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Optimization problems

minimize objective function with respect to constraints

min
x∈X

f (x)

in convex optimization problems, f and X are assumed convex

X ⊂ R
n is called the feasible set
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Linear objective function

f (x) can be assumed
linear

otherwise minimize t
over the epigraph
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Regular convex cones

Definition

A regular convex cone K ⊂ R
n is a closed convex cone having

nonempty interior and containing no lines.

The dual cone

K ∗ = {y ∈ Rn | 〈x , y〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.

K1⊂K2 ⇔ K ∗
1⊃K ∗

2
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Conic programs

Definition

A conic program over a regular convex cone K ⊂ R
n is an

optimization problem of the form

min
x∈K

〈c, x〉 : Ax = b.
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Geometric interpretation

the feasible set is the
intersection of K with an
affine subspace

min
x

〈c′, x〉 : A′x + b′ ∈ K

explicit parametrization
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Projections

Lemma

Let K ⊂ R
n, K ′ ⊂ R

n′

be regular convex cones, n′ ≥ n,
Π : Rn′

→ Rn a linear map such that Π[K ′] = K . Then the conic
program

min
x∈K

〈c, x〉 : Ax = b

is equivalent to the conic program

min
y∈K ′

〈c,Π(y)〉 : AΠ(y) = b.
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Sections

Lemma

Let K ⊂ R
n, K ′ ⊂ R

n′

be regular convex cones, n′ ≥ n,
I : Rn → R

n′

an injective linear map such that I−1[K ′] = K .
Then the conic program

min
x

〈c′, x〉 : A′x + b′ ∈ K

is equivalent to the conic program

min
x

〈c′, x〉 : I(A′x + b′) ∈ K ′.
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Projections of sections

If we are able to solve conic programs over a cone K , then
we are also able to solve conic programs over linear
projections of linear sections of K .
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Duality

primal program
min
x∈K

〈c, x〉 : Ax = b

dual program
max
s∈K∗

〈c′, s〉 : A′s = b′
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Complexity of conic programs

complexity depends on the complexity of the cone K

Example: copositive cone

Cn = {A ∈ S(n) | xT Ax ≥ 0 ∀ x ∈ R
n
+}

Theorem (Murty, Kabadi, 1987)

Deciding membership in the copositive cone is
co-NP-complete.
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Linear programs

example: conic programs over K = R
n
+

feasible set is a convex polyhedron → linear program (LP)

efficient solution algorithms since the 50s (simplex method)

widely used in operations research, micro- and
macroeconomics

limited descriptive power

What is the "correct" generalization of LPs?
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Symmetric cones

R
n
+ is self-dual: (Rn

+)
∗ = R

n
+

and homogeneous: Aut(Rn
+) acts transitively on R

n
++

Definition

A self-dual, homogeneous convex cone is called symmetric.
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Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product
of a finite number of the following irreducible symmetric cones:

Lorentz (or second order) cone

Ln =
{

(x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

matrix cones S+(n), H+(n), Q+(n) of real, complex, or
quaternionic hermitian positive semi-definite matrices

Albert cone O+(3) of octonionic hermitian positive
semi-definite 3 × 3 matrices
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Lorentz cones

spheric section x0 = const
∂Ln contained in zero set of
J = diag(1,−1, . . . ,−1)
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Programs over symmetric cones

conic programs over symmetric cones are efficiently solvable
by interior-point methods [Nesterov, Nemirovski, 1994]

linear programs (LP) over Rn
+ ∼ 106 variables

conic quadratic programs (CQP) over Ln ∼ 104 variables

semi-definite programs (SDP) over S+(n) ∼ 102 variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuMi, ...) and commercial (CPLEX,
MOSEK, ...) solvers available

increasingly used in engineering sciences and industry
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Conic programs with uncertain data

conic program in explicit parametrization

min
x

〈c, x〉 : Ax + b ∈ K

suppose used data (A,b) are noisy and deviate from real data
A′ = A + δA, b′ = b + δb

then actual constraint A′x + b′ ∈ K might be violated by the
nominal optimal solution x∗(A,b)
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Robust counterpart

assume data (A,b) is in a convex uncertainty region U

Definition (Nemirovski, 2007)

The robust counterpart (RC) of the conic program

min
x

〈c, x〉 : Ax + b ∈ K

is the optimization problem

min
x

〈c, x〉 : Ax + b ∈ K ∀ (A,b) ∈ U.

