Parallelism conditions and algebras in affine differential geometry

Roland Hildebrand

LJK / CNRS

PADGE conference, Kath. Univ. Leuven August 22, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Affine differential geometry

studies hypersurface immersions

$$f: M^n \to \mathbb{A}^{n+1}$$

into real affine space, endowed with a transversal vector field ξ one is interested in properties of the immersion that are invariant under affine transformations of \mathbb{A}^{n+1}

the following objects are induced on M

- \blacktriangleright a torsion-free connection ∇ , the affine connection
- ► a symmetric bilinear form *h*, the affine fundamental form
- a 3-tensor $C = \nabla h$, the cubic form

if h is non-degenerate, then the immersion is called non-degenerate and h is called the affine metric (possibly indefinite)

Equiaffine immersions

if we fix a volume form ω on \mathbb{A}^{n+1} , we can in addition define on M

• the induced volume form heta

if $\nabla \theta = 0$, then the immersion is called equiaffine for equiaffine immersions the cubic form C is totally symmetric in its three indices

examples of equiaffine immersions:

- graph immersions: ξ is a constant vector field
- ▶ centro-affine immersions: $\xi(x) = f(x) a_0$, $a_0 \in \mathbb{A}^{n+1}$
- ► Blaschke immersions: induced volume form θ equals volume form $\sqrt{|\det h|}$ of affine metric

for centro-affine immersions, we may consider a_0 as the origin and the affine space \mathbb{A}^{n+1} as a real vector space \mathbb{R}^{n+1}

Parallelism conditions

assume that the affine fundamental form is non-degenerate then it has its own Levi-Civita connection $\hat{\nabla}$

the difference $K = \nabla - \hat{\nabla}$ is called the difference tensor, $K_{ij}^l = -\frac{1}{2} h^{kl} C_{ijk}$

we are interested in classifying the immersions which satisfy one of the parallelism conditions

$$\nabla C = 0 \qquad \nabla K = 0$$
$$\hat{\nabla} C = 0 \quad \Leftrightarrow \quad \hat{\nabla} K = 0$$

research ongoing since late 80s [Vrancken 88; Nomizu, Pinkall 89; Bokan et al 90; Dillen, Vrancken 91,94,98; Dillen et al 94; Gigena 02,03,11; Hu et al 08,09,11; Hu, Li 11; Li 14; Fujioka et al 16; Cheng et al 17]

Outline of method

immersion $f:M^n ightarrow \mathbb{A}^{n+1}$ with transversal field ξ

\$

potential F

\$

metrised algebra (A, σ)

Potentials for graph immersions

let $f: M \to \mathbb{A}^{n+1}$ be a graph immersion

for every $x \in M$ there exists a neighbourhood U of x and a potential $F : \mathbb{R}^n \supset D \simeq U \rightarrow \mathbb{R}$ such that

- ► f is locally isomorphic to the embedding $U \ni x \mapsto (x, F(x)) \in \mathbb{R}^n \times \mathbb{R}$
- the field ξ maps to (0,1) under this isomorphism

then we get

$$h = F'', \qquad C = F''', \qquad \nabla = \partial$$

if the graph immersion is also Blaschke, then it is an improper affine hypersphere this happens if and only if det $F'' \equiv \pm 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

the parallelism condition $\hat{\nabla}C = 0$ can be rewritten as a quasi-linear 4-th order partial differential equation on the potential F

$$F_{,\alpha\beta\gamma\delta} = \frac{1}{2} F^{,\rho\sigma} \left(F_{,\alpha\beta\rho} F_{,\gamma\delta\sigma} + F_{,\alpha\gamma\rho} F_{,\beta\delta\sigma} + F_{,\alpha\delta\rho} F_{,\beta\gamma\sigma} \right)$$

here $F^{,
ho\sigma}$ is the inverse of the Hessian F'' and $F_{,lpha\beta\gamma}$ etc. are partial derivatives

