=\left(\begin{array}{rrrrr}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right): \quad x=\left(\begin{array}{c}
a \\
a+b \\
b \\
0 \\
0
\end{array}\right), \begin{aligned}
& a, b \geq 0 \\
& a+b>0
\end{aligned}
$$

and cyclically permuted vectors
\mathcal{V}_{H} consists of $\{1,2\},\{1,2,3\}$ and cyclically permuted sets

$$
T=\left(\begin{array}{ccccc}
1 & -\cos \psi_{4} & \cos \left(\psi_{4}+\psi_{5}\right) & \cos \left(\psi_{2}+\psi_{3}\right) & -\cos \psi_{3} \\
-\cos \psi_{4} & 1 & -\cos \psi_{5} & \cos \left(\psi_{5}+\psi_{1}\right) & \cos \left(\psi_{3}+\psi_{4}\right) \\
\cos \left(\psi_{4}+\psi_{5}\right) & -\cos \psi_{5} & 1 & -\cos \psi_{1} & \cos \left(\psi_{1}+\psi_{2}\right) \\
\cos \left(\psi_{2}+\psi_{3}\right) & \cos \left(\psi_{5}+\psi_{1}\right) & -\cos \psi_{1} & 1 & -\cos \psi_{2} \\
-\cos \psi_{3} & \cos \left(\psi_{3}+\psi_{4}\right) & \cos \left(\psi_{1}+\psi_{2}\right) & -\cos \psi_{2} & 1
\end{array}\right)
$$

has zeros given by the columns of the matrix

$$
\left(\begin{array}{ccccc}
\sin \psi_{5} & 0 & 0 & \sin \psi_{2} & \sin \left(\psi_{3}+\psi_{4}\right) \\
\sin \left(\psi_{4}+\psi_{5}\right) & \sin \psi_{1} & 0 & 0 & \sin \psi_{3} \\
\sin \psi_{4} & \sin \left(\psi_{1}+\psi_{5}\right) & \sin \psi_{2} & 0 & 0 \\
0 & \sin \psi_{5} & \sin \left(\psi_{1}+\psi_{2}\right) & \sin \psi_{3} & 0 \\
0 & 0 & \sin \psi_{1} & \sin \left(\psi_{2}+\psi_{3}\right) & \sin \psi_{4}
\end{array}\right)
$$

and nomothetic images
the zero pattern is $\mathcal{V}_{T}=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,1\},\{5,1,2\}\}$
let $A \in \mathcal{C}_{n}$ be a copositive matrix

- a zero u of a A is called minimal if there exists no zero v of A such that the inclusion $\operatorname{supp} v \subset \operatorname{supp} u$ holds strictly
■ the set $\mathcal{V}_{\min }(A)=\{\operatorname{supp} x \mid x$ is a minimal zero of $A\}$ is called the minimal zero pattern of A every zero of A is a convex combination of minimal zeros

Lemma (H. 2014)

Let A be a copositive matrix, and let u, v be minimal zeros of A with $\operatorname{supp} u=\operatorname{supp} v$. Then u, v differ by a positive multiplicative factor.
In particular, the number of minimal zeros of A is finite up to homothety.

■ Horn form: $\mathcal{V}_{\min }(H)=\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{1,5\}\}$
■ T-matrices: $\mathcal{V}_{\min }(T)=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,1\},\{5,1,2\}\}$

Generalization to higher dimensions?

Outline

1 Copositive matrices

- Approximations and extreme rays
- Zeros and zero patterns

2 Periodic dynamical systems and extreme matrices

- Periodic systems

■ Zero sets with circulant supports
scalar discrete-time time-variant dynamical system

$$
x_{t+d}+\sum_{i=0}^{d-1} c_{t, i} x_{t+i}=0, \quad t \geq 1
$$

coefficients n-periodic, $c_{t+n, i}=c_{t, i}$

- solution space \mathcal{L} is d-dimensional, $n>d$
- \mathcal{L} can be parameterized by initial values x_{1}, \ldots, x_{d}
- if $c_{t, 0} \neq 0$ for all t, then the system is time-reversible
- system may or may not have n-periodic solutions
let $\mathcal{L}_{p e r}$ be the subspace of n-periodic solutions
let $x=\left(x_{t}\right)_{t \geq 1}$ be a solution
then $y=\left(x_{t+n}\right)_{t \geq 1}$ is also a solution

Definition

The linear map $\mathfrak{M}: \mathcal{L} \rightarrow \mathcal{L}$ taking x to y is called the monodromy of the periodic system. Its eigenvalues are called Floquet multipliers.

