Feuille 5 solutions

1. Pour I_1, I_2 intervalles, on a

$$\iint_{I_1 \times I_2} f(x)g(y) \, dx \, dy = \int_{I_1} f(x) \, dx \cdot \int_{I_2} g(y) \, dy.$$

Une formule similaire est applicable pour les intégrales multiples de dimension ≥ 3 avec un domaine d'intégration rectangulaire. Donc

$$I_{1} = \iint_{[0,3]\times[0,2]} (4-y^{2}) dx dy = \int_{[0,3]} dx \cdot \int_{[0,2]} (4-y^{2}) dy = 3 \left[4y - \frac{y^{3}}{3} \right]_{0}^{2} = 3 \cdot \frac{16}{3} = 16,$$

$$I_{2} = \iint_{[0,3]\times[-2,0]} (x^{2}y - 2xy) dx dy = \int_{[0,3]} (x^{2} - 2x) dx \cdot \int_{[-2,0]} y dy = \left[\frac{x^{3}}{3} - x^{2} \right]_{0}^{3} \cdot \left[\frac{y^{2}}{2} \right]_{-2}^{0} = 0,$$

$$I_{3} = \iint_{[\pi,2\pi]\times[0,\pi]} (\sin x + \cos y) dx dy = \pi \int_{[\pi,2\pi]} \sin x dx + \pi \int_{[0,\pi]} \cos y dy = -\pi [\cos x]_{\pi}^{2\pi} + \pi [\sin y]_{0}^{\pi} = -2\pi.$$

On a

 $\sin(x+y+z) = \cos x \cos y \sin z + \cos x \cos z \sin y + \cos y \cos z \sin x - \sin x \sin y \sin z$

et alors

$$I_{7} = \iiint_{[0,\frac{\pi}{2}]^{3}} \sin(x+y+z) \, dx \, dy \, dz = \int_{0}^{\pi/2} \cos x \, dx \cdot \int_{0}^{\pi/2} \cos y \, dy \cdot \int_{0}^{\pi/2} \sin z \, dz + \int_{0}^{\pi/2} \cos x \, dx \cdot \int_{0}^{\pi/2} \sin y \, dy \cdot \int_{0}^{\pi/2} \cos z \, dz + \int_{0}^{\pi/2} \sin x \, dx \cdot \int_{0}^{\pi/2} \cos y \, dy \cdot \int_{0}^{\pi/2} \cos z \, dz - \int_{0}^{\pi/2} \sin x \, dx \cdot \int_{0}^{\pi/2} \sin y \, dy \cdot \int_{0}^{\pi/2} \sin z \, dz.$$

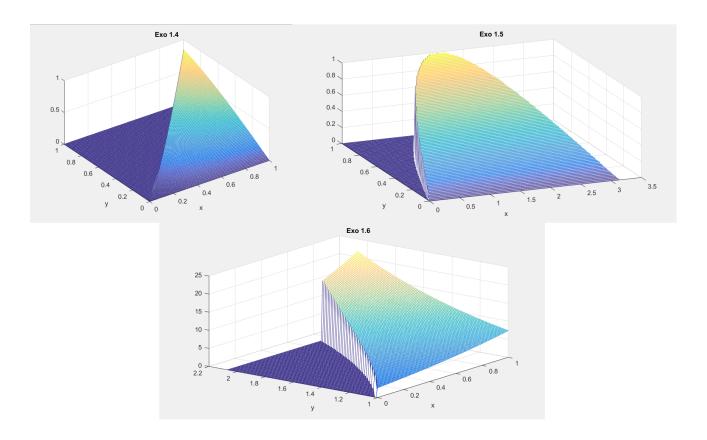
Mais $\int_0^{\pi/2} \sin x \, dx = \int_0^{\pi/2} \cos x \, dx = 1$. Alors chaque facteur de chaque produit est égal à 1, et $I_7 = 1 + 1 + 1 - 1 = 2$.

Les autres intégrales multiples n'ont pas de domaine rectangulaire, on les calcule itérativement.

$$\begin{split} I_4 &= \int_0^\pi \int_0^x x \sin y \, dy \, dx = \int_0^\pi x \left[-\cos y \right]_0^x \, dx = \int_0^\pi x (1 - \cos x) \, dx = -\int_0^\pi (x - \sin x) \, dx + \left[x (x - \sin x) \right]_0^\pi \\ &= \left[-\frac{x^2}{2} - \cos x + x^2 - x \sin x \right]_0^\pi = \left[\frac{x^2}{2} - \cos x - x \sin x \right]_0^\pi = \frac{\pi^2}{2} + 2, \\ I_5 &= \int_0^\pi \int_0^{\sin x} y \, dy \, dx = \int_0^\pi \left[\frac{y^2}{2} \right]_0^{\sin x} \, dx = \int_0^\pi \frac{\sin^2 x}{2} \, dx = \left[\frac{x}{4} - \frac{\sin 2x}{8} \right]_0^\pi = \frac{\pi}{4}, \\ I_6 &= \int_1^{\ln 8} \int_1^{\ln y} e^{x+y} \, dx \, dy = \int_1^{\ln 8} e^y [e^x]_1^{\ln y} \, dy = \int_1^{\ln 8} (ye^y - e^{y+1}) \, dy = \left[e^y (y-1) - e^{y+1} \right]_1^{\ln 8} \\ &= 8(\ln 8 - 1) - 8e + e^2. \end{split}$$

- 2. Nous déterminons d'abord le positionnement de la surface et calculons après l'intégrale multiple correspondant.
- 2.1. Les courbes s'intersectent dans les points données par les deux équations xy=1 et $x+y=\frac{5}{2}a$. Cela mène à l'équation quadratique $x(\frac{5}{2}a-x)-1=0$ qui les racines

$$x_{\min} = \frac{5}{4}a - \sqrt{\frac{25}{16}a^2 - 1}, \qquad x_{\max} = \frac{5}{4}a + \sqrt{\frac{25}{16}a^2 - 1}.$$



On observe que les racines sont réelles seulement si $|a| \geq \frac{4}{5}$, dans le cas contraire les courbes ne s'intersectent pas. Pour $c \in [x_{\min}, x_{\max}]$ la surface intersecte la droite x = c dans l'intervalle $[c^{-1}, \frac{5}{2}a - c]$. L'aire est alors donnée par

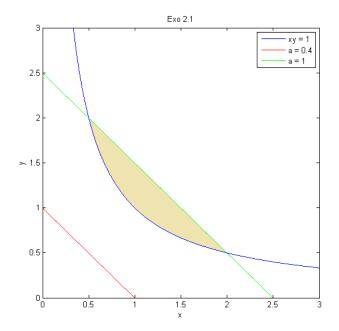
$$\begin{split} I_1 &= \int_{x_{\min}}^{x_{\max}} (\frac{5}{2}a - x - x^{-1}) \, dx = \left[\frac{5}{2}ax - \frac{x^2}{2} - \ln x \right]_{x_{\min}}^{x_{\max}} = \frac{5}{2}ax_{\max} - \frac{x_{\max}^2}{2} - \ln x_{\max} - \frac{5}{2}ax_{\min} + \frac{x_{\min}^2}{2} + \ln x_{\min} \\ &= \frac{5}{2}a\sqrt{\frac{25}{4}a^2 - 4} - \frac{\frac{5}{2}a\sqrt{\frac{25}{4}a^2 - 4}}{2} + \ln \frac{x_{\min}}{x_{\max}} = \frