Abstract cones of positive polynomials and their sums of squares relaxations

Roland Hildebrand

Laboratoire Jean Kuntzmann
Université Grenoble 1 / CNRS

May 13, 2011

Outline

Cones of positive polynomials

- Definition
- Newton polytopes
- Regularity
- Dual cone
- Abstract positive cones

SOS relaxations

- Definition
- Structure
- Dimension
- Abstract SOS cones
- Hierarchy
- Construction in practice

Cones of positive polynomials

$\mathcal{L}_{\mathcal{A}}$ - linear space of polynomials

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha \in \mathcal{A}} c_{\alpha}(p) x^{\alpha}
$$

$\mathcal{A} \subset \mathbb{N}^{n}$ - ordered set of multi-indices $\alpha^{k}=\left(\alpha_{1}^{k}, \ldots, \alpha_{n}^{k}\right)$ $\operatorname{dim} \mathcal{L}_{\mathcal{A}}=\# \mathcal{A}=m$ define $m \times n$ matrix $M_{\mathcal{A}}=\left(\alpha_{l}^{k}\right)_{k=1, \ldots, m ; l=1, \ldots, n}$ with $\alpha_{0}^{k}=1, M_{\mathcal{A}}^{\prime}=\left(\alpha_{l}^{k}\right)_{k=1, \ldots, m ; l=0, \ldots, n}-m \times(n+1)$ matrix
$\mathcal{I}_{\mathcal{A}}: p \mapsto\left(c_{\alpha}(p)\right)_{\alpha \in \mathcal{A}} \subset \mathbb{R}^{m}$ linear isomorphism
$\mathcal{P}_{\mathcal{A}}$ cone of positive polynomials
$\mathcal{I}_{\mathcal{A}}\left[\mathcal{P}_{\mathcal{A}}\right] \subset \mathbb{R}^{m}$ its image

Example

Motzkin polynomial $p_{M}(x, y, z)=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2}$

$$
\mathcal{A}=\{(2,4,0),(4,2,0),(0,0,6),(2,2,2)\}, n=3, m=\# \mathcal{A}=4
$$

$$
\begin{aligned}
& M_{\mathcal{A}}=\left(\begin{array}{lll}
2 & 4 & 0 \\
4 & 2 & 0 \\
0 & 0 & 6 \\
2 & 2 & 2
\end{array}\right) \\
& M_{\mathcal{A}}^{\prime}=\left(\begin{array}{llll}
1 & 2 & 4 & 0 \\
1 & 4 & 2 & 0 \\
1 & 0 & 0 & 6 \\
1 & 2 & 2 & 2
\end{array}\right)
\end{aligned}
$$

$p_{M} \in \mathcal{P}_{\mathcal{A}}, \mathcal{I}_{\mathcal{A}}\left(p_{M}\right)=(1,1,1,-3)^{T} \in \mathcal{I}_{\mathcal{A}}\left[\mathcal{P}_{\mathcal{A}}\right]$

Example cont'd

Newton polytope and integer lattices

for $p \in \mathcal{L}_{\mathcal{A}}$

$$
N(p)=\operatorname{conv}\left\{\alpha \mid c_{\alpha}(p) \neq 0\right\}
$$

Newton polytope associated with p

$$
N_{\mathcal{A}}=\cup_{p \in \mathcal{L}_{\mathcal{A}}} N(p)=\operatorname{conv} \mathcal{A}
$$

Newton polytope associated with $\mathcal{L}_{\mathcal{A}}$

$$
\Gamma_{\mathcal{A}}=\left\{\sum_{\alpha \in \mathcal{A}} a_{\alpha} \alpha \mid a_{\alpha} \in \mathbb{Z} \forall \alpha \in \mathcal{A}, \sum a_{\alpha}=1\right\} \subset \mathbb{Z}^{n}
$$

integer lattice generated by \mathcal{A} in aff \mathcal{A}

$$
\Gamma_{\mathcal{A}}^{e} \subset \Gamma_{\mathcal{A}}
$$

sublattice of even points

Regularity of $\mathcal{P}_{\mathcal{A}}$

Theorem [Reznick, 1978] Let $p \in \mathcal{P}_{\mathcal{A}}$ and let $\alpha^{*} \in \mathcal{A}$ be extremal in $N(p)$. Then $c_{\alpha^{*}}(p)>0$ and α^{*} is even.
hence assume w.r.o.g. that $\operatorname{extr} N_{\mathcal{A}} \subset \Gamma_{\mathcal{A}}^{e}$ otherwise $\mathcal{P}_{\mathcal{A}}$ contained in proper subspace of $\mathcal{L}_{\mathcal{A}}$