- x is periodic if and only if it is an eigenvector of \mathfrak{M} with eigenvalue 1
$\square \operatorname{det} \mathfrak{M}=(-1)^{n d} \prod_{t=1}^{n} c_{t, 0}$

Evaluation functional

let $x=\left(x_{t}\right)_{t \geq 1}$ be a solution
for every t, define a linear map \mathbf{e}_{t} by $\mathbf{e}_{t}(x)=x_{t}$

- \mathbf{e}_{t} belongs to the dual space \mathcal{L}^{*}
$\square \mathbf{e}_{t+n}=\mathfrak{M}^{*} \mathbf{e}_{t}$
$\square \mathbf{e}_{1}, \ldots, \mathbf{e}_{d} \operatorname{span} \mathcal{L}^{*}$
\mathbf{e}_{t} evolves according to

$$
\mathbf{e}_{t+d}+\sum_{i=0}^{d-1} c_{t, i} \mathbf{e}_{t+i}=0
$$

Shift-invariant forms

- a linear form on \mathcal{L}^{*} is a solution $x \in \mathcal{L}$
- a bilinear form on \mathcal{L}^{*} is a linear combination of tensor products $x \otimes y, x, y \in \mathcal{L}$
- a symmetric bilinear form on \mathcal{L} is a linear combination of $x \otimes x, x \in \mathcal{L}$

Definition

A symmetric bilinear form B on \mathcal{L}^{*} is called shift-invariant if

$$
B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s+n}\right)=B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right) \quad \forall t, s \geq 1
$$

■ B is shift-invariant if and only if $B\left(w, w^{\prime}\right)=B\left(\mathfrak{M}^{*} w, \mathfrak{M}^{*} w^{\prime}\right)$ for all $w, w^{\prime} \in \mathcal{L}^{*}$
■ $B=x \otimes x$ for x periodic are shift-invariant
let $n \geq 5$ and let $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\} \subset \mathbb{R}_{+}^{n}$ with

$$
\begin{aligned}
& \operatorname{supp} u^{1}=\{1,2, \ldots, n-2\}=: I_{1} \\
& \operatorname{supp} u^{2}=\{2,3, \ldots, n-1\}=: I_{2} \\
& \vdots \\
& \operatorname{supp} u^{n}=\{n, 1, \ldots, n-3\}=: I_{n}
\end{aligned}
$$

Problem: Characterize copositive matrices with zeros u^{1}, \ldots, u^{n}.

Definition

Let $A \in \mathcal{C}_{n}$ be exceptional, and let u^{1}, \ldots, u^{n} be among its zeros.
We call A regular if every zero of A is proportional to one of the zeros u^{j}.
We call A degenerate if there are zeros of A which are not proportional to one of the zeros u^{j}.

- let $F_{\mathbf{u}}$ be the face of \mathcal{C}_{n} of matrices having u^{1}, \ldots, u^{n} among their zeros
- let $P_{\mathbf{u}}$ be the sub-face of positive semi-definite matrices

Matrices	Systems
zero subset \mathbf{u}	periodic dynamical system $\mathbf{S}_{\mathbf{u}}$
copositive matrices $A \in F_{\mathbf{u}}$	bilinear symmetric forms $B \in \mathcal{F}_{\mathbf{u}}$ satisfying a certain LMI
entry $A_{i j}$	value $B\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)$ on evaluation functionals
subset $P_{\mathbf{u}}$ of positive semi-definite matrices	convex hull $\mathcal{P}_{\mathbf{u}}$ of $\left\{x \otimes x \mid x \in \mathcal{L}_{\text {per }}\right\}$
regular matrices	positive definite forms
degenerate matrices	corank 1 positive semi-definite forms

