Weierstrass Institute for
Applied Analysis and Stochastics

Rank 1 generated spectrahedral cones

Roland Hildebrand
let
■ \mathcal{S}^{n} be the space of real symmetric $n \times n$ matrices

- $\mathcal{S}_{+}^{n} \subset \mathcal{S}_{n}$ the cone of positive semi-definite matrices
a QCQP is a problem of the form [Ramana, Goldman 1995]

$$
\min _{x \in \mathbb{R}^{n}} x^{T} S x: \quad x^{T} A_{i} x=0, i=1, \ldots, k ; \quad x^{T} B x=1
$$

$A_{1}, \ldots, A_{k} ; B ; S \in \mathcal{S}_{n}$ define the homogeneous quadratic constraints, the inhomogeneous quadratic constraint, and the quadratic cost function
set $X=x x^{T} \in \mathcal{S}_{+}^{n}$
we get

$$
\min _{X \in K}\langle S, X\rangle: \quad\langle B, X\rangle=1, \quad \text { rk } X=1
$$

here $K=L \cap \mathcal{S}_{+}^{n}$, where

$$
L=\left\{X \in \mathcal{S}^{n} \mid\left\langle A_{i}, X\right\rangle=0 \forall i=1, \ldots, k\right\}
$$

Definition

Linear sections of the cone of positive semi-definite matrices \mathcal{S}_{+}^{n} are called spectrahedral cones.
original QCQP:

$$
\min _{X \in K}\langle S, X\rangle: \quad\langle B, X\rangle=1, \quad \operatorname{rk} X=1
$$

K spectrahedral cone
can be relaxed to a semi-definite program (SDP) by dropping the rank constraint:

$$
\min _{X \in K}\langle S, X\rangle: \quad\langle B, X\rangle=1
$$

this SDP is convex and can be efficiently solved by freely (CLP, LiPS, SDPT3, SeDuMi, ...) and commercially (CPLEX, MOSEK, ...) available solvers

Lemma

Let K be such that its extreme rays are generated by rank 1 matrices. Then either the two problems are both infeasible, or the SDP is unbounded, or both problems have the same optimal value.

Definition

We call a spectrahedral cone rank 1 generated (ROG) if its extreme rays are generated by rank 1 matrices.
numerous problems in statistics can be written as QCQP and tackled by its semi-definite relaxation
■ MLE for angular synchronization problem [Bandeira, Boumal, Singer 2014]

- information theoretical clustering [Wang, Sha 2011]

■ MAP assignment over discrete Markov random fields [Huang, Chen, Guibas 2014]

- robust PCA [McCoy, Tropp 2011]
- inference on graphs [Wainwright, Jordan 2003]

■ sparse PCA [d’Aspremont, El Ghaoui, Jordan, Lanckriet 2004; d’Aspremont, Bach, El Ghaoui 2014; Krauthgamer, Nadler, Vilenchik 2015]

- sparse covariance selection, sparse SVD, sparse nonnegative matrix factorization [d'Aspremont et al 2007]
- high-dimensional sparse PCA [Amini, Wainwright 2009]

Examples of rank 1 generated spectrahedral cones

- full positive semi-definite matrix cone \mathcal{S}_{+}^{n}

■ cone of positive semi-definite $n \times n$ Hankel matrices $\operatorname{Han}_{+}^{n}$

- cone of positive semi-definite $n \times n$ tridiagonal matrices Tri_{+}^{n}
$\square K=\left\{\left(\begin{array}{cccccc}a_{1} & a_{6} & a_{5} & a_{7} & a_{11} & a_{10} \\ a_{6} & a_{2} & a_{4} & a_{13} & a_{8} & a_{12} \\ a_{5} & a_{4} & a_{3} & a_{15} & a_{14} & a_{9} \\ a_{7} & a_{13} & a_{15} & a_{4} & a_{9} & a_{8} \\ a_{11} & a_{8} & a_{14} & a_{9} & a_{5} & a_{7} \\ a_{10} & a_{12} & a_{9} & a_{8} & a_{7} & a_{6}\end{array}\right) \in \mathcal{S}_{+}^{6}, a_{1}, \ldots, a_{15} \in \mathbb{R}\right\}$
the positive semi-definite Hankel matrices are the moment cone of the univariate polynomials of degree $2 n$
the last 15-dimensional cone is the moment cone of the ternary quartics, which are nonnegative if and only if they can be represented as a sum of squares [Hilbert 1888]

Definition (Helton, Vinnikov 2007)

A closed set $C \subset \mathbb{R}^{m}$ is an algebraic interior if there exists a polynomial p on \mathbb{R}^{m} such that C equals the closure of a connected component of the set $\left\{x \in \mathbb{R}^{m} \mid p(x)>0\right\}$. Such a polynomial is called defining polynomial.