"cost of robustness" is usually negligible
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Robust counterpart as conic program

how to describe the feasible set

x : Ax + b ∈ K ∀ (A,b) ∈ U ? (∗)

U → homogenization KU = ∪α≥0 αU

define linear map Ax : (A,b) 7→ Ax + b

(∗) becomes

x : Ax(u) ∈ K ∀ u = (A,b) ∈ KU

⇔ Ax maps KU into K

⇔ feasible set is intersection of an affine subspace with the
cone of all linear maps taking KU to K
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how to describe the feasible set
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Cones of positive linear maps

Definition

Let K1 ⊂ R
n1, K2 ⊂ R

n2 be regular convex cones. Call a linear
map A : Rn1 → R

n2 K1-to-K2 positive if A[K1] ⊂ K2.

The cone P(K1,K2) ⊂ R
n1n2 of K1-to-K2 positive maps is itself a

regular convex cone.

[Barker, Loewy, 1975]
[Loewy, Schneider 1975]
[Horne, 1978]
[Tam, 1981, 1990, 1992, 1995]
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Separable cones

A[K1] ⊂ K2 ⇔ Ax ∈ K2 ∀ x ∈ K1

⇔ yT Ax = xT AT y ≥ 0 ∀ x ∈ K1, y ∈ K ∗
2

⇔ 〈A, xyT 〉 ≥ 0 ∀ x ∈ K1, y ∈ K ∗
2

Theorem (Tam, 1977)

The cone P(K1,K2) is isomorphic to the cone P(K ∗
2 ,K

∗
1 ).

The dual of P(K1,K2) is isomorphic to the cone K ∗
2 ⊗ K1 given

by the convex hull of the set {x ⊗ y | x ∈ K ∗
2 , y ∈ K1}.

cones of the form K ⊗ K ′ will be called separable
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Complexity of robust counterpart

solvability of robust counterpart depends on availability of a
tractable description for the cone P(KU ,K ) (or K ∗ ⊗ KU)

ellipsoidal uncertainty ⇒ KU is a Lorentz cone

K = R
n
+: RC is a CQP

K = Ln: RC is a SDP

K = S+(n): RC is a SDP for n ≤ 3 [H., 2007], NP-hard for
general n [Nesterov, 2003]
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Problem formulation

Given a regular convex cone K , how to convert a conic
program over K into a semi-definite program?

particularly interested in the situation when K = K ′ ⊗ Ln, with
K ′ another symmetric cone
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Semi-definite representability

Definition

A cone K is called semi-definite representable if it is linearly
isomorphic to a linear projection of a linear section of S+(n) for
some n.

linear intersection with subspace L ⊂ S(n)
linear projection along subspace L′ ⊂ L

assume L ∩ S++(n) 6= ∅

K linearly isomorphic to

K n
L,L′ = {x ∈ L/L′ | ∃ y ∈ x : y ∈ L ∩ S+(n)}
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Semi-definite representable cones
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Explicit representation

L/L′ can be identified with subspace L′′ ⊂ L such that
L = L′ ⊕ L′′:

K n
L,L′ ' {x ∈ L′′ | ∃ y ∈ L′ : x + y ∈ L ∩ S+(n)}

same cone can have representations with different n,L,L′
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Duality

Theorem

Let L′ ⊂ L ⊂ S(n) be linear subspaces. Then

(K n
L,L′)∗ = K n

L′⊥,L⊥

Here L′⊥,L⊥ are the orthogonal complements of L′,L.

we call K n
L′⊥,L⊥

the dual representation of the representation

K n
L,L′
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Equivalence of real and complex representations

S(n) ⊂ H(n), S+(n) = H+(n) ∩ S(n)
⇒ real semi-definite representations can be considered as
complex ones

S + iA � 0 ⇔

(

S A
−A S

)

� 0

S ∈ S(n), A ∈ A(n)
⇒ complex semi-definite representations can be converted into
real ones
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Example