- Horn form H is the prototype of the degenerate matrices
- T-matrices are the prototype of the regular matrices
to a collection \mathbf{u} of nonnegative vectors u^{1}, \ldots, u^{n} with $\operatorname{supp} u^{k}=I_{k}$ associate the n-periodic dynamical system $\mathbf{S}_{\mathbf{u}}$ given by

$$
\sum_{i=0}^{d} c_{t, i} x_{t+i}=0
$$

with $c_{t}=\left(u^{t}\right)_{I_{t}}, t=1, \ldots, n$

- order $d=n-3$
- system is time-reversible
- all coefficients are positive
$\square \operatorname{det} \mathfrak{M}=\prod_{j=1}^{n} u_{j}^{j} / u_{j+d}^{j}>0$
let $\mathcal{A}_{\mathbf{u}} \subset \mathcal{S}_{n}$ be the linear subspace of symmetric $n \times n$ matrices A satisfying $\left(A u^{k}\right)_{I_{k}}=0$ to every $A \in \mathcal{A}_{\mathbf{u}}$ associate a symmetric bilinear form B on the dual solution space \mathcal{L}^{*} by

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=A_{t s}, \quad t, s=1, \ldots, d
$$

let $\Lambda: A \mapsto B$ be the corresponding linear map
Λ maps quadratic forms on \mathbb{R}^{n} to quadratic forms on \mathbb{R}^{d}

Lemma

The linear map Λ is injective and its image consists of those shift-invariant symmetric bilinear forms B which satisfy

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s}\right) \quad \forall t, s \geq 1: 3 \leq s-t \leq n-3
$$

- the image of Λ may be $\{0\}$
- effectively finite number of linear conditions

Theorem

Let $\mathcal{F}_{\mathbf{u}}$ be the set of positive semi-definite shift-invariant symmetric bilinear forms B on $\mathcal{L}_{\mathbf{u}}^{*}$ satisfying the linear equality relations

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{s}\right)=B\left(\mathbf{e}_{t+n}, \mathbf{e}_{s}\right), \quad 1 \leq t<s \leq n: 3 \leq s-t \leq n-3
$$

and the linear inequalities

$$
B\left(\mathbf{e}_{t}, \mathbf{e}_{t+2}\right) \geq B\left(\mathbf{e}_{t+n}, \mathbf{e}_{t+2}\right), \quad t=1, \ldots, n .
$$

Then the face of \mathcal{C}_{n} defined by the zeros $u^{j}, j=1, \ldots, n$, is given by $F_{\mathbf{u}}=\Lambda^{-1}\left[\mathcal{F}_{\mathbf{u}}\right]$.

Let $\mathcal{P}_{\mathbf{u}}$ be the convex hull of the tensor products $x \otimes x, x \in \mathcal{L}_{\text {per }}$. Then $\mathcal{P}_{\mathbf{u}} \subset \mathcal{F}_{\mathbf{u}}$, and $P_{\mathbf{u}}=\Lambda^{-1}\left[\mathcal{P}_{\mathbf{u}}\right]$.

Corollary

Given a vector set $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\} \subset \mathbb{R}_{+}^{n}$, the face $F_{\mathbf{u}}$ of the copositive cone \mathcal{C}_{n} which consists of matrices having u^{1}, \ldots, u^{n} as zeros is semi-definite representable.
$n=5, d=2, \mathbf{u}$ given by columns of

$$
\left(\begin{array}{ccccc}
\sin \psi_{5} & 0 & 0 & \sin \psi_{2} & \sin \left(\psi_{3}+\psi_{4}\right) \\
\sin \left(\psi_{4}+\psi_{5}\right) & \sin \psi_{1} & 0 & 0 & \sin \psi_{3} \\
\sin \psi_{4} & \sin \left(\psi_{1}+\psi_{5}\right) & \sin \psi_{2} & 0 & 0 \\
0 & \sin \psi_{5} & \sin \left(\psi_{1}+\psi_{2}\right) & \sin \psi_{3} & 0 \\
0 & 0 & \sin \psi_{1} & \sin \left(\psi_{2}+\psi_{3}\right) & \sin \psi_{4}
\end{array}\right)
$$

