Robust conic quadratic programming

 with ellipsoidal uncertaintiesRoland Hildebrand (LJK Grenoble 1 / CNRS, Grenoble)

KTH, Stockholm; November 13, 2008

Uncertain conic programs

$$
\min _{x}\langle c, x\rangle: A x+b \in K
$$

$K \subset R^{N}$ regular convex cone, $x \in \mathbb{R}^{n}$ vector of decision variables data A, b, c may be uncertain and vary in an uncertainty set U
let x^{*} be the (nominal) optimal solution
for perturbed data $A^{\prime}=A+\delta A, b^{\prime}=b+\delta b$ the constraint might be violated:

$$
A^{\prime} x^{*}+b^{\prime} \notin K
$$

Robust counterpart

Example 1 (Nemirovski, SP XI Vienna, 2007):
in 19 (13) of the 90 NETLIB LP test programs
(http://www.netlib.org/lp/data/), perturbation of the data by 0.01% leads to violation by $5 \%(50 \%)$ of some constraints
remedy : solve robust counterpart

$$
\min _{x} \tau:\langle c, x\rangle \leq \tau, A x+b \in K \quad \forall(A, b, c) \in U
$$

in the sequel we consider the cost vector c to be certain

Example 1 (continued)

"cost of robustness" is usually negligible
in all of the 90 NETLIB LP problems, cost of robust optimal solution is $<0.4 \% ~(<1 \%)$ worse than that of the nominal optimal solution if robustified against perturbations of $0.01 \% ~(0.1 \%)$ magnitude

Example 2

Ben-Tal \& Nemirovski, "Robust convex optimization", 1998:
truss topology design optimized with respect to a nominal load f^{*} highly unstable: application of a small force (10% of f^{*}) leads to an 3000 -fold increase of the compliance
compliance of the robustified design is only 0.24% larger than that of the nominal one

complexity of robust conic program depends both on K and U
we suppose uncertainty set U given by

$$
(A, b)=\left(A^{0}, b^{0}\right)+\sum_{k=1}^{m-1} u_{k} \cdot\left(A^{k}, b^{k}\right), \quad u \in B
$$

$B \subset \mathbb{R}^{m-1}$ compact convex set
trivial case: finite number of scenarios
$\Leftrightarrow B$ convex polyhedral set with small number of vertices

Robust counterpart : reformulation

define cone

$$
K_{B}=\left\{(\tau ; \tau u) \in \mathbb{R}^{m} \mid \tau \geq 0, u \in B\right\}
$$

then robust counterpart becomes

$$
\min _{x}\langle c, x\rangle:\left(\sum_{k=0}^{m-1} u_{k} A^{k}\right) x+\sum_{k=0}^{m-1} u_{k} b^{k} \in K \quad \forall u \in K_{B}
$$

or equivalently

$$
\min _{x}\langle c, x\rangle: \mathcal{A}_{x}\left[K_{B}\right] \subset K
$$

where $\mathcal{A}_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$ given by

$$
\mathcal{A}_{x}(u)=\left(\sum_{k=0}^{m-1} u_{k} A^{k}\right) x+\sum_{k=0}^{m-1} u_{k} b^{k}
$$

coefficients of linear map \mathcal{A}_{x} affine in x

Positive maps

for regular convex cones $K_{1} \subset \mathbb{R}^{n_{1}}, K_{2} \subset \mathbb{R}^{n_{2}}$, call a linear map $A: \mathbb{R}^{n_{1}} \rightarrow \mathbb{R}^{n_{2}} K_{1}$-to- K_{2} positive if $A\left[K_{1}\right] \subset K_{2}$
cone of positive maps is itself a regular convex cone in $\mathbb{R}^{n_{1} n_{2}}$
K-to- \mathbb{R}_{+}positive cone is the dual cone K^{*}
$\left(K_{1} \times \cdots \times K_{m}\right)$-to- $\left(K_{1}^{\prime} \times \cdots \times K_{m^{\prime}}^{\prime}\right)$ positive cone is the product $\prod_{k=1}^{m} \prod_{k^{\prime}=1}^{m^{\prime}}$ of K_{k}-to- $K_{k^{\prime}}^{\prime}$ positive cones
nice description of robust counterpart depends on availability of nice description of the K_{B}-to- K positive cone

Choice of uncertainty B

L_{1}-ball (hyper-octahedron) ok for small number of uncertain variables, but in higher dimensions it becomes "spiky"
L_{2}-ball well-balanced uncertainty naturally occurring when data is obtained from parametric estimation
L_{∞}-ball (box) occurs if we have interval uncertainty, often intractable due to large number of vertices
robust LP with box-constrained uncertainty is an LP
(Ben-Tal \& Nemirovski, "Robust convex optimization", 1998)

