Linear group representations in the service of conic optimization

Roland Hildebrand

Université Grenoble 1 / CNRS

August 25, 2011 / ILAS Conference 2011

ヘロン 人間と 人間と 人間と

Outline

Conic optimization

- Conic programs
- Programs over symmetric cones
- Robust conic programs

2 Symmetries and semi-definite representations

- Semi-definite representations
- Semi-definite approximations
- Automorphism groups
- Applications of automorphisms

伺 とく ヨ とく ヨ

Outline

Conic optimization

- Conic programs
- Programs over symmetric cones
- Robust conic programs

2 Symmetries and semi-definite representations

- Semi-definite representations
- Semi-definite approximations
- Automorphism groups
- Applications of automorphisms

Lorentz-positive maps

/□ ▶ < □ ▶ < □

Outline

Conic optimization

- Conic programs
- Programs over symmetric cones
- Robust conic programs

2 Symmetries and semi-definite representations

- Semi-definite representations
- Semi-definite approximations
- Automorphism groups
- Applications of automorphisms

Lorentz-positive maps

→ Ξ →

Conic programs Programs over symmetric cones Robust conic programs

Optimization problems

minimize objective function with respect to constraints

 $\min_{x\in \mathbf{X}} f(x)$

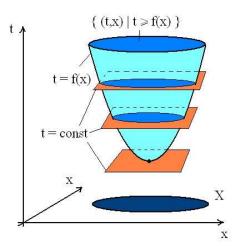
in convex optimization problems, f and X are assumed convex

 $X \subset \mathbb{R}^n$ is called the feasible set

< □ > < 同 > < 回 > < 回 > < 回 >

Conic programs Programs over symmetric cones Robust conic programs

Linear objective function



f(x) can be assumed linear

otherwise minimize *t* over the epigraph

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Conic programs Programs over symmetric cones Robust conic programs

Regular convex cones

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$\mathcal{K}^* = \{ \mathbf{y} \in \mathbb{R}_n \, | \, \langle \mathbf{x}, \mathbf{y} \rangle \ge 0 \quad \forall \; \mathbf{x} \in \mathcal{K} \}$$

of a regular convex cone K is also regular.

$$K_1 \subset K_2 \quad \Leftrightarrow \quad K_1^* \supset K_2^*$$

Conic programs Programs over symmetric cones Robust conic programs

Conic programs

Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^n$ is an optimization problem of the form

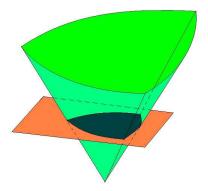
$$\min_{\boldsymbol{x}\in\boldsymbol{\mathsf{K}}}\langle\boldsymbol{c},\boldsymbol{x}\rangle:\quad \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}.$$

Roland Hildebrand Group representations in conic optimization

< □ > < 同 > < 回 > < 回 > < 回 >

Conic programs Programs over symmetric cones Robust conic programs

Geometric interpretation



the feasible set is the intersection of K with an affine subspace

$$\min_{x} \langle c', x \rangle : \ \textit{A}'x + \textit{b}' \in \textit{K}$$

explicit parametrization

Conic programs Programs over symmetric cones Robust conic programs

Projections

Lemma

Let $K \subset \mathbb{R}^n$, $K' \subset \mathbb{R}^{n'}$ be regular convex cones, $n' \ge n$, $\Pi : \mathbb{R}^{n'} \to \mathbb{R}^n$ a linear map such that $\Pi[K'] = K$. Then the conic program

$$\min_{\mathbf{x}\in\boldsymbol{\mathsf{K}}}\langle \boldsymbol{c},\boldsymbol{x}\rangle:\quad \boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$$

is equivalent to the conic program

$$\min_{y\in \mathbf{K}'} \langle c, \Pi(y) \rangle : \quad A\Pi(y) = b.$$

Conic programs Programs over symmetric cones Robust conic programs

Sections

Lemma

Let $K \subset \mathbb{R}^n$, $K' \subset \mathbb{R}^{n'}$ be regular convex cones, $n' \ge n$, $\mathcal{I} : \mathbb{R}^n \to \mathbb{R}^{n'}$ an injective linear map such that $\mathcal{I}^{-1}[K'] = K$. Then the conic program

$$\min_{\boldsymbol{x}} \langle \boldsymbol{c}', \boldsymbol{x} \rangle : \quad \boldsymbol{A}' \boldsymbol{x} + \boldsymbol{b}' \in \boldsymbol{K}$$

is equivalent to the conic program

$$\min_{\boldsymbol{x}} \langle \boldsymbol{c}', \boldsymbol{x} \rangle : \quad \mathcal{I}(\boldsymbol{A}'\boldsymbol{x} + \boldsymbol{b}') \in \boldsymbol{K}'.$$

Conic programs Programs over symmetric cones Robust conic programs

Projections of sections

If we are able to solve conic programs over a cone K, then we are also able to solve conic programs over linear projections of linear sections of K.