Lemma $\mathcal{P}_{\mathcal{A}} \subset \mathcal{L}_{\mathcal{A}}$ is a regular convex cone.
$\mathcal{P}_{\mathcal{A}}$ closed and does not contain lines
$p(x)=\sum_{\alpha \in \operatorname{extr} N_{\mathcal{A}}} x^{\alpha}$ is in $\operatorname{int} \mathcal{P}_{\mathcal{A}}$, since $p+q \in \mathcal{P}_{\mathcal{A}}$ for all $q: \sum_{\alpha \in \mathcal{A}}\left|c_{\alpha}(q)\right| \leq 1$

Dual cone

vector of monomials $X_{\mathcal{A}}(x)=\left(x^{\alpha}\right)_{\alpha \in \mathcal{A}}$
moment surface $\mathcal{X}_{\mathcal{A}}=\left\{X_{\mathcal{A}}(x) \mid x \in \mathbb{R}^{n}\right\}$
$\operatorname{Lemma}\left(\mathcal{I}_{\mathcal{A}}\left[\mathcal{P}_{\mathcal{A}}\right]\right)^{*}=\operatorname{conv}\left(\operatorname{concl} \mathcal{X}_{\mathcal{A}}\right)$.
$p(x)=\left\langle\mathcal{I}_{\mathcal{A}}(p), X_{\mathcal{A}}(x)\right\rangle$

$$
\operatorname{con} \operatorname{cl} \mathcal{X}_{\mathcal{A}}=\operatorname{cl}\left\{(-1)^{\delta} \circ \exp (y) \mid \delta \in \operatorname{Im} \pi_{2}\left[M_{\mathcal{A}}\right], y \in \operatorname{Im} M_{\mathcal{A}}^{\prime}\right\}
$$

$\pi_{2}: \mathbb{Z} \rightarrow \mathbb{F}_{2}$ - ring homomorphism to $\mathbb{F}_{2}=(\{0,1\},+, \cdot)$

Equivalence relation

Theorem Let $\mathcal{A}=\left\{\alpha^{1}, \ldots, \alpha^{m}\right\} \subset \mathbb{N}^{n}$,
$\mathcal{A}^{\prime}=\left\{\alpha^{\prime 1}, \ldots, \alpha^{\prime m}\right\} \subset \mathbb{N}^{n^{\prime}}$. Then the following are equivalent.

1) $\operatorname{concl} \mathcal{X}_{\mathcal{A}}=\operatorname{concl} \mathcal{X}_{\mathcal{A}^{\prime}}$,
2) the order isomorphism $I_{A}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ can be extended to a lattice isomorphism $I_{\Gamma}: \Gamma_{\mathcal{A}} \rightarrow \Gamma_{\mathcal{A}^{\prime}}$, and $I_{\Gamma}\left[\Gamma_{\mathcal{A}}^{e}\right]=\Gamma_{\mathcal{A}^{\prime}}^{e}$.
3) - 2) imply
$\mathcal{I}_{\mathcal{A}}\left[\mathcal{P}_{\mathcal{A}}\right]=\mathcal{I}_{\mathcal{A}^{\prime}}\left[\mathcal{P}_{\mathcal{A}^{\prime}}\right]$.
1) - 2) define an equivalence relation \sim_{P} on the class of ordered multi-index sets of cardinality m

Abstract positive cones

$[\mathcal{A}]$ - equivalence class of \mathcal{A} w.r. to \sim_{p}
Definition We call $P_{[\mathcal{A}]}=\mathcal{I}_{\mathcal{A}}\left[\mathcal{P}_{\mathcal{A}}\right] \subset \mathbb{R}^{m}$ an abstract cone of positive polynomials.
infinitely many cones of positive polynomials $P_{\mathcal{A}}$ generate the same abstract cone $P_{[\mathcal{A}]}$