L4 =
{

x = (x0, x1, x2, x3) | x0 ≥
√

x2
1 + x2

2 + x2
3

}

' H+(2)

L4 =

{

x :

(

x0 + x1 x2 + ix3

x2 − ix3 x0 − x1

)

� 0
}

=















x :









x0 + x1 x2 0 x3

x2 x0 − x1 −x3 0
0 −x3 x0 + x1 x2

x3 0 x2 x0 − x1









� 0















denote these representations of L4 by C2 and R4
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Semi-definite approximations

many cones have no known semi-definite representation

copositive cone Cn (n ≥ 5)

cones of multivariate nonnegative polynomials

Definition

An inner (outer) semi-definite approximation of a cone K is a
semi-definite representable cone K ′ such that K ′ ⊂ K (K ⊂ K ′).
Approximation K ′′ is called tighter than approximation K ′ if
K ′ ⊂ K ′′ ⊂ K (K ⊂ K ′′ ⊂ K ′).
The approximation K ′ is called exact if K = K ′.

used for hard combinatorial and robust optimization problems
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Approximations of separable cones

Theorem

Let K1,K2 be regular convex cones with explicit semi-definite
representations R1,R2 given by K n1

L1,L′

1
,K n2

L2,L′

2
.

Then K n1n2
L1⊗L2,L1⊗L′

2+L′

1⊗L2
is an outer semi-definite approximation

of the separable cone K1 ⊗ K2.

underlying matrix cone is S+(n1n2)

section with L1 ⊗ L2

projection on (L1/L′
1)⊗ (L2/L′

2)

Denote this approximation by R1 ⊗ R2.

Roland Hildebrand Group representations in conic optimization



Conic optimization
Symmetries and semi-definite representations

Lorentz-positive maps

Semi-definite representations
Semi-definite approximations
Automorphism groups
Applications of automorphisms

Exactness of approximations

known exact approximations for cones Ln ⊗ K

L2 ⊗ K , K semi-def. representable (trivial)

L3 ⊗ S+(n) [Terpstra, 1939]

L3 ⊗ H+(n) [Yakubovich, 1970]

L4 ⊗ H+(2) [Størmer, 1951]

L4 ⊗ H+(3) [Woronowicz, 1976]

Ln ⊗ S+(3) [H., 2007]

Ln ⊗ Lm — this talk
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Partial order of representations

Definition

Let R,R′ be semi-definite representations of a regular convex
cone K .
We call R tighter than R′ if for every semi-definite representable
cone K̃ and every semi-definite representation R̃ of K̃ the
approximation R ⊗ R̃ of K ⊗ K̃ is tighter than the approximation
R′ ⊗ R̃.

partial order on the set of representations of K
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Example (submatrix technique)

representation R3 of L4

L4 =







x :





x0 + x1 x2 x3

x2 x0 − x1 0
x3 0 x0 − x1



 � 0
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Example (submatrix technique)

representation R3 of L4

L4 =







x :





x0 + x1 x2 x3

x2 x0 − x1 0
x3 0 x0 − x1



 � 0







approximation R4 ⊗ R of L4 ⊗ K














(X0,X1,X2,X3) :









X0 + X1 X2 0 X3

X2 X0 − X1 −X3 0
0 −X3 X0 + X1 X2

X3 0 X2 X0 − X1









� 0
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representation R3 of L4

L4 =
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approximation R4 ⊗ R of L4 ⊗ K
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X2 X0 − X1 −X3 0
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� 0















R4 is tighter than R3
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Automorphism group of a cone

Definition

Let K ⊂ R
n be a regular convex cone. The automorphism

group Aut(K ) of K is the group of invertible linear maps
A ∈ GL(n,R) such that A[K ] = K .