Conic programs Programs over symmetric cones Robust conic programs

Duality

primal program

 $\min_{x \in \mathbf{K}} \langle c, x \rangle : \ \mathbf{A} \mathbf{x} = \mathbf{b}$

dual program

$$\max_{s \in \mathbf{K}^*} \langle \mathbf{c}', \mathbf{s} \rangle : \quad \mathbf{A}' \mathbf{s} = \mathbf{b}'$$

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

3

Conic programs Programs over symmetric cones Robust conic programs

Complexity of conic programs

complexity depends on the complexity of the cone K

Example: copositive cone

$$\mathcal{C}_n = \{ A \in \mathcal{S}(n) \, | \, x^T A x \ge 0 \quad \forall \ x \in \mathbb{R}^n_+ \}$$

Theorem (Murty, Kabadi, 1987)

Deciding membership in the copositive cone is co-NP-complete.

Conic programs Programs over symmetric cones Robust conic programs

Linear programs

example: conic programs over $K = \mathbb{R}^n_+$

feasible set is a convex polyhedron \rightarrow linear program (LP)

- efficient solution algorithms since the 50s (simplex method)
- widely used in operations research, micro- and macroeconomics
- limited descriptive power

What is the "correct" generalization of LPs?

< □ > < 同 > < 回 > < 回 > < 回 >

Conic programs Programs over symmetric cones Robust conic programs

Symmetric cones

 \mathbb{R}^n_+ is self-dual: $(\mathbb{R}^n_+)^* = \mathbb{R}^n_+$

and homogeneous: Aut(\mathbb{R}^n_+) acts transitively on \mathbb{R}^n_{++}

Definition

A self-dual, homogeneous convex cone is called symmetric.

Conic programs Programs over symmetric cones Robust conic programs

Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

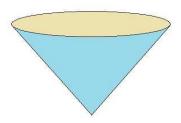
Every symmetric cone can be represented as a direct product of a finite number of the following irreducible symmetric cones:

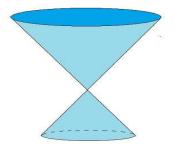
- Lorentz (or second order) cone $L_n = \left\{ (x_0, \dots, x_{n-1}) \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$
- matrix cones S₊(n), H₊(n), Q₊(n) of real, complex, or quaternionic hermitian positive semi-definite matrices
- Albert cone O₊(3) of octonionic hermitian positive semi-definite 3 × 3 matrices

< ロ > < 同 > < 回 > < 回 > < □ > <

Conic programs Programs over symmetric cones Robust conic programs

Lorentz cones





spheric section $x_0 = const$

 ∂L_n contained in zero set of $J = \text{diag}(1, -1, \dots, -1)$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Conic programs Programs over symmetric cones Robust conic programs

Programs over symmetric cones

conic programs over symmetric cones are efficiently solvable by interior-point methods [Nesterov, Nemirovski, 1994]

- linear programs (LP) over $\mathbb{R}^n_+ \sim 10^6$ variables
- conic quadratic programs (CQP) over $L_n \sim 10^4$ variables
- semi-definite programs (SDP) over $S_+(n) \sim 10^2$ variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuMi, ...) and commercial (CPLEX, MOSEK, ...) solvers available

increasingly used in engineering sciences and industry

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Conic programs Programs over symmetric cones Robust conic programs

Conic programs with uncertain data

conic program in explicit parametrization

 $\min_{\boldsymbol{x}} \langle \boldsymbol{c}, \boldsymbol{x} \rangle : \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b} \in \boldsymbol{K}$

suppose used data (*A*, *b*) are noisy and deviate from real data $A' = A + \delta A$, $b' = b + \delta b$

then actual constraint $A'x + b' \in K$ might be violated by the nominal optimal solution $x^*(A, b)$

< ロ > < 同 > < 回 > < 回 > < □ > <

Conic programs Programs over symmetric cones Robust conic programs

Robust counterpart

assume data (A, b) is in a convex uncertainty region U

Definition (Nemirovski, 2007)

The robust counterpart (RC) of the conic program

$$\min_{\boldsymbol{x}} \langle \boldsymbol{c}, \boldsymbol{x} \rangle : \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \in \boldsymbol{K}$$

is the optimization problem

$$\min_{\mathbf{v}} \langle \boldsymbol{c}, \boldsymbol{x} \rangle : \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \in \boldsymbol{K} \quad \forall \ (\boldsymbol{A}, \boldsymbol{b}) \in \boldsymbol{U}.$$

"cost of robustness" is usually negligible

Conic programs Programs over symmetric cones Robust conic programs

Robust counterpart as conic program

how to describe the feasible set

$$\boldsymbol{x}: \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{b} \in \boldsymbol{K} \quad \forall \ (\boldsymbol{A}, \boldsymbol{b}) \in \boldsymbol{U} \quad ? \quad (*)$$

 $U \rightarrow$ homogenization $K_U = \bigcup_{\alpha \ge 0} \alpha U$ define linear map $\mathcal{A}_x : (A, b) \mapsto Ax + b$

(*) becomes

$$x: \qquad \mathcal{A}_x(u) \in K \quad \forall \ u = (A, b) \in K_U$$

 $\Leftrightarrow \mathcal{A}_x$ maps K_U into K

 \Leftrightarrow feasible set is intersection of an affine subspace with the cone of all linear maps taking K_U to K

Conic programs Programs over symmetric cones Robust conic programs

Robust counterpart as conic program

how to describe the feasible set

$$x: Ax + b \in K \quad \forall (A, b) \in U ?$$
 (*)