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Integrability condition

differentiating with respect to x^{η} and substituting the fourth order derivatives by the right-hand side, we get

$$\begin{split} F_{,\alpha\beta\gamma\delta\eta} &= \frac{1}{4} F^{,\rho\sigma} F^{,\mu\nu} \left(F_{,\beta\eta\nu} F_{,\alpha\rho\mu} F_{,\gamma\delta\sigma} + F_{,\alpha\eta\mu} F_{,\rho\beta\nu} F_{,\gamma\delta\sigma} \right. \\ &+ F_{,\gamma\eta\nu} F_{,\alpha\rho\mu} F_{,\beta\delta\sigma} + F_{,\alpha\eta\mu} F_{,\rho\gamma\nu} F_{,\beta\delta\sigma} + F_{,\beta\eta\nu} F_{,\gamma\rho\mu} F_{,\alpha\delta\sigma} \\ &+ F_{,\gamma\eta\mu} F_{,\rho\beta\nu} F_{,\alpha\delta\sigma} + F_{,\beta\eta\nu} F_{,\delta\rho\mu} F_{,\alpha\gamma\sigma} + F_{,\delta\eta\mu} F_{,\rho\beta\nu} F_{,\alpha\gamma\sigma} \\ &+ F_{,\delta\eta\nu} F_{,\alpha\rho\mu} F_{,\beta\gamma\sigma} + F_{,\alpha\eta\mu} F_{,\rho\delta\nu} F_{,\beta\gamma\sigma} + F_{,\delta\eta\nu} F_{,\gamma\rho\mu} F_{,\alpha\beta\sigma} \\ &+ F_{,\gamma\eta\mu} F_{,\rho\delta\nu} F_{,\alpha\beta\sigma}) \end{split}$$

anti-commuting δ, η gives the integrability condition

$$F^{,\rho\sigma}F^{,\mu\nu}(F_{,\beta\eta\nu}F_{,\delta\rho\mu}F_{,\alpha\gamma\sigma}+F_{,\alpha\eta\mu}F_{,\rho\delta\nu}F_{,\beta\gamma\sigma}+F_{,\gamma\eta\mu}F_{,\rho\delta\nu}F_{,\alpha\beta\sigma})=0$$

$$-F_{,\beta\delta\nu}F_{,\eta\rho\mu}F_{,\alpha\gamma\sigma}-F_{,\alpha\delta\mu}F_{,\rho\eta\nu}F_{,\beta\gamma\sigma}-F_{,\gamma\delta\mu}F_{,\rho\eta\nu}F_{,\alpha\beta\sigma})=0$$

Algebraic formulation

raising the index η we get

$$\begin{split} & \mathcal{K}^{\eta}_{\alpha\mu}\mathcal{K}^{\mu}_{\delta\rho}\mathcal{K}^{\rho}_{\beta\gamma} + \mathcal{K}^{\eta}_{\beta\mu}\mathcal{K}^{\mu}_{\delta\rho}\mathcal{K}^{\rho}_{\alpha\gamma} + \mathcal{K}^{\eta}_{\gamma\mu}\mathcal{K}^{\mu}_{\delta\rho}\mathcal{K}^{\rho}_{\alpha\beta} \\ & - \mathcal{K}^{\mu}_{\alpha\delta}\mathcal{K}^{\eta}_{\rho\mu}\mathcal{K}^{\rho}_{\beta\gamma} - \mathcal{K}^{\mu}_{\beta\delta}\mathcal{K}^{\eta}_{\rho\mu}\mathcal{K}^{\rho}_{\alpha\gamma} - \mathcal{K}^{\mu}_{\gamma\delta}\mathcal{K}^{\eta}_{\rho\mu}\mathcal{K}^{\rho}_{\alpha\beta} = 0 \end{split}$$