Ellipsoidal uncertainty

Lorentz cone

$$
L_{m}=\left\{\left(u_{0}, \ldots, u_{m-1}\right)^{T} \mid u_{0} \geq\left\|\left(u_{1}, \ldots, u_{m-1}\right)^{T}\right\|_{2}\right\}
$$

robust counterpart for ellipsoidal uncertainty can be written as

$$
\min _{x}\langle c, x\rangle: \mathcal{A}_{x} L_{m} \text {-to- } K \text { positive }
$$

$\mathcal{A}_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$ affine in x
due to possibility of taking products we can have

- independent ellipsoids on different data
- uncertainties which are convex hulls of different, possibly degenerated ellipsoids (e.g. $L_{1}-L_{2}$ hybrid ball)

Existing results

robust LP with ellipsoidal uncertainty (even for intersections of ellipsoids) is a CQP (Ben-Tal \& Nemirovski, 1998)
L_{m}-to- $L_{m^{\prime}}$ positive cone efficiently computable (Nemirovski)
hence robust CQP with ellipsoidal uncertainty computable with cutting-plane methods - practically unfeasible for $m \approx m^{\prime} \geq 10$
if uncertainty on each constraint independent, and uncertainty on zero components independent of uncertainty on the other components, then the robust counterpart of a CQP is an SDP (Ben-Tal \& Nemirovski, 1998)

Existing results

SDP with rank 2 ellipsoidal uncertainty is an SDP (Ben-Tal \& Nemirovski, "Robust convex optimization", 1998)

$$
\begin{gathered}
\min _{x}\langle c, x\rangle: \\
A_{0}+\sum_{k=1}^{n} x_{k} A_{k}+\sum_{j=1}^{m-1} u_{j}\left(\left(b_{j}+x^{T} B_{j}\right) d^{T}+d\left(b_{j}^{T}+B_{j}^{T} x\right)\right) \succeq 0 \\
\forall\|u\|_{2} \leq 1
\end{gathered}
$$

with d fixed

$$
L_{m} \text {-to- } S_{+}(n) \text { positive cone }
$$

$\mathcal{S}(n)$ - space of $n \times n$ real symmetric matrices
$\mathcal{A}(n)$ - space of $n \times n$ real skew-symmetric matrices
$S_{+}(n) \subset \mathcal{S}(n)$ - cone of PSD matrices
consider a map $A: \mathbb{R}^{m} \rightarrow \mathcal{S}(n)$ given by

$$
x \mapsto \sum_{k=0}^{m-1} x_{k} A_{k}, \quad A_{k} \in \mathcal{S}(n)
$$

Standard relaxation

define an associated matrix

$$
\mathcal{M}_{A}=\left(\begin{array}{ccccc}
A_{0}+A_{1} & A_{2} & \cdots & \cdots & A_{m-1} \\
A_{2} & A_{0}-A_{1} & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & 0 & 0 \\
\vdots & 0 & 0 & A_{0}-A_{1} & 0 \\
A_{m-1} & 0 & \cdots & 0 & A_{0}-A_{1}
\end{array}\right)
$$

suppose

$$
\begin{equation*}
\exists X \in \mathcal{A}(m-1) \otimes \mathcal{A}(n): \quad \mathcal{M}_{A}+X \succeq 0 \tag{suf}
\end{equation*}
$$

then A is L_{m}-to- $S_{+}(n)$ positive

Proof

let $z \in \mathbb{R}^{n}$ be arbitrary
let $x \in \partial L_{m}$ be normalized to $x_{0}+x_{1}=1$
convex conic closure of such x is L_{m}
then with $\tilde{x}=\left(x_{2}, \ldots, x_{m-1}\right)^{T}$ we have $x_{0}^{2}-x_{1}^{2}=x_{0}-x_{1}=\|\tilde{x}\|_{2}^{2}$
compute

$$
\begin{gathered}
{\left[\left(1 \tilde{x}^{T}\right) \otimes z^{T}\right] X\left[\binom{1}{\tilde{x}} \otimes z\right]=0} \\
{\left[\left(1 \tilde{x}^{T}\right) \otimes z^{T}\right] \mathcal{M}_{A}\left[\binom{1}{\tilde{x}} \otimes z\right]=} \\
z^{T}\left[A_{0}+A_{1}+2 \sum_{k=2}^{m-1} x_{k} A_{k}+\|\tilde{x}\|_{2}^{2}\left(A_{0}-A_{1}\right)\right] z=2 z^{T} A(x) z \geq 0
\end{gathered}
$$

hence $A(x) \succeq 0$ and A is L_{m}-to- $S_{+}(n)$ positive

LMI description

for $n=1$ condition (suf) is trivially necessary

Theorem (Størmer, 1951) If $n=2$, then condition (suf) is also necessary for positivity of the map A.

Theorem (Woronowicz, 1976) If $n=3$ and $m \leq 4$, then condition (suf) is also necessary for positivity of the map A.