 $U \rightarrow$ homogenization $K_U = \bigcup_{\alpha \ge 0} \alpha U$

define linear map \mathcal{A}_x : $(A, b) \mapsto Ax + b$

(*) becomes

$$x:$$
 $\mathcal{A}_{x}(u) \in K$ $\forall u = (A, b) \in K_{U}$

 $\Leftrightarrow \mathcal{A}_x$ maps K_U into K

 \Leftrightarrow feasible set is intersection of an affine subspace with the cone of all linear maps taking K_U to K

Conic programs Programs over symmetric cones Robust conic programs

Cones of positive linear maps

Definition

Let $K_1 \subset \mathbb{R}^{n_1}$, $K_2 \subset \mathbb{R}^{n_2}$ be regular convex cones. Call a linear map $A : \mathbb{R}^{n_1} \to \mathbb{R}^{n_2} K_1$ -to- K_2 positive if $A[K_1] \subset K_2$.

The cone $\mathcal{P}(K_1, K_2) \subset \mathbb{R}^{n_1 n_2}$ of K_1 -to- K_2 positive maps is itself a regular convex cone.

```
[Barker, Loewy, 1975]
[Loewy, Schneider 1975]
[Horne, 1978]
[Tam, 1981, 1990, 1992, 1995]
```

< 日 > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Conic programs Programs over symmetric cones Robust conic programs

Separable cones

$$\begin{array}{rcl} A[K_1] \subset K_2 & \Leftrightarrow & Ax \in K_2 & \forall \ x \in K_1 \\ & \Leftrightarrow & y^T Ax = x^T A^T y \geq 0 & \forall \ x \in K_1, \ y \in K_2^* \\ & \Leftrightarrow & \langle A, xy^T \rangle \geq 0 & \forall \ x \in K_1, \ y \in K_2^* \end{array}$$

Theorem (Tam, 1977)

The cone $\mathcal{P}(K_1, K_2)$ is isomorphic to the cone $\mathcal{P}(K_2^*, K_1^*)$. The dual of $\mathcal{P}(K_1, K_2)$ is isomorphic to the cone $K_2^* \otimes K_1$ given by the convex hull of the set $\{x \otimes y \mid x \in K_2^*, y \in K_1\}$.

cones of the form $K \otimes K'$ will be called separable

Conic programs Programs over symmetric cones Robust conic programs

Complexity of robust counterpart

solvability of robust counterpart depends on availability of a tractable description for the cone $\mathcal{P}(K_U, K)$ (or $K^* \otimes K_U$)

ellipsoidal uncertainty $\Rightarrow K_U$ is a Lorentz cone

- $K = \mathbb{R}^n_+$: RC is a CQP
- $K = L_n$: RC is a SDP
- *K* = S₊(*n*): RC is a SDP for *n* ≤ 3 [H., 2007], NP-hard for general *n* [Nesterov, 2003]

< ロ > < 同 > < 回 > < 回 > < □ > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Problem formulation

Given a regular convex cone K, how to convert a conic program over K into a semi-definite program?

particularly interested in the situation when $K = K' \otimes L_n$, with K' another symmetric cone

< □ > < 同 > < 回 > < 回 > < 回 >

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Semi-definite representability

Definition

A cone *K* is called **semi-definite representable** if it is linearly isomorphic to a linear projection of a linear section of $S_+(n)$ for some *n*.

- linear intersection with subspace $L \subset S(n)$
- linear projection along subspace $L' \subset L$

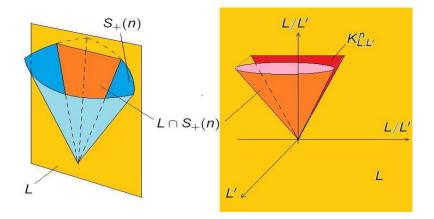
assume $L \cap S_{++}(n) \neq \emptyset$

K linearly isomorphic to

$$\mathcal{K}_{L,L'}^{n} = \{ x \in L/L' \mid \exists y \in x : y \in L \cap S_{+}(n) \}$$

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Semi-definite representable cones



・ロト ・ 四ト ・ ヨト ・ ヨト

э

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Explicit representation

L/L' can be identified with subspace $L'' \subset L$ such that $L = L' \oplus L''$:

$$\mathcal{K}_{L,L'}^n \simeq \{ x \in L'' \mid \exists y \in L' : x + y \in L \cap S_+(n) \}$$

same cone can have representations with different n, L, L'

< ロ > < 同 > < 回 > < 回 > < □ > <

э

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Duality

Theorem

Let $L' \subset L \subset S(n)$ be linear subspaces. Then

$$(K^n_{\mathbf{L},\mathbf{L'}})^* = K^n_{\mathbf{L'}^{\perp},\mathbf{L}^{\perp}}$$

Here L'^{\perp}, L^{\perp} are the orthogonal complements of L', L.

we call ${\cal K}^n_{L'^\perp,L^\perp}$ the dual representation of the representation ${\cal K}^n_{L,L'}$

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Equivalence of real and complex representations

 $\mathcal{S}(n) \subset \mathcal{H}(n), \ \mathcal{S}_+(n) = H_+(n) \cap \mathcal{S}(n)$