Sums of squares

classical approach

$$
\begin{gathered}
\Sigma_{\mathcal{A}}=\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k}: p=\sum_{k=1}^{N} q_{k}^{2}\right\} \\
\Sigma_{h, \mathcal{A}}=\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k}: p h=\sum_{k=1}^{N} q_{k}^{2}\right\}
\end{gathered}
$$

h nonzero positive polynomial
$\Sigma_{\mathcal{A}}, \Sigma_{h, \mathcal{A}}$ inner semidefinite relaxations of $\mathcal{P}_{\mathcal{A}}$
in general $\Sigma_{\mathcal{A}} \neq \mathcal{P}_{\mathcal{A}}$, e.g., $p_{M} \notin \Sigma_{\mathcal{A}}$
Theorem [Reznick, 1978] Let $p=\sum_{k=1}^{N} q_{k}^{2}$. Then $N\left(q_{k}\right) \subset N(p) / 2 \forall k=1, \ldots, N$.
\Rightarrow if $p=\sum_{k=1}^{N} q_{k}^{2} \in \mathcal{P}_{\mathcal{A}}$, then $q_{k} \in \mathcal{L}_{N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}}$

Structure of $\Sigma_{\mathcal{A}}$

$\mathcal{F} \subset \mathbb{N}^{n}$ - ordered multi-index set

$$
\begin{aligned}
\Sigma_{\mathcal{F}, \mathcal{A}} & =\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k} \in \mathcal{L}_{\mathcal{F}}: p(x)=\sum_{k=1}^{N} q_{k}^{2}\right\} \\
& =\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists C \succeq 0: p(x)=X_{\mathcal{F}}(x)^{T} C X_{\mathcal{F}}(x)\right\}
\end{aligned}
$$

is an inner semidefinite relaxation for $\mathcal{P}_{\mathcal{A}}$
$L_{\mathcal{F}, \mathcal{A}}: \mathcal{S}\left(m^{\prime}\right) \rightarrow \mathcal{L}_{(\mathcal{F}+\mathcal{F}) \cup \mathcal{A}}, L_{\mathcal{F}, \mathcal{A}}: C \rightarrow p$ linear projection

$$
\Sigma_{\mathcal{F}, \mathcal{A}}=\mathcal{L}_{\mathcal{A}} \cap L_{\mathcal{F}, \mathcal{A}}\left[\mathcal{S}_{+}\left(m^{\prime}\right)\right]
$$

explicit semidefinite description

Order structure

\mathcal{F} smaller \Rightarrow relaxation $\Sigma_{\mathcal{F}, \mathcal{A}}$ weaker
$\Sigma_{\mathcal{A}}=\Sigma_{N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}, \mathcal{A}}-$ strongest among $\Sigma_{\mathcal{F}, \mathcal{A}}$
w.r.o.g. $\mathcal{F} \subset \mathcal{F}_{\max }(\mathcal{A})=N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}$
inclusion (partial) ordering on the set of such \mathcal{F} induces partial ordering on the set of SOS relaxations $\Sigma_{\mathcal{F}, \mathcal{A}}$

Example

Motzkin polynomial

$$
\begin{aligned}
& \mathcal{A}=\{(2,4,0),(4,2,0),(0,0,6),(2,2,2)\} \\
& \mathcal{F}_{\max }(\mathcal{A})=\mathcal{F}=\{(1,2,0),(2,1,0),(0,0,3),(1,1,1)\}
\end{aligned}
$$

$$
M_{\mathcal{F}}=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right)
$$

Example cont'd

Dimensions of $\Sigma_{\mathcal{A}}$ and $\mathcal{P}_{\mathcal{A}}$ equal?

$\Sigma_{\mathcal{F}, \mathcal{A}} \subset \mathcal{L}_{(\mathcal{F}+\mathcal{F}) \cap \mathcal{A}}$
$\Sigma_{\mathcal{F}, \mathcal{A}}$ relaxation of $\mathcal{P}_{(\mathcal{F}+\mathcal{F}) \cap \mathcal{A}}$ rather than of $\mathcal{P}_{\mathcal{A}}$ $\operatorname{dim} \Sigma_{\mathcal{F}, \mathcal{A}}=\operatorname{dim} \mathcal{P}_{\mathcal{A}} \Rightarrow \mathcal{A} \subset \mathcal{F}+\mathcal{F}$

Is this necessary condition verified by $\mathcal{F}=\mathcal{F}_{\max }(\mathcal{A})$ for all \mathcal{A} ?
NO!: [Reznick, 1978]
$\mathcal{A}=\{(2,0,0),(0,2,0),(2,2,0),(0,0,4),(1,1,1)\}$
not even $\operatorname{dim} \Sigma_{\mathcal{A}}=\operatorname{dim} \mathcal{P}_{\mathcal{A}}$ for all \mathcal{A}