Theorem (H., 2007) If $n=3$, then condition (suf) is also necessary for positivity of the map A.
this yields a (lifted) LMI representation of the L_{m}-to- $S_{+}(n)$ positive cone for $n \leq 3$

$$
L_{m} \text {-to- } L_{n} \text { positive cone }
$$

consider a map $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ given by a real $n \times m$ matrix interpret A as an element of $\mathbb{R}^{n} \otimes \mathbb{R}^{m}$
define a linear map $\mathcal{W}_{r}: \mathbb{R}^{r} \rightarrow \mathcal{S}(r-1)$ by

$$
\mathcal{W}_{r}(x)=\left(\begin{array}{ccccc}
x_{0}+x_{1} & x_{2} & \cdots & \cdots & x_{r-1} \\
x_{2} & x_{0}-x_{1} & 0 & \cdots & 0 \\
\vdots & 0 & \ddots & 0 & 0 \\
\vdots & 0 & 0 & x_{0}-x_{1} & 0 \\
x_{r-1} & 0 & \cdots & 0 & x_{0}-x_{1}
\end{array}\right)
$$

Standard relaxation

suppose
$\exists X \in \mathcal{A}(n-1) \otimes \mathcal{A}(m-1): \quad\left(\mathcal{W}_{n} \otimes \mathcal{W}_{m}\right)(A)+X \succeq 0$
then A is L_{m}-to- L_{n} positive

Proof

let $x \in \partial L_{n}$ be normalized to $x_{0}+x_{1}=1$
let $y \in \partial L_{m}$ be normalized to $y_{0}+y_{1}=1$
define $\tilde{x}=\left(x_{2}, \ldots, x_{n-1}\right)^{T}, \tilde{y}=\left(y_{2}, \ldots, y_{m-1}\right)^{T}$
compute

$$
\begin{gathered}
{\left[\left(1 \tilde{x}^{T}\right) \otimes\left(1 \tilde{y}^{T}\right)\right] X\left[\binom{1}{\tilde{x}} \otimes\binom{1}{\tilde{y}}\right]=0} \\
{\left[\left(1 \tilde{x}^{T}\right) \otimes\left(1 \tilde{y}^{T}\right)\right]\left(\mathcal{W}_{n} \otimes \mathcal{W}_{m}\right)(A)\left[\binom{1}{\tilde{x}} \otimes\binom{1}{\tilde{y}}\right]=4 x^{T} A y \geq 0}
\end{gathered}
$$

hence $A\left[L_{m}\right] \subset L_{n}$ by self-duality of L_{n} and A is L_{m}-to- L_{n} positive

LMI description

Theorem (Yakubovich, 1962) If $n=3$ or $m=3$, then condition (suf2) is also necessary for positivity of the map A.

Theorem (Størmer, 1951) If $n=4$ or $m=4$, then condition (suf2) is also necessary for positivity of the map A.

Theorem (H., 2008) Condition (suf2) is also necessary for positivity of the map A for arbitrary n, m.
this yields a (lifted) LMI representation of the L_{m}-to- L_{n} positive cone

Example

$\left(\mathcal{W}_{4} \otimes \mathcal{W}_{4}\right)(A)=$

$$
\begin{aligned}
& \left(\begin{array}{ccccccccc}
A_{++} & A_{+2} & A_{+3} & A_{2+} & A_{22} & A_{23} & A_{3+} & A_{32} & A_{33} \\
A_{+2} & A_{+-} & & A_{22} & A_{2-} & & A_{32} & A_{3-} & \\
A_{+3} & & A_{+-} & A_{23} & & A_{2-} & A_{33} & & A_{3-} \\
A_{2+} & A_{22} & A_{23} & A_{-+} & A_{-2} & A_{-3} & & & \\
A_{22} & A_{2-} & & A_{-2} & A_{--} & & & & \\
A_{23} & & A_{2-} & A_{-3} & & A_{--} & & & \\
A_{3+} & A_{32} & A_{33} & & & & A_{-+} & A_{-2} & A_{-3} \\
A_{32} & A_{3-} & & & & & A_{-2} & A_{--} & \\
A_{33} & & A_{3-} & \\
A_{+ \pm}=A_{00} \pm A_{01}+A_{10} \pm A_{11}, A_{- \pm}=A_{00} \pm A_{01}-A_{10} \mp A_{11},
\end{array}\right. \\
& A_{ \pm k}=A_{0 k} \pm A_{1 k}, A_{k \pm}=A_{k 0} \pm A_{k 1}
\end{aligned}
$$

LMI description of robust programs

robust counterpart of mixed LP/CQP/SDP with SDP individual block size not exceeding 3 for real symmetric blocks and 2 for complex hermitian blocks

$$
K=\mathbb{R}_{+}^{N_{L P}} \times \prod_{i=1}^{N_{C Q P}} L_{n_{i}} \times \prod_{i=1}^{N_{S D P}} S_{+}(3)
$$

with uncertainty given by convex hulls of a finite number of ellipsoids is a mixed CQP/SDP
block structure is inherited from original program as well as from structure of uncertainty