 \Rightarrow real semi-definite representations can be considered as complex ones

$$S + iA \succeq 0 \quad \Leftrightarrow \quad \begin{pmatrix} S & A \\ -A & S \end{pmatrix} \succeq 0$$

 $S \in S(n), A \in A(n)$

 \Rightarrow complex semi-definite representations can be converted into real ones

(日)

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

$$L_4 = \left\{ x = (x_0, x_1, x_2, x_3) \, | \, x_0 \ge \sqrt{x_1^2 + x_2^2 + x_3^2} \right\} \simeq H_+(2)$$

$$\begin{aligned} \mathcal{L}_4 &= \left\{ \boldsymbol{x} : \begin{pmatrix} x_0 + x_1 & x_2 + ix_3 \\ x_2 - ix_3 & x_0 - x_1 \end{pmatrix} \succeq \boldsymbol{0} \right\} \\ &= \left\{ \boldsymbol{x} : \begin{pmatrix} x_0 + x_1 & x_2 & 0 & x_3 \\ x_2 & x_0 - x_1 & -x_3 & 0 \\ 0 & -x_3 & x_0 + x_1 & x_2 \\ x_3 & 0 & x_2 & x_0 - x_1 \end{pmatrix} \succeq \boldsymbol{0} \right\} \end{aligned}$$

denote these representations of L_4 by C_2 and R_4

・ コ マ チ (雪 マ チ (雪 マ ー)

э

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Semi-definite approximations

many cones have no known semi-definite representation

- copositive cone C_n ($n \ge 5$)
- cones of multivariate nonnegative polynomials

Definition

An inner (outer) semi-definite approximation of a cone *K* is a semi-definite representable cone *K'* such that $K' \subset K$ ($K \subset K'$). Approximation *K''* is called tighter than approximation *K'* if $K' \subset K'' \subset K$ ($K \subset K'' \subset K'$). The approximation *K'* is called exact if K = K'.

used for hard combinatorial and robust optimization problems

ヘロン 人間と 人間と 人間と

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Approximations of separable cones

Theorem

Let K_1, K_2 be regular convex cones with explicit semi-definite representations R_1, R_2 given by $K_{L_1, L'_1}^{n_1}, K_{L_2, L'_2}^{n_2}$. Then $K_{L_1 \otimes L_2, L_1 \otimes L'_2 + L'_1 \otimes L_2}^{n_1 n_2}$ is an outer semi-definite approximation of the separable cone $K_1 \otimes K_2$.

- underlying matrix cone is $S_+(n_1n_2)$
- section with $L_1 \otimes L_2$
- projection on $(L_1/L_1') \otimes (L_2/L_2')$

Denote this approximation by $R_1 \otimes R_2$.

< ロ > < 同 > < 回 > < 回 > < □ > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Exactness of approximations

known exact approximations for cones $L_n \otimes K$

- $L_2 \otimes K$, K semi-def. representable (trivial)
- L₃ ⊗ S₊(n) [Terpstra, 1939]
- $L_3 \otimes H_+(n)$ [Yakubovich, 1970]
- L₄ ⊗ H₊(2) [Størmer, 1951]
- *L*₄ ⊗ *H*₊(3) [Woronowicz, 1976]
- *L_n* ⊗ S₊(3) [H., 2007]
- $L_n \otimes L_m$ this talk

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Partial order of representations

Definition

Let R, R' be semi-definite representations of a regular convex cone K.

We call *R* tighter than *R'* if for every semi-definite representable cone \tilde{K} and every semi-definite representation \tilde{R} of \tilde{K} the approximation $R \otimes \tilde{R}$ of $K \otimes \tilde{K}$ is tighter than the approximation $R' \otimes \tilde{R}$.

partial order on the set of representations of K

< □ > < 同 > < 回 > < 回 >

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example (submatrix technique)

representation R_3 of L_4

$$L_4 = \left\{ x : \begin{pmatrix} x_0 + x_1 & x_2 & x_3 \\ x_2 & x_0 - x_1 & 0 \\ x_3 & 0 & x_0 - x_1 \end{pmatrix} \succeq 0 \right\}$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example (submatrix technique)

representation R_3 of L_4

$$L_4 = \left\{ x : \begin{pmatrix} x_0 + x_1 & x_2 & x_3 \\ x_2 & x_0 - x_1 & 0 \\ x_3 & 0 & x_0 - x_1 \end{pmatrix} \succeq 0 \right\}$$

approximation $R_4 \otimes R$ of $L_4 \otimes K$

$$\left\{ (X_0, X_1, X_2, X_3) : \begin{pmatrix} X_0 + X_1 & X_2 & 0 & X_3 \\ X_2 & X_0 - X_1 & -X_3 & 0 \\ 0 & -X_3 & X_0 + X_1 & X_2 \\ X_3 & 0 & X_2 & X_0 - X_1 \end{pmatrix} \succeq 0 \right\}$$