Lemma (Helton, Vinnikov 2007)

Let C be an algebraic interior. Then the defining polynomial p of C with minimal degree (the minimal defining polynomial) is unique up to multiplication by a positive constant. Any other defining polynomial of C is divisible by p.
every spectrahedral cone is a convex algebraic interior with a homogeneous minimal defining polynomial

Theorem

Let K be a ROG spectrahedral cone whose interior consists of positive definite matrices. Then the determinantal defining polynomial d of K is a minimal defining polynomial.
applicable to any non-degenerate spectrahedral cone $K \subset \mathcal{S}_{+}^{n}$ such that there exist linearly independent vectors $x_{1}, \ldots, x_{n} \in \mathbb{R}^{n}$ satisfying $x_{i} x_{i}^{T} \in K, i=1, \ldots, n$
the degree of the minimal defining polynomial of an algebraic interior C is called the degree of C

Lemma

Let K be a ROG spectrahedral cone. Then the degree of K is given by $\operatorname{deg} K=\max _{X \in K} \operatorname{rk} X$.

Definition (Guler, Tunçel 1998)

Let K be a closed pointed convex cone. The Carathéodory number $\kappa(x)$ of a point $x \in K$ is the minimal number k such that there exist extreme elements x_{1}, \ldots, x_{k} of K satisfying $x=\sum_{i=1}^{k} x_{i}$. The Carathéodory number $\kappa(K)$ of the cone K is the maximum of $\kappa(x)$ over $x \in K$.

Lemma

Let K be a ROG spectrahedral cone. For every $X \in K$, its Carathéodory number is given by $\kappa(X)=\operatorname{rk} X$.

Corollary

The Carathéodory number of a ROG cone equals its degree.
let $L \subset \mathcal{S}^{n}, L^{\prime} \subset \mathcal{S}^{n^{\prime}}$ be linear subspaces of matrix spaces $n \leq n^{\prime}$ call L, L^{\prime} isomorphic if there exists a full rank matrix A such that the map $X \mapsto A X A^{T}$ takes L onto L^{\prime} such isomorphisms preserve rank and signature

Definition

We call spectrahedral cones $K \subset \mathcal{S}_{+}^{n}, K^{\prime} \subset \mathcal{S}_{+}^{n^{\prime}}$ isomorphic if they can be represented as intersections $K=L \cap \mathcal{S}_{+}^{n}, K^{\prime}=L^{\prime} \cap \mathcal{S}_{+}^{n^{\prime}}$ with isomorphic subspaces $L \subset \mathcal{S}^{n}, L^{\prime} \subset \mathcal{S}^{n^{\prime}}$.
spectrahedral cones which are linearly isomorphic as cones are not necessarily isomorphic in this sense example \mathbb{R}_{+}^{2} :

$$
K=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right) \in \mathcal{S}_{+}^{2}, \quad a, b \in \mathbb{R}\right\}, \quad K^{\prime}=\left\{\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & a+b & 0 \\
0 & 0 & b
\end{array}\right) \in \mathcal{S}_{+}^{3}, \quad a, b \in \mathbb{R}\right\}
$$

Theorem

Two ROG cones are isomorphic in the sense above if and only if they are linearly isomorphic as cones.
geometric structure determines algebraic structure (all ROG representations of a cone are isomorphic)

Direct sums and simple cones

let $K_{1} \subset \mathbb{R}^{n_{1}}, \ldots, K_{m} \subset \mathbb{R}^{n_{m}}$ be convex cones
the convex cone $K=\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{n_{1}+\ldots n_{m}} \mid x_{1} \in K_{1}, \ldots, x_{m} \in K_{m}\right\}$ is called the direct sum of K_{1}, \ldots, K_{m}

Theorem

Let K be a ROG cone which is representable as a direct sum of cones K_{1}, \ldots, K_{m}. Then

- K_{1}, \ldots, K_{m} are also ROG,
- K possesses a block-diagonal representation corresponding to the decomposition,
- the k-th block is a representation of the factor cone K_{k}.