Aut(K ) preserves the facial structure of K

R++ ⊂ Aut(K ) for every K

Aut(K ) has a canonical faithful linear representation
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Automorphisms of symmetric cones

Aut(Rn
+) = R

n
++ × Sn

Aut(Ln) = O+(n − 1,1)× R++

Aut(S+(n)) = GL(n,R)/{−1,+1}

Aut(H+(n)) = GL(n,C)/{eiϕ} and complex conjugation

A ∈ GL(n,R), X ∈ S(n): X 7→ AXAT

A ∈ GL(n,C), X ∈ H(n): X 7→ AXA∗

K R
n
+ Ln S+(n) H+(n)

dim K n n n(n+1)
2 n2

dim Aut(K ) n n(n−1)
2 + 1 n2 2n2 − 1
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Automorphisms of semi-definite representable cones

L′ ⊂ L ⊂ S(n) — linear subspaces

AL,L′ ⊂ Aut(S+(n)) — automorphisms with L,L′ invariant

Theorem

There exists a canonical homomorphism AL,L′ → Aut(K n
L,L′) into

the automorphism group of the cone

K n
L,L′ = {x ∈ L/L′ | ∃ y ∈ x : y ∈ L ∩ S+(n)}.

need not be injective nor surjective
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Automorphisms of separable cones

Theorem
Let K1,K2 be regular convex cones. Then there exists a
canonical homomorphism Aut(K1)× Aut(K2) → Aut(K1 ⊗ K2),
given by (g1,g2) 7→ g1 ⊗ g2, for all g1 ∈ Aut(K1), g2 ∈ Aut(K2).

K Ln ⊗ Lm Ln ⊗ S+(m) Ln ⊗ H+(m)

dim K nm nm(m+1)
2 nm2

dim Aut(K ) n2+m2−n−m
2 + 1 n(n−1)

2 + m2 n(n−1)
2 + 2m2 − 2

Roland Hildebrand Group representations in conic optimization



Conic optimization
Symmetries and semi-definite representations

Lorentz-positive maps

Semi-definite representations
Semi-definite approximations
Automorphism groups
Applications of automorphisms

Methods using automorphisms

block-diagonalization

group averaging

canonical forms
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Block-diagonalization

Theorem (Schur)

Let G ⊂ U(n) be unitary representation of a compact group,
decomposing into irreducible representations R1, . . . ,Rl of
dimensions d1, . . . ,dl and multiplicities m1, . . . ,ml .
Then there is a matrix U0 ∈ U(n) such that for every complex
matrix A commuting with the action of G the matrix A0 = U0AU∗

0
has a block-diagonal structure. Each irreducible representation
Rk gives rise to dk identical blocks of size mk .

for K = K n
L,L′ , applicable if gA = Ag for all A ∈ L, g ∈ G

used to block-diagonalize semi-definite representations
[Gatermann, Parrilo 2004]
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Example

Cn — n × n complex representation of a cone K
R2n — its real form of size 2n × 2n

L =

{(

S A
−A S

)

: S ∈ S(n), A ∈ A(n)
}

G =

{(

cosϕ sinϕ
− sinϕ cosϕ

)

⊗ In : ϕ ∈ (−π, π]

}

U0 =

(

1 i
i 1

)

⊗ In

U0

(

S A
−A S

)

U∗
0 =

(

S − iA 0
0 S + iA

)

C̄n ∩ Cn ' R2n ⇒ R2n tighter than Cn and C̄n
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Group averaging

Theorem

Let L′ ⊂ L be subspaces of S(n) and let G ⊂ Aut(S+(n)) be a
compact subgroup of AL,L′ giving rise only to the trivial
automorphism of K n

L,L′ . Let FG ⊂ S(n) be the subspace of fixed
elements under the action of G.
Then K n

L,L′ = K n
L∩FG,L′∩FG

.

proof based on group averaging

results in reduction of the dimension of projection

group averaging technique used in [Gatermann, Parrilo 2004]
to reduce size of semi-definite programs
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Example

approximation R4 ⊗ I of L4 ⊗ S+(n)

(X0,X1,X2,X3) :









X0 + X1 X2 0 X3

X2 X0 − X1 −X3 0
0 −X3 X0 + X1 X2

X3 0 X2 X0 − X1









� 0

taking dual ...
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Example

dual approximation (R4 ⊗ I)∗ of P(L4,S+(n))

(X0,X1,X2,X3): there exist symmetric Sk , skew-symmetric Ak

such that








X0 + X1 + S1 X2 + S2 + A1 S4 + A3 X3 + S5 + A4

X2 + S2 − A1 X0 − X1 + S3 −X3 + S5 + A5 S6 + A6

S4 − A3 −X3 + S5 − A5 X0 + X1 − S1 X2 − S2 + A2

X3 + S5 − A4 S6 − A6 X2 − S2 − A2 X0 − X1 − S3









is positive semi-definite
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Example

dual approximation (R4 ⊗ I)∗ of P(L4,S+(n))