< ロ > < 同 > < 回 > < 回 > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example (submatrix technique)

representation R_3 of L_4

$$L_4 = \left\{ x : \begin{pmatrix} x_0 + x_1 & x_2 & x_3 \\ x_2 & x_0 - x_1 & 0 \\ x_3 & 0 & x_0 - x_1 \end{pmatrix} \succeq 0 \right\}$$

approximation $R_4 \otimes R$ of $L_4 \otimes K$

$$\left\{ (X_0, X_1, X_2, X_3) : \begin{pmatrix} X_0 + X_1 & X_2 & 0 & X_3 \\ X_2 & X_0 - X_1 & -X_3 & 0 \\ 0 & -X_3 & X_0 + X_1 & X_2 \\ X_3 & 0 & X_2 & X_0 - X_1 \end{pmatrix} \succeq 0 \right\}$$

< ロ > < 同 > < 回 > < 回 > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example (submatrix technique)

representation R_3 of L_4

$$L_4 = \left\{ x : \begin{pmatrix} x_0 + x_1 & x_2 & x_3 \\ x_2 & x_0 - x_1 & 0 \\ x_3 & 0 & x_0 - x_1 \end{pmatrix} \succeq 0 \right\}$$

approximation $R_4 \otimes R$ of $L_4 \otimes K$

$$\left\{ (X_0, X_1, X_2, X_3) : \begin{pmatrix} X_0 + X_1 & X_2 & 0 & X_3 \\ X_2 & X_0 - X_1 & -X_3 & 0 \\ 0 & -X_3 & X_0 + X_1 & X_2 \\ X_3 & 0 & X_2 & X_0 - X_1 \end{pmatrix} \succeq 0 \right\}$$

 R_4 is tighter than R_3

< ロ > < 同 > < 回 > < 回 > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Automorphism group of a cone

Definition

Let $K \subset \mathbb{R}^n$ be a regular convex cone. The *automorphism* group Aut(K) of K is the group of invertible linear maps $A \in GL(n, \mathbb{R})$ such that A[K] = K.

- Aut(K) preserves the facial structure of K
- $\mathbb{R}_{++} \subset \operatorname{Aut}(K)$ for every K
- Aut(K) has a canonical faithful linear representation

< □ > < 同 > < 回 > < 回 > < 回 >

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Automorphisms of symmetric cones

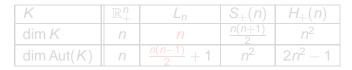
• Aut
$$(\mathbb{R}^n_+) = \mathbb{R}^n_{++} \times S_n$$

• Aut(
$$L_n$$
) = O⁺(n – 1, 1) × \mathbb{R}_{++}

• Aut
$$(S_+(n)) = GL(n, \mathbb{R})/\{-1, +1\}$$

• Aut $(H_+(n)) = GL(n, \mathbb{C})/\{e^{i\varphi}\}$ and complex conjugation

$\begin{array}{l} A \in GL(n,\mathbb{R}), X \in \mathcal{S}(n) \text{:} \ X \mapsto AXA^T \\ A \in GL(n,\mathbb{C}), X \in \mathcal{H}(n) \text{:} \ X \mapsto AXA^* \end{array}$



< □ > < 同 > < 回 > < 回 > < 回 >

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Automorphisms of symmetric cones

• Aut
$$(\mathbb{R}^n_+) = \mathbb{R}^n_{++} \times S_n$$

• Aut(
$$L_n$$
) = O⁺(n – 1, 1) × \mathbb{R}_{++}

• Aut
$$(S_+(n)) = GL(n, \mathbb{R})/\{-1, +1\}$$

• Aut $(H_+(n)) = GL(n, \mathbb{C})/\{e^{i\varphi}\}$ and complex conjugation

 $\begin{array}{l} A \in GL(n,\mathbb{R}), X \in \mathcal{S}(n) \text{:} \ \textbf{X} \mapsto AXA^T \\ A \in GL(n,\mathbb{C}), X \in \mathcal{H}(n) \text{:} \ \textbf{X} \mapsto AXA^* \end{array}$

K	\mathbb{R}^{n}_{+}	L _n	S ₊ (<i>n</i>)	$H_+(n)$
dim K	n	n	$\frac{n(n+1)}{2}$	n ²
dim Aut(K)	n	$\frac{n(n-1)}{2} + 1$	n ²	2 <i>n</i> ² – 1

・ 同 ト ・ ヨ ト ・ ヨ

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Automorphisms of semi-definite representable cones

•
$$L' \subset L \subset S(n)$$
 — linear subspaces

• $A_{L,L'} \subset Aut(S_+(n))$ — automorphisms with L, L' invariant

Theorem

There exists a canonical homomorphism $\mathcal{A}_{L,L'} \to Aut(\mathcal{K}_{L,L'}^n)$ into the automorphism group of the cone

$$\mathcal{K}_{L,L'}^n = \{ \mathbf{x} \in L/L' \mid \exists \mathbf{y} \in \mathbf{x} : \mathbf{y} \in L \cap \mathcal{S}_+(n) \}.$$

need not be injective nor surjective

(日)

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Automorphisms of separable cones

Theorem

Let K_1, K_2 be regular convex cones. Then there exists a canonical homomorphism $\operatorname{Aut}(K_1) \times \operatorname{Aut}(K_2) \to \operatorname{Aut}(K_1 \otimes K_2)$, given by $(g_1, g_2) \mapsto g_1 \otimes g_2$, for all $g_1 \in \operatorname{Aut}(K_1)$, $g_2 \in \operatorname{Aut}(K_2)$.