(recall that $K^{\alpha}_{\beta\gamma} = -\frac{1}{2}F^{,\alpha\delta}F_{,\beta\gamma\delta}$) this is satisfied if and only if

$$\mathcal{K}^{\eta}_{\alpha\mu}\mathcal{K}^{\mu}_{\delta\rho}\mathcal{K}^{\rho}_{\beta\gamma}u^{\alpha}u^{\beta}u^{\gamma}v^{\delta}=\mathcal{K}^{\mu}_{\alpha\delta}\mathcal{K}^{\eta}_{\rho\mu}\mathcal{K}^{\rho}_{\beta\gamma}u^{\alpha}u^{\beta}u^{\gamma}v^{\delta}$$

for all tangent vectors u, v

consider K as structure tensor of a commutative algebra A with multiplication \bullet on the tangent space $T_x U$, then the above is equivalent to

$$(u^2 \bullet v) \bullet u = (u \bullet v) \bullet u^2$$

Jordan algebras

Definition

An algebra J is a Jordan algebra if

Definition

A pair (A, σ) of an algebra A with multiplication \bullet and a non-degenerate quadratic form σ is called metrised algebra if $\sigma(u, v \bullet w) = \sigma(u \bullet v, w)$ for all $u, v, w \in A$.

if we take $\sigma = h$ on the tangent spaces $T_x U$, then the above relation is satisfied by the symmetry of the cubic form $C_{\alpha\beta\gamma} = -2K_{\alpha\beta}^{\delta}h_{\gamma\delta}$

Main result (graph immersions)

Theorem A graph immersion $f : M \to \mathbb{R}^{n+1}$ satisfying $\hat{\nabla} C = 0$ defines a metrised Jordan algebra (A, h) with structure tensor K on the tangent spaces $T_{\times}M$. Isomorphism classes of algebras are in one-to-one correspondence with isomorphism classes of graph immersions. M is an improper affine sphere if and only if A is nilpotent and det $h = \pm 1$.

- \blacktriangleright metrised algebras at different points isomorphic by parallelism condition $\hat{\nabla} K = 0$
- ▶ recovery of graph immersion from the algebra via the potential $F(x) = \sum_{k=2}^{\infty} \frac{(-1)^k}{k} h(x, x^{k-1})$

classification of improper affine hyperspheres with $\hat{\nabla} C = 0$ equivalent to classification of nilponent metrised Jordan algebras (A, σ) with det $\sigma = \pm 1$

Potentials for centro-affine immersions

let $f: M \to \mathbb{R}^{n+1}$ be a centro-affine immersion, let $x \in M$ and U a neighbourhood of x

define the potential F on $\bigcup_{\alpha>0} \alpha U$ by

 $F(\alpha f(x)) = \log \alpha$

then

$$h = f^* F'', \qquad C = f^* F''', \qquad -\frac{1}{2} F^{\gamma \delta} F_{\alpha \beta \gamma} f^{\beta} = \delta^{\gamma}_{\alpha}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

but now F is defined on $D \subset \mathbb{R}^{n+1}$

Parallelism condition

the parallelism condition $\hat{
abla} C = 0$ is again equivalent to the 4-th order PDE

$$F_{,\alpha\beta\gamma\delta} = \frac{1}{2} F^{,\rho\sigma} \left(F_{,\alpha\beta\rho} F_{,\gamma\delta\sigma} + F_{,\alpha\gamma\rho} F_{,\beta\delta\sigma} + F_{,\alpha\delta\rho} F_{,\beta\gamma\sigma} \right)$$

integrability condition is again the Jordan identity

but

- the Jordan algebra A is defined on $\mathcal{T}_{\times}M imes \mathbb{R}$
- f is a unit element

if the centro-affine immersion is also Blaschke, then it is a proper affine sphere

Main result (centro-affine immersions)

Theorem

A centro-affine immersion $f: M \to \mathbb{R}^{n+1}$ satisfying $\hat{\nabla} C = 0$ defines a metrised unital Jordan algebra (A, σ) with structure tensor $-\frac{1}{2}F^{\gamma\delta}F_{,\alpha\beta\gamma}$ and quadratic form F'' on the spaces $T_{\times}M \times \mathbb{R}$. Isomorphism classes of algebras are in one-to-one correspondence with isomorphism classes of centro-affine immersions. M is a proper affine sphere if and only if σ is the trace form $\tau(u, v) = \text{tr } L_{u \bullet v}$ of the algebra.