(X0,X1,X2,X3): there exist symmetric Sk , skew-symmetric Ak

such that








X0 + X1 + S1 X2 + S2 + A1 S4 + A3 X3 + S5 + A4

X2 + S2 − A1 X0 − X1 + S3 −X3 + S5 + A5 S6 + A6

S4 − A3 −X3 + S5 − A5 X0 + X1 − S1 X2 − S2 + A2

X3 + S5 − A4 S6 − A6 X2 − S2 − A2 X0 − X1 − S3









is positive semi-definite

symmetry group G =

{(

cosϕ sinϕ
− sinϕ cosϕ

)

⊗ In : ϕ ∈ (−π, π]

}

FG =

{(

S A
−A S

)

: S ∈ S(n), A ∈ A(n)
}
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Example

dual approximation (R4 ⊗ I)∗ of P(L4,S+(n))

(X0,X1,X2,X3): there exist symmetric Sk , skew-symmetric Ak

such that








X0 + X1 + S1 X2 + S2 + A1 S4 + A3 X3 + S5 + A4

X2 + S2 − A1 X0 − X1 + S3 −X3 + S5 + A5 S6 + A6

S4 − A3 −X3 + S5 − A5 X0 + X1 − S1 X2 − S2 + A2

X3 + S5 − A4 S6 − A6 X2 − S2 − A2 X0 − X1 − S3









is positive semi-definite

symmetry group G =

{(

cosϕ sinϕ
− sinϕ cosϕ

)

⊗ In : ϕ ∈ (−π, π]

}

FG =

{(

S A
−A S

)

: S ∈ S(n), A ∈ A(n)
}
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Example

dual approximation (R4 ⊗ I)∗ of P(L4,S+(n))

(X0,X1,X2,X3): there exist skew-symmetric Ak

such that








X0 + X1 X2 + A1 A3 X3 + A4

X2 − A1 X0 − X1 −X3 + A4 A6

−A3 −X3 − A4 X0 + X1 X2 + A1

X3 − A4 −A6 X2 − A1 X0 − X1









is positive semi-definite

symmetry group G =

{(

cosϕ sinϕ
− sinϕ cosϕ

)

⊗ In : ϕ ∈ (−π, π]

}

FG =

{(

S A
−A S

)

: S ∈ S(n), A ∈ A(n)
}
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Canonical forms

Lemma

Let K1,K2 ⊂ R
n be regular convex cones, and let

G ⊂ Aut(K1)∩Aut(K2) be a subgroup of automorphisms of both
cones. Let H ⊂ R

n be a subspace such that for every x ∈ K o
1

there exists g ∈ G: g(x) ∈ H. If H ∩ K1 ⊂ H ∩ K2, then K1 ⊂ K2.

apply this lemma in the situation when

one of K1,K2 is the semi-definite representable cone K n
L,L′

the other is a regular convex cone K

⇒ K n
L,L′ is an outer (inner) semi-definite approximation of K
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Ln =
{

x = (x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

G: orthogonal (x2, . . . , xn−1)-transformations and
hyperbolic (x0, x1)-rotations

H = {x | x1 = x3 = · · · = xn−1 = 0}

Ln ∩ H = {x ∈ H | x0 ≥ |x2|}

Roland Hildebrand Group representations in conic optimization



Conic optimization
Symmetries and semi-definite representations

Lorentz-positive maps

Semi-definite representations
Semi-definite approximations
Automorphism groups
Applications of automorphisms

Example

Ln =
{

x = (x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

G: orthogonal (x2, . . . , xn−1)-transformations and
hyperbolic (x0, x1)-rotations

H = {x | x1 = x3 = · · · = xn−1 = 0}

Ln ∩ H = {x ∈ H | x0 ≥ |x2|}

K =



















x :











x0 + x1 x2 · · · xn−1

x2
...