Equivalence relation

Theorem $\mathcal{F}=\left\{\beta^{1}, \ldots, \beta^{m^{\prime}}\right\}, \mathcal{A}=\left\{\alpha^{1}, \ldots, \alpha^{m}\right\} \subset \mathbb{N}^{n}$,
$\mathcal{F}^{\prime}=\left\{\beta^{\prime 1}, \ldots, \beta^{\prime m^{\prime}}\right\}, \mathcal{A}^{\prime}=\left\{\alpha^{\prime 1}, \ldots, \alpha^{\prime m}\right\} \subset \mathbb{N}^{n^{\prime}}$ s.t.
$\mathcal{F} \subset \mathcal{F}_{\max }(\mathcal{A}), \mathcal{F}^{\prime} \subset \mathcal{F}_{\max }\left(\mathcal{A}^{\prime}\right) ; I_{F}: \mathcal{F} \rightarrow \mathcal{F}^{\prime}, I_{A}: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ order isomorphisms. If there exists a bijective map / that makes

\[

\]

commutative, then $\mathcal{I}_{\mathcal{A}}\left[\Sigma_{\mathcal{F}, \mathcal{A}}\right]=\mathcal{I}_{\mathcal{A}^{\prime}}\left[\Sigma_{\mathcal{F}^{\prime}, \mathcal{A}^{\prime}}\right]$.
here $s_{\mathcal{F}, \mathcal{A}}\left(\beta^{k}, \beta^{k^{\prime}}\right)=\beta^{k}+\beta^{k^{\prime}}$
defines an equivalence relation \sim_{Σ} on the class of pairs $(\mathcal{F}, \mathcal{A})$ satisfying $\mathcal{F} \subset \mathcal{F}_{\max }(\mathcal{A})$

Abstract SOS cones

$[(\mathcal{F}, \mathcal{A})]$ - equivalence class of $(\mathcal{F}, \mathcal{A})$ w.r. to \sim_{Σ}
Definition We call $\Sigma_{[(\mathcal{F}, \mathcal{A})]}=\mathcal{I}_{\mathcal{A}}\left[\Sigma_{\mathcal{F}, \mathcal{A}}\right] \subset \mathbb{R}^{m}$ an abstract SOS cone.
infinitely many SOS cones $\Sigma_{\mathcal{F}, \mathcal{A}}$ generate the same abstract cone $\Sigma_{[(\mathcal{F}, \mathcal{A})]}$

SOS relaxations of abstract positive cones

Definition C - equivalence class w.r. to $\sim_{p}, \mathcal{P}_{C}$ corresponding abstract cone of positive polynomials. For every pair $(\mathcal{F}, \mathcal{A})$ s.t. $\mathcal{A} \in \mathcal{C}, \mathcal{F} \subset \mathcal{F}_{\max }(\mathcal{A})$, we call the abstract cone $\Sigma_{[(\mathcal{F}, \mathcal{A})]}$ an SOS relaxation of \mathcal{P}_{C}.
$\Sigma_{[(\mathcal{F}, \mathcal{A})]} \subset \mathcal{P}_{C}$

Hierarchy

$\mathcal{A} \sim_{P} \mathcal{A}^{\prime} \nRightarrow \Sigma_{\mathcal{A}} \sim_{\Sigma} \Sigma_{\mathcal{A}^{\prime}}$ in general
no "standard" SOS relaxation for $\mathcal{P}_{[\mathcal{A}]}$
Definition \mathcal{P}_{C} abstract positive cone, $\Sigma_{C_{1}}, \Sigma_{C_{2}}$ SOS relaxations of $\mathcal{P}_{\mathcal{C}}$. If there exist $\mathcal{F}_{1}, \mathcal{F}_{2}, \mathcal{A}$ s.t. $\left(\mathcal{F}_{1}, \mathcal{A}\right) \in \mathcal{C}_{1},\left(\mathcal{F}_{2}, \mathcal{A}\right) \in C_{2}$, and $\mathcal{F}_{1} \subset \mathcal{F}_{2}$, then $\Sigma_{C_{1}}$ is coarser than $\Sigma_{C_{2}}$, or $\Sigma_{C_{2}}$ is finer than $\Sigma_{C_{1}}$. we do not require $\mathcal{A} \in C$ $\Sigma_{C_{1}}, \Sigma_{C_{2}}$ can be SOS relaxations for different cones $\mathcal{P}_{C}, \mathcal{P}_{C^{\prime}}$, but order relation is independent of choice of positive cone