- metrised algebras at different points isomorphic by parallelism condition
- ▶ recovery of centro-affine immersion as integral manifold of the 1-form $\zeta = \sigma(x^{-1}, \cdot)$

classification of proper affine hyperspheres with $\hat{
abla} C = 0$ equivalent to classification of semi-simple metrised Jordan algebras

Proper affine spheres with $\hat{ abla} {f C} = 0$

Vector space	Real dimension	Range	Φ	ω	Affine sphere
С	2		$Re(c \log x)$	$ x ^{2}$	x = const
\mathbb{C}^m	2 <i>m</i>	$m \ge 3$	$Re(c \log x^T x)$	$ x^T x ^m$	$ x^T x = const$
$S_m(\mathbb{C})$	m(m + 1)	$m \ge 3$	$Re(c \log \det A)$	$ \det A ^{m+1}$	$ \det A = const$
$M_m(\mathbb{C})$	$2m^2$	$m \ge 3$	$Re(c \log \det A)$	$ \det A ^{2m}$	$ \det A = const$
$A_{2m}(\mathbb{C})$	2m(2m-1)	$m \ge 3$	$Re(c \log pf A)$	$ pf A ^{2(2m-1)}$	$ \operatorname{pf} A = const$
$H_3(O,\mathbb{C})$	54		$Re(c \log \det A)$	det A ¹⁸	$ \det A = const$
R	1		$\alpha \log x $	<i>x</i>	Point
\mathbb{R}^{m}	m	$m \ge 3$	$\alpha \log x^T Q x $	$ x^T Q x ^{m/2}$	Quadric
$M_m(\mathbb{R})$	m^2	$m \ge 3$	$\alpha \log \det A $	$ \det A ^m$	$\det A = const$
$M_m(\mathbb{H})$	$4m^2$	$m \ge 2$	$\alpha \log \det S$	$(\det S)^{2m}$	$\det S = const$
$S_m(\mathbb{R})$	$\frac{m(m+1)}{2}$	$m \ge 3$	$\alpha \log \det A $	$ \det A ^{(m+1)/2}$	$\det A = const$
$H_m(\mathbb{C})$	m^2	$m \ge 3$	$\alpha \log \det A $	$ \det A ^m$	$\det A = const$
$H_m(\mathbb{H})$	m(2m-1)	$m \ge 3$	$\alpha \log \det S$	$(\det S)^{m-1/2}$	$\det S = const$
$A_{2m}(\mathbb{R})$	m(2m-1)	$m \ge 3$	$\alpha \log \mathrm{pf} A $	$ pf A ^{2m-1}$	pf A = const
$SH_m(\mathbb{H})$	m(2m + 1)	$m \ge 2$	$\alpha \log \det S$	$(\det S)^{m+1/2}$	$\det S = const$
$H_3(\mathbb{O})$	27		$\alpha \log \det A $	$ \det A ^9$	$\det A = const$
$H_3(O,\mathbb{R})$	27		$\alpha \log \det A $	$ \det A ^9$	$\det A = const$

commutative metrised algebras associated to different classes of equiaffine hypersurface immersions with parallelism conditions

	Blaschke	graph	centro-affine
$\nabla C = 0$	nilpotent <i>L_u</i>	general	quadratic factor
$\nabla K = 0$	nilpotent associative	associative	quadratic factor
$\hat{\nabla}C = 0$	semi-simple Jordan /	Jordan	unital Jordan
	nilpotent Jordan		

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?