xn−1

(x0 − x1)In−2











� 0



















G ⊂ Aut(K )
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Example

Ln =
{

x = (x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

G: orthogonal (x2, . . . , xn−1)-transformations and
hyperbolic (x0, x1)-rotations

H = {x | x1 = x3 = · · · = xn−1 = 0}

Ln ∩ H = {x ∈ H | x0 ≥ |x2|}

K ∩ H =



















x :











x0 x2 · · · 0
x2
...
0

x0 · In−2











� 0



















= Ln ∩ H

⇒ Ln ⊂ K
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Example

Ln =
{

x = (x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

G: orthogonal (x2, . . . , xn−1)-transformations and
hyperbolic (x0, x1)-rotations

H = {x | x1 = x3 = · · · = xn−1 = 0}

Ln ∩ H = {x ∈ H | x0 ≥ |x2|}

Ln ⊂ K

repeating with the dual representation of K ∗ yields Ln ⊂ K ∗

⇔ K ⊂ Ln
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Example

Ln =
{

x = (x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

G: orthogonal (x2, . . . , xn−1)-transformations and
hyperbolic (x0, x1)-rotations

H = {x | x1 = x3 = · · · = xn−1 = 0}

Ln ∩ H = {x ∈ H | x0 ≥ |x2|}

Ln ⊂ K

repeating with the dual representation of K ∗ yields Ln ⊂ K ∗

⇔ K ⊂ Ln

⇒ Ln = K
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Example

Ln =



















x :











x0 + x1 x2 · · · xn−1

x2
...

xn−1

(x0 − x1)In−2











� 0



















denote this representation of Ln by Rn−1
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Main result

Theorem

The semi-definite approximation R∗
n−1 ⊗ R∗

m−1 of the separable
cone Ln ⊗ Lm = (P(Lm,Ln))

∗ is exact.

Lorentz-positive maps studied in [Loewy, Schneider 1975]
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Clifford algebras

Definition

The Clifford algebra Cln−1(R) is a real associative algebra
generated by e1, . . . ,en−1 subject to ekel = −elek , k 6= l ,
e2

k = 1.
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Properties of Cln−1(R)

transposition antiautomorphism, (ab)t = btat

n-dimensional linear subspace Y ⊂ Cln−1(R)

quadratic form J of signature (+ − · · · −) on Y

⇒ Lorentz cone Ln ⊂ Y

spin group Spin1,n−1(R) acting on Y , y 7→ gygt ∈ Y

action of Spin1,n−1(R) preserves J and Ln

induces SO+
1,n−1(R) ⊂ Aut(Ln)

complex matrix representation s.t. x 7→ X ⇔ x t 7→ X ∗

real matrix representation s.t. x 7→ X ⇔ x t 7→ X T

real rep. decomposes into copies of complex rep.

Roland Hildebrand Group representations in conic optimization



Conic optimization
Symmetries and semi-definite representations

Lorentz-positive maps

Semi-definite representation of Ln ⊗ Lm

SO+
1,n−1(R)× SO+

1,m−1(R) brings interior of Ln ⊗ Lm to
diagonal form

canonical forms: complex representation of
Cln−1(R)⊗ Clm−1(R) induces semi-definite representation
of Ln ⊗ Lm

block-diagonalization: real representation of
Cln−1(R)⊗ Clm−1(R) induces semi-definite representation
of Ln ⊗ Lm

group averaging: reduction of projection dimension for the
dual representation

submatrix technique: size reduction of the dual
representation
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LAMA papers

Hildebrand R. An LMI description for the cone of
Lorentz-positive maps. Linear and Multilinear Algebra,
55(6):551-573, 2007.

Hildebrand R. An LMI description for the cone of
Lorentz-positive maps II. Linear and Multilinear Algebra,
59(7):719-731, 2011.
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Open problem

Is every convex semi-algebraic regular cone semi-definite
representable?

L3 ⊗ L3 ⊗ L3?

L4 ⊗ S+(4)?

S+(3)⊗ S+(3)?

C5?
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Open problem

Is every convex semi-algebraic regular cone semi-definite
representable?

L3 ⊗ L3 ⊗ L3?

L4 ⊗ S+(4)?

S+(3)⊗ S+(3)?

C5?

Thank you
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