Construction of finer relaxations

Theorem $\mathcal{F}, \mathcal{A} \subset \mathbb{N}^{n}$ s.t. $\mathcal{F} \subset \mathcal{F}_{\max }(\mathcal{A}), R-n \times n$ integer matrix with odd determinant, $v \in \mathbb{Z}^{n}$ integer row vector. $\left(\mathcal{F}^{\prime}, \mathcal{A}^{\prime}\right)$ s.t. $M_{\mathcal{F}^{\prime}}=M_{\mathcal{F}} R+1 v, M_{\mathcal{A}^{\prime}}=M_{\mathcal{A}} R+21 v$. If $\mathcal{A}^{\prime} \subset \mathbb{N}^{n}$, then $\mathcal{A} \sim_{p} \mathcal{A}^{\prime}$. If $\mathcal{F}^{\prime}, \mathcal{A}^{\prime} \subset \mathbb{N}^{n}$, then $(\mathcal{F}, \mathcal{A}) \sim_{\Sigma}\left(\mathcal{F}^{\prime}, \mathcal{A}^{\prime}\right)$.
nonnegativity of $\mathcal{F}^{\prime}, \mathcal{A}^{\prime}$ can be enforced by choice of v
if $\operatorname{det} R= \pm 1$, then $\Gamma_{\mathcal{A}} \simeq \Gamma_{\mathcal{A}^{\prime}}, \Gamma_{\mathcal{A}}^{e} \simeq \Gamma_{\mathcal{A}^{\prime}}^{e}, \Sigma_{\mathcal{A}} \sim_{\Sigma} \Sigma_{\mathcal{A}^{\prime}}$
if $\# \mathcal{A}>1$, then strictly finer relaxations can always be obtained this way
hierarchy if infinite

Example: Motzkin polynomial

$$
\begin{aligned}
& M_{\mathcal{F}^{\prime}}=M_{\mathcal{F}} R+1 v, \operatorname{det} R=-3 \\
& \qquad\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 3 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)+0 \\
& \mathcal{A}^{\prime}=\{(6,0,0),(0,6,0),(0,0,6),(2,2,2)\}
\end{aligned}
$$

Example cont'd

$$
\begin{aligned}
& \mathcal{I}_{\mathcal{A}^{\prime}}^{-1} \circ \mathcal{I}_{\mathcal{A}}: p_{M}(x, y, z)=x^{2} y^{4}+x^{4} y^{2}+z^{6}-3 x^{2} y^{2} z^{2} \mapsto \\
& \\
& p_{M}^{\prime}=x^{6}+y^{6}+z^{6}-3 x^{2} y^{2} z^{2} \\
& =
\end{aligned} \begin{aligned}
& \left(x^{2}+y^{2}+z^{2}\right)\left(x^{4}+y^{4}+z^{4}-x^{2} y^{2}-y^{2} z^{2}-z^{2} x^{2}\right) \\
& \quad\left(\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 \\
-1 / 2 & -1 / 2 & 1
\end{array}\right) \succeq 0
\end{aligned}
$$

p_{M}^{\prime} is SOS
moreover: $\mathcal{P}_{\mathcal{A}^{\prime}}=\Sigma_{\mathcal{A}^{\prime}}$

$$
\begin{aligned}
p(c) & =c_{1} x^{2} y^{4}+c_{2} x^{4} y^{2}+c_{3} z^{6}-c_{4} x^{2} y^{2} z^{2} \\
p^{\prime}(c) & =c_{1} x^{6}+c_{2} y^{6}+c_{3} z^{6}-c_{4} x^{2} y^{2} z^{2} \\
p(c) & \geq 0 \Leftrightarrow p^{\prime}(c) \geq 0 \Leftrightarrow p^{\prime}(c) \text { is SOS }
\end{aligned}
$$

not possible with $\Sigma_{h, \mathcal{A}}$ for any h [Reznick, 2005]

Example: \mathcal{C}_{5}

$$
C \in \mathcal{C}_{5} \Leftrightarrow\left(\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{5}^{2}
\end{array}\right)^{T} C\left(\begin{array}{c}
x_{1}^{2} \\
\vdots \\
x_{5}^{2}
\end{array}\right) \geq 0
$$

$\mathcal{C}_{5} \sim \mathcal{P}_{\mathcal{A}}$ with

$$
\begin{gathered}
\mathcal{F}=\left\{2 e_{i} \mid i=1, \ldots, 5\right\} \\
\mathcal{A}=\left\{2\left(e_{i}+e_{j}\right) \mid 1 \leq i \leq j \leq 5\right\}
\end{gathered}
$$

$$
\mathcal{A}_{k}=k \mathcal{A} \sim_{p} \mathcal{A}, \mathcal{F}_{k}=k \mathcal{F}
$$