linearly independent solutions of the associated dynamical system are given by

$$
\begin{aligned}
& x^{1}=\left(1,-\cos \psi_{4}, \cos \left(\psi_{4}+\psi_{5}\right),-\cos \left(\psi_{4}+\psi_{5}+\psi_{1}\right), \cos \left(\psi_{4}+\psi_{5}+\psi_{1}+\psi_{2}\right), \ldots\right) \\
& x^{2}=\left(0, \sin \psi_{4},-\sin \left(\psi_{4}+\psi_{5}\right), \sin \left(\psi_{4}+\psi_{5}+\psi_{1}\right),-\sin \left(\psi_{4}+\psi_{5}+\psi_{1}+\psi_{2}\right), \ldots\right)
\end{aligned}
$$

■ the T-matrix corresponds to positive definite bilinear form $B=\Lambda(T)=x^{1} \otimes x^{1}+x^{2} \otimes x^{2}$

- the monodromy \mathfrak{M} is a rotation by $\pi-\sum_{j=1}^{5} \psi_{j}$
- $\mathcal{F}_{\mathbf{u}}$ is the conic hull of B
- $\mathcal{P}_{\mathbf{u}}=\{0\}$

Classification of faces

Positive semi-definite faces

Theorem
Let $n \geq 5$. Let $K \subset \mathbb{R}^{3}$ be a regular polyhedral cone with n extreme rays. Let $U \in \mathbb{R}^{n \times n}$ be a slack matrix of K, such that the j-th column u^{j} of U has support I_{j}. Set $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\}$.

Then $F_{\mathbf{u}}=P_{\mathbf{u}} \simeq \mathcal{S}_{n-3}^{+}$.
For every collection $\mathbf{u}=\left\{u^{1}, \ldots, u^{n}\right\}$ such that $\operatorname{supp} u^{j}=I_{j}$ and $F_{\mathbf{u}}=P_{\mathbf{u}} \simeq \mathcal{S}_{n-3}^{+}$, the zeros u^{j} are the columns of a slack matrix of a regular polyhedral cone $K \subset \mathbb{R}^{3}$ with n extreme rays.
faces $F_{\mathbf{u}}=P_{\mathbf{u}} \simeq \mathcal{S}_{k}^{+}$with $k<n-3$ can be constructed by perturbing some of the zeros u^{j}

Theorem

Let $A \in F_{\mathbf{u}}$ be an exceptional copositive matrix and set $B=\Lambda(A)$. Then the following are equivalent:

- A is regular;
- the minimal zero pattern of A is $\left\{I_{1}, \ldots, I_{n}\right\}$, with minimal zeros u^{1}, \ldots, u^{n};
- B is positive definite;

■ the corank of the submatrices $A_{I_{j}}$ equals $1, j=1, \ldots, n$.
For even n the matrix A is the sum of a degenerate exceptional copositive matrix and a rank 1 positive semi-definite matrix.
If n is odd and the monodromy operator \mathfrak{M} has no eigenvalue equal to -1 , then A is extremal.

The matrix A is embedded in a submanifold of codimension n, consisting of regular exceptional matrices. If A is extremal, then the matrices in the submanifold are also extremal.
no example of a non-extremal regular matrix for odd n found so far

Theorem

Let $A \in F_{\mathbf{u}}$ be an exceptional copositive matrix and set $B=\Lambda(A)$. Then the following are equivalent:

- A is degenerate;
- the corank of B equals 1;
- the corank of the submatrices $A_{I_{j}}$ equals $2, j=1, \ldots, n$;
- the support of any minimal zero of A is a strict subset of one of the index sets I_{1}, \ldots, I_{n}, and every index set I_{j} has exactly two subsets which are supports of minimal zeros of A;
■ every non-minimal zero of A has support equal to I_{j} for some $j=1, \ldots, n$ and is a sum of two minimal zeros.

In addition, A is extremal.