K	$L_n \otimes L_m$	$L_n \otimes S_+(m)$	$L_n \otimes H_+(m)$
dim K	nm	<u>nm(m+1)</u> 2	nm²
dim Aut(K)	$\frac{n^2+m^2-n-m}{2}+1$	$\frac{n(n-1)}{2} + m^2$	$\frac{n(n-1)}{2} + 2m^2 - 2$

< ロ > < 同 > < 回 > < 回 > .

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Methods using automorphisms

- block-diagonalization
- group averaging
- canonical forms

・ロト ・聞 ト ・ ヨト ・ ヨト

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Block-diagonalization

Theorem (Schur)

Let $G \subset U(n)$ be unitary representation of a compact group, decomposing into irreducible representations R_1, \ldots, R_l of dimensions d_1, \ldots, d_l and multiplicities m_1, \ldots, m_l . Then there is a matrix $U_0 \in U(n)$ such that for every complex matrix A commuting with the action of G the matrix $A_0 = U_0AU_0^*$ has a block-diagonal structure. Each irreducible representation R_k gives rise to d_k identical blocks of size m_k .

- for $K = K_{L,L'}^n$, applicable if gA = Ag for all $A \in L$, $g \in G$
- used to block-diagonalize semi-definite representations [Gatermann, Parrilo 2004]

< 日 > < 同 > < 回 > < 回 > : < 回 > : < 回 > : < 回 > : < 回 > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □ > : < □

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

 $C_n - n \times n$ complex representation of a cone *K* R_{2n} — its real form of size $2n \times 2n$

$$L = \left\{ \begin{pmatrix} S & A \\ -A & S \end{pmatrix} : S \in \mathcal{S}(n), A \in \mathcal{A}(n) \right\}$$
$$G = \left\{ \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \otimes I_n : \varphi \in (-\pi, \pi] \right\}$$
$$U_0 = \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix} \otimes I_n$$
$$U_0 \begin{pmatrix} S & A \\ -A & S \end{pmatrix} U_0^* = \begin{pmatrix} S - iA & 0 \\ 0 & S + iA \end{pmatrix}$$

 $ar{C}_n \cap C_n \simeq R_{2n} \ \Rightarrow R_{2n}$ tighter than C_n and $ar{C}_n$

< ロ > < 同 > < 回 > < 回 > .

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Group averaging

Theorem

Let $L' \subset L$ be subspaces of S(n) and let $G \subset \operatorname{Aut}(S_+(n))$ be a compact subgroup of $A_{L,L'}$ giving rise only to the trivial automorphism of $K_{L,L'}^n$. Let $F_G \subset S(n)$ be the subspace of fixed elements under the action of G. Then $K_{L,L'}^n = K_{L\cap F_G,L'\cap F_G}^n$.

proof based on group averaging

results in reduction of the dimension of projection

group averaging technique used in [Gatermann, Parrilo 2004] to reduce size of semi-definite programs

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

approximation $R_4 \otimes I$ of $L_4 \otimes S_+(n)$

$$(X_0, X_1, X_2, X_3): \begin{pmatrix} X_0 + X_1 & X_2 & 0 & X_3 \\ X_2 & X_0 - X_1 & -X_3 & 0 \\ 0 & -X_3 & X_0 + X_1 & X_2 \\ X_3 & 0 & X_2 & X_0 - X_1 \end{pmatrix} \succeq 0$$

taking dual ...

・ コ マ チ (雪 マ チ (雪 マ ー)

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

dual approximation $(R_4 \otimes I)^*$ of $\mathcal{P}(L_4, S_+(n))$

 (X_0, X_1, X_2, X_3) : there exist symmetric S_k , skew-symmetric A_k such that

$$\begin{pmatrix} X_0 + X_1 + S_1 & X_2 + S_2 + A_1 & S_4 + A_3 & X_3 + S_5 + A_4 \\ X_2 + S_2 - A_1 & X_0 - X_1 + S_3 & -X_3 + S_5 + A_5 & S_6 + A_6 \\ S_4 - A_3 & -X_3 + S_5 - A_5 & X_0 + X_1 - S_1 & X_2 - S_2 + A_2 \\ X_3 + S_5 - A_4 & S_6 - A_6 & X_2 - S_2 - A_2 & X_0 - X_1 - S_3 \end{pmatrix}$$

is positive semi-definite

< □ > < 同 > < 回 > < 回 > < 回 >

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

dual approximation $(R_4 \otimes I)^*$ of $\mathcal{P}(L_4, S_+(n))$

 (X_0, X_1, X_2, X_3) : there exist symmetric S_k , skew-symmetric A_k such that

$$\begin{pmatrix} X_0 + X_1 + S_1 & X_2 + S_2 + A_1 & S_4 + A_3 & X_3 + S_5 + A_4 \\ X_2 + S_2 - A_1 & X_0 - X_1 + S_3 & -X_3 + S_5 + A_5 & S_6 + A_6 \\ S_4 - A_3 & -X_3 + S_5 - A_5 & X_0 + X_1 - S_1 & X_2 - S_2 + A_2 \\ X_3 + S_5 - A_4 & S_6 - A_6 & X_2 - S_2 - A_2 & X_0 - X_1 - S_3 \end{pmatrix}$$

is positive semi-definite

symmetry group $G = \left\{ \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \otimes I_n : \varphi \in (-\pi, \pi] \right\}$ $F_G = \left\{ \begin{pmatrix} S & A \\ -A & S \end{pmatrix} : S \in S(n), A \in A(n) \right\}$