On the other hand, if K_{1}, \ldots, K_{m} are ROG cones, then the corresponding block-diagonal representation of their direct sum is a ROG representation.

Definition

We call a ROG cone which is not a non-trivial direct sum of other cones a simple ROG cone.

Lemma

Each ROG cone decomposes into a finite number of simple ROG cones which are unique up to permutation.

Full extensions of ROG cones

Lemma
Let K be a spectrahedral cone. Then the spectrahedral cone

$$
\left\{\left(\begin{array}{ll}
X & * \\
* & *
\end{array}\right) \succeq 0, \quad X \in K\right\}
$$

is a ROG cone if and only if K is ROG.
we call K^{\prime} a full extension of K if it is isomorphic to a cone of the above form

Lemma

A ROG cone $K \subset \mathcal{S}_{+}^{n}$ is a full extension of some smaller ROG cone if and only if there exist nontrivial linear subspaces $L \subset \mathcal{S}^{n}$ and $H \subset \mathbb{R}^{n}$ such that $K=L \cap \mathcal{S}_{+}^{n}$ and $x y^{T}+y x^{T} \in L$ for all $x \in H$, $y \in \mathbb{R}^{n}$.
the full extension of a ROG cone is simple

Lemma

Let F_{1}, F_{2} be faces of the positive semi-definite matrix cone \mathcal{S}_{+}^{n} and L_{1}, L_{2} their linear hulls. Let $L \subset \mathcal{S}^{n}$ be a linear subspace such that $L_{1} \cap L_{2} \subset L=\left(L \cap L_{1}\right)+\left(L \cap L_{2}\right)$. Then the spectrahedral cone $K=L \cap \mathcal{S}_{+}^{n}$ equals the sum of its faces $K_{1}=L_{1} \cap K, K_{2}=L_{2} \cap K$. Moreover, K is a ROG cone if and only if K_{1}, K_{2} are ROG cones.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{12}^{T} & X_{22} & 0 \\
0 & 0 & 0
\end{array}\right) \in L_{1} \cap L,\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & X_{22} & X_{23} \\
0 & X_{23}^{T} & X_{33}
\end{array}\right) \in L_{2} \cap L, \\
& \quad\left(\begin{array}{ccc}
X_{11} & X_{12} & 0 \\
X_{12}^{T} & X_{22} & X_{23} \\
0 & X_{23}^{T} & X_{33}
\end{array}\right) \in L, \quad\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & * & 0 \\
0 & 0 & 0
\end{array}\right) \in L .
\end{aligned}
$$

we call K an intertwining of K_{1}, K_{2}

■ an intertwining of K_{1}, K_{2} is a projection of the direct sum $K_{1} \oplus K_{2}$

- any two ROG cones can be intertwined along a 1 -dimensional face
- example: the tridiagonal matrices are intertwinings of copies of \mathcal{S}_{+}^{2}

Example: continuous family

for mutually distinct angles $\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4} \in[0, \pi)$ define the cone $K_{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}}$ by
$\left\{\left(\begin{array}{cccccc}\alpha_{1} & \alpha_{2} & \alpha_{3} \cos \varphi_{1} & \alpha_{4} \cos \varphi_{2} & \alpha_{5} \cos \varphi_{3} & \alpha_{6} \cos \varphi_{4} \\ \alpha_{2} & \alpha_{7} & \alpha_{3} \sin \varphi_{1} & \alpha_{4} \sin \varphi_{2} & \alpha_{5} \sin \varphi_{3} & \alpha_{6} \sin \varphi_{4} \\ \alpha_{3} \cos \varphi_{1} & \alpha_{3} \sin \varphi_{1} & \alpha_{8} & 0 & 0 & 0 \\ \alpha_{4} \cos \varphi_{2} & \alpha_{4} \sin \varphi_{2} & 0 & \alpha_{9} & 0 & 0 \\ \alpha_{5} \cos \varphi_{3} & \alpha_{5} \sin \varphi_{3} & 0 & 0 & \alpha_{10} & 0 \\ \alpha_{6} \cos \varphi_{4} & \alpha_{6} \sin \varphi_{4} & 0 & 0 & 0 & \alpha_{11}\end{array}\right) \succeq 0, \quad \alpha_{i} \in \mathbb{R}\right\}$