The matrix A is embedded in a submanifold of codimension $2 n$, consisting of degenerate extremal exceptional matrices.
in all examples, there are exactly n minimal zeros (up to multiplication by a positive scalar) with supports $I_{j} \cap I_{j+1}, j=1, \ldots, n-1$, and $I_{1} \cap I_{n}$

Explicit examples

let $n \geq 5$, then $A \in \mathcal{S}_{n}$ given by

$$
A_{i j}=\left\{\begin{aligned}
2\left(1+2 \cos \frac{\pi}{n} \cos \frac{3 \pi}{n}\right), & i=j, \\
-2\left(\cos \frac{\pi}{n}+\cos \frac{3 \pi}{n}\right), & |i-j| \in\{1, n-1\} \\
1, & |i-j| \in\{2, n-2\} \\
0, & |i-j| \in\{3, \ldots, n-3\}
\end{aligned}\right.
$$

is degenerate extremal
let $n \geq 5$ be odd, then $A \in \mathcal{S}_{n}$ given by

$$
A_{i j}=\left\{\begin{aligned}
2\left(1+2 \cos \frac{\pi}{n+1} \cos \frac{3 \pi}{n+1}\right), & i=j \\
-2\left(\cos \frac{\pi}{n+1}+\cos \frac{3 \pi}{n+1}\right), & |i-j| \in\{1, n-1\} \\
1, & |i-j| \in\{2, n-2\} \\
0, & |i-j| \in\{3, \ldots, n-3\},
\end{aligned}\right.
$$

is regular extrema
every degenerate exceptional matrix can be scaled to a matrix of the form

$$
\left(\begin{array}{ccccc}
1 & -\cos \varphi_{1} & \cos \left(\varphi_{1}+\varphi_{2}\right) & -\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) & \cos \left(\varphi_{2}+\varphi_{3}\right) \\
-\cos \varphi_{1} & 1 & -\cos \varphi_{2} & \cos \left(\varphi_{2}+\varphi_{3}\right) & -\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) \\
\cos \left(\varphi_{1}+\varphi_{2}\right) & -\cos \varphi_{2} & 1 & -\cos \left(\varphi_{1}+\varphi_{3}\right) \\
-\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) & \cos \left(\varphi_{2}+\varphi_{3}\right) & -\cos \varphi_{3} & \cos \left(\varphi_{1}+\varphi_{3}\right) & -\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) \\
\cos \left(\varphi_{2}+\varphi_{3}\right) & -\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) & \cos \left(\varphi_{1}+\varphi_{3}\right) & -\cos \varphi_{1} \\
-\cos \varphi_{3} & \cos \left(\varphi_{1}+\varphi_{3}\right) & -\cos \left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right) & -\cos \left(\varphi_{1}+\varphi_{2}\right) & -\cos \varphi_{2} \\
1
\end{array}\right)
$$

with $\varphi_{1}, \varphi_{2}, \varphi_{3}>0, \varphi_{1}+\varphi_{2}+\varphi_{3}<\pi$
the minimal zero pattern is $\{\{1,2,3\},\{2,3,4\}, \ldots,\{6,1,2\}\}$ with zeros being the columns of

$$
\left(\begin{array}{cccccc}
\sin \varphi_{2} & 0 & 0 & 0 & \sin \varphi_{2} & \sin \left(\varphi_{1}+\varphi_{3}\right) \\
\sin \left(\varphi_{1}+\varphi_{2}\right) & \sin \varphi_{3} & 0 & 0 & 0 & \sin \varphi_{3} \\
\sin \varphi_{1} & \sin \left(\varphi_{2}+\varphi_{3}\right) & \sin \varphi_{1} & 0 & 0 & 0 \\
0 & \sin \varphi_{2} & \sin \left(\varphi_{1}+\varphi_{3}\right) & \sin \varphi_{2} & 0 & 0 \\
0 & 0 & \sin \varphi_{3} & \sin \left(\varphi_{1}+\varphi_{2}\right) & \sin \varphi_{3} & 0 \\
0 & 0 & 0 & \sin \varphi_{1} & \sin \left(\varphi_{2}+\varphi_{3}\right) & \sin \varphi_{1}
\end{array}\right)
$$

preprint: "Copositive matrices with circulant zero pattern", arXiv 1603.05111

Thank you!