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

dual approximation $(R_4 \otimes I)^*$ of $\mathcal{P}(L_4, S_+(n))$

 (X_0, X_1, X_2, X_3) : there exist symmetric S_k , skew-symmetric A_k such that

$$\begin{pmatrix} X_0 + X_1 + S_1 & X_2 + S_2 + A_1 & S_4 + A_3 & X_3 + S_5 + A_4 \\ X_2 + S_2 - A_1 & X_0 - X_1 + S_3 & -X_3 + S_5 + A_5 & S_6 + A_6 \\ S_4 - A_3 & -X_3 + S_5 - A_5 & X_0 + X_1 - S_1 & X_2 - S_2 + A_2 \\ X_3 + S_5 - A_4 & S_6 - A_6 & X_2 - S_2 - A_2 & X_0 - X_1 - S_3 \end{pmatrix}$$

is positive semi-definite

symmetry group $G = \left\{ \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \otimes I_n : \varphi \in (-\pi, \pi] \right\}$ $F_G = \left\{ \begin{pmatrix} S & A \\ -A & S \end{pmatrix} : S \in S(n), A \in A(n) \right\}$

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

dual approximation $(R_4 \otimes I)^*$ of $\mathcal{P}(L_4, S_+(n))$

 (X_0, X_1, X_2, X_3) : there exist skew-symmetric A_k such that

$$\begin{pmatrix} X_0 + X_1 & X_2 + A_1 & A_3 & X_3 + A_4 \\ X_2 - A_1 & X_0 - X_1 & -X_3 + A_4 & A_6 \\ -A_3 & -X_3 - A_4 & X_0 + X_1 & X_2 + A_1 \\ X_3 - A_4 & -A_6 & X_2 - A_1 & X_0 - X_1 \end{pmatrix}$$

is positive semi-definite

symmetry group $G = \left\{ \begin{pmatrix} \cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi \end{pmatrix} \otimes I_n : \varphi \in (-\pi, \pi] \right\}$ $F_G = \left\{ \begin{pmatrix} S & A \\ -A & S \end{pmatrix} : S \in S(n), A \in A(n) \right\}$

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Canonical forms

Lemma

Let $K_1, K_2 \subset \mathbb{R}^n$ be regular convex cones, and let $G \subset \operatorname{Aut}(K_1) \cap \operatorname{Aut}(K_2)$ be a subgroup of automorphisms of both cones. Let $H \subset \mathbb{R}^n$ be a subspace such that for every $x \in K_1^o$ there exists $g \in G$: $g(x) \in H$. If $H \cap K_1 \subset H \cap K_2$, then $K_1 \subset K_2$.

apply this lemma in the situation when

- one of K_1, K_2 is the semi-definite representable cone $K_{l,l'}^n$
- the other is a regular convex cone K

 $\Rightarrow K_{L,L'}^n$ is an outer (inner) semi-definite approximation of K

・ロット (雪) (日) (日)

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

•
$$L_n = \left\{ x = (x_0, \dots, x_{n-1}) \, | \, x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$$

 G: orthogonal (x₂,..., x_{n-1})-transformations and hyperbolic (x₀, x₁)-rotations

•
$$H = \{x \mid x_1 = x_3 = \cdots = x_{n-1} = 0\}$$

•
$$L_n \cap H = \{x \in H \mid x_0 \ge |x_2|\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

•
$$L_n = \left\{ x = (x_0, \dots, x_{n-1}) \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$$

 G: orthogonal (x₂,..., x_{n-1})-transformations and hyperbolic (x₀, x₁)-rotations

•
$$H = \{x \mid x_1 = x_3 = \cdots = x_{n-1} = 0\}$$

•
$$L_n \cap H = \{x \in H \mid x_0 \ge |x_2|\}$$

$$K = \left\{ x : \begin{pmatrix} x_0 + x_1 & x_2 & \cdots & x_{n-1} \\ x_2 & & & \\ \vdots & (x_0 - x_1)I_{n-2} \\ x_{n-1} & & \end{pmatrix} \succeq 0 \right\}$$

 $G \subset \operatorname{Aut}(K)$

< ロ > < 同 > < 回 > < 回 > .

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

•
$$L_n = \left\{ x = (x_0, \dots, x_{n-1}) \, | \, x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$$

 G: orthogonal (x₂,..., x_{n-1})-transformations and hyperbolic (x₀, x₁)-rotations

•
$$H = \{x \mid x_1 = x_3 = \cdots = x_{n-1} = 0\}$$

•
$$L_n \cap H = \{x \in H \mid x_0 \ge |x_2|\}$$

$$\boldsymbol{K} \cap \boldsymbol{H} = \left\{ \boldsymbol{x} : \begin{pmatrix} \boldsymbol{x}_0 & \boldsymbol{x}_2 & \cdots & \boldsymbol{0} \\ \boldsymbol{x}_2 & & \\ \vdots & \boldsymbol{x}_0 \cdot \boldsymbol{I}_{n-2} \\ \boldsymbol{0} & & \end{pmatrix} \succeq \boldsymbol{0} \right\} = \boldsymbol{L}_n \cap \boldsymbol{H}$$