Lemma

The cone $K_{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}}$ is a ROG cone. Two cones $K_{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}, K_{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}, \varphi_{3}^{\prime}, \varphi_{4}^{\prime}} \text { are isomorphic if }}$ and only if the corresponding quadruples of lines $l\left(\varphi_{1}\right), \ldots, l\left(\varphi_{4}\right) \subset \mathbb{R}^{2}$ and $l\left(\varphi_{1}^{\prime}\right), \ldots, l\left(\varphi_{4}^{\prime}\right) \subset \mathbb{R}^{2}$ define projectively equivalent quadruples of points in $\mathbb{R} P^{1}$.
$K_{\varphi_{1}, \varphi_{2}, \varphi_{3}, \varphi_{4}}$ is the intertwining of 5 copies of \mathcal{S}_{+}^{2}
codimension 1:

Lemma (Dines' theorem)

Let $L \subset \mathcal{S}^{n}$ be a linear subspace of codimension 1. Then the cone $K=L \cap \mathcal{S}_{+}^{n}$ is ROG.
codimension 2:

Theorem

Let $K=\left\{X \in \mathcal{S}_{+}^{n} \mid\left\langle X, Q_{1}\right\rangle=\left\langle X, Q_{2}\right\rangle=0\right\}$ be a ROG cone of degree $n \geq 3$, where Q_{1}, Q_{2} are linearly independent quadratic forms. Then K is isomorphic to the direct sum $\mathcal{S}_{+}^{1} \oplus \mathcal{S}_{+}^{2}$ if $n=3$ and to a full extension of this sum if $n>3$.
low dimensions:

Theorem

Let K be a simple ROG cone of degree n. Then $\operatorname{dim} K \geq 2 n-1$.
examples:

- positive semi-definite Hankel matrices
- positive semi-definite tridiagonal matrices

Theorem
Let K be a ROG cone of degree n. Then the number of its isolated extreme rays does not exceed n. Let R_{1}, \ldots, R_{k} be the isolated extreme rays of K. Then K is isomorphic to a direct sum $K^{\prime} \oplus \mathbb{R}_{+}^{k}$, where K^{\prime} is a ROG cone of degree $n-k$ without isolated extreme rays, and the extreme rays R_{1}, \ldots, R_{k} correspond to the extreme rays of the summand \mathbb{R}_{+}^{k}.
isolated extreme rays split off as direct summands
consequence: simple cones of degree $\operatorname{deg} K \geq 2$ have no isolated extreme rays

Classification of simple ROG cones for small degrees

degree 1:

- $\operatorname{dim} 1: \mathcal{S}_{+}^{1}$
degree 2 :
- $\operatorname{dim} 3: \mathcal{S}_{+}^{2}$
degree 3:
■ dim 5: $\mathrm{Tri}_{+}^{3}, \operatorname{Han}_{+}^{3}$
- $\operatorname{dim} 6: \mathcal{S}_{+}^{3}$
degree 4:
■ dim 7: $\operatorname{Han}_{+}^{4}$, full extension of $\mathcal{S}_{+}^{1} \oplus \mathcal{S}_{+}^{1} \oplus \mathcal{S}_{+}^{1}, \operatorname{Tri}_{+}^{4}$, intertwining of $\operatorname{Han}_{+}^{3}$ and \mathcal{S}_{+}^{2}
- dim 8: full extension of $\mathcal{S}_{+}^{1} \oplus \mathcal{S}_{+}^{2}$
- dim 9: full extensions of $\mathcal{S}_{+}^{1} \oplus \mathcal{S}_{+}^{1}$ and $\operatorname{Han}_{+}^{3} ; \mathcal{S}_{+}^{2} \otimes \mathcal{S}_{+}^{2} ;\{X \succeq 0 \mid\langle X, Q\rangle=0\}$ with Q of signature $(+++-)$
- dim 10: \mathcal{S}_{+}^{4}

Thank you!