 $\Rightarrow L_n \subset K$

< ロ > < 同 > < 回 > < 回 > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

•
$$L_n = \left\{ x = (x_0, \dots, x_{n-1}) \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$$

 G: orthogonal (x₂,..., x_{n-1})-transformations and hyperbolic (x₀, x₁)-rotations

•
$$H = \{x \mid x_1 = x_3 = \cdots = x_{n-1} = 0\}$$

•
$$L_n \cap H = \{x \in H \mid x_0 \ge |x_2|\}$$

 $L_n \subset K$

repeating with the dual representation of K^* yields $L_n \subset K^* \Leftrightarrow K \subset L_n$

< ロ > < 同 > < 回 > < 回 > .

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

•
$$L_n = \left\{ x = (x_0, \dots, x_{n-1}) \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$$

 G: orthogonal (x₂,..., x_{n-1})-transformations and hyperbolic (x₀, x₁)-rotations

•
$$H = \{x \mid x_1 = x_3 = \cdots = x_{n-1} = 0\}$$

•
$$L_n \cap H = \{x \in H \mid x_0 \ge |x_2|\}$$

 $L_n \subset K$

repeating with the dual representation of K^* yields $L_n \subset K^* \Leftrightarrow K \subset L_n$

 $\Rightarrow L_n = K$

< ロ > < 同 > < 回 > < 回 > <

Semi-definite representations Semi-definite approximations Automorphism groups Applications of automorphisms

Example

$$L_{n} = \left\{ x : \begin{pmatrix} x_{0} + x_{1} & x_{2} & \cdots & x_{n-1} \\ x_{2} & & & \\ \vdots & (x_{0} - x_{1})I_{n-2} \\ x_{n-1} & & \end{pmatrix} \succeq 0 \right\}$$

denote this representation of L_n by R_{n-1}

◆□ ▶ ◆□ ▶ ◆豆 ▶ ◆豆 ▶ ○

Main result

Theorem

The semi-definite approximation $R_{n-1}^* \otimes R_{m-1}^*$ of the separable cone $L_n \otimes L_m = (\mathcal{P}(L_m, L_n))^*$ is exact.

Lorentz-positive maps studied in [Loewy, Schneider 1975]

(日)

Clifford algebras

Definition

The Clifford algebra $Cl_{n-1}(\mathbb{R})$ is a real associative algebra generated by e_1, \ldots, e_{n-1} subject to $e_k e_l = -e_l e_k$, $k \neq l$, $e_k^2 = 1$.

< ロ > < 同 > < 回 > < 回 > <

Properties of $Cl_{n-1}(\mathbb{R})$

- transposition antiautomorphism, $(ab)^t = b^t a^t$
- *n*-dimensional linear subspace $Y \subset Cl_{n-1}(\mathbb{R})$
- quadratic form J of signature $(+ \cdots -)$ on Y
- \Rightarrow Lorentz cone $L_n \subset Y$
- spin group $\text{Spin}_{1,n-1}(\mathbb{R})$ acting on $Y, y \mapsto gyg^t \in Y$
- action of $\text{Spin}_{1,n-1}(\mathbb{R})$ preserves J and L_n
- induces $SO^+_{1,n-1}(\mathbb{R}) \subset Aut(L_n)$
- complex matrix representation s.t. $x \mapsto X \Leftrightarrow x^t \mapsto X^*$
- real matrix representation s.t. $x \mapsto X \Leftrightarrow x^t \mapsto X^T$
- real rep. decomposes into copies of complex rep.

Semi-definite representation of $L_n \otimes L_m$

- SO⁺_{1,n-1}(ℝ) × SO⁺_{1,m-1}(ℝ) brings interior of L_n ⊗ L_m to diagonal form
- canonical forms: complex representation of Cl_{n-1}(ℝ) ⊗ Cl_{m-1}(ℝ) induces semi-definite representation of L_n ⊗ L_m
- block-diagonalization: real representation of Cl_{n-1}(ℝ) ⊗ Cl_{m-1}(ℝ) induces semi-definite representation of L_n ⊗ L_m
- group averaging: reduction of projection dimension for the dual representation
- submatrix technique: size reduction of the dual representation

・ロット (雪) (日) (日) (日)

LAMA papers

Hildebrand R. An LMI description for the cone of Lorentz-positive maps. *Linear and Multilinear Algebra*, 55(6):551-573, 2007.

Hildebrand R. An LMI description for the cone of Lorentz-positive maps II. *Linear and Multilinear Algebra*, 59(7):719-731, 2011.

< □ > < 同 > < 回 > < 回 > < 回 >

Open problem

Is every convex semi-algebraic regular cone semi-definite representable?

- $L_3 \otimes L_3 \otimes L_3$?
- $L_4 \otimes S_+(4)$?
- $S_+(3)\otimes S_+(3)$?
- C₅?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Open problem

Is every convex semi-algebraic regular cone semi-definite representable?

- $L_3 \otimes L_3 \otimes L_3$?
- $L_4 \otimes S_+(4)$?
- $S_+(3) \otimes S_+(3)$?
- C₅?

Thank you

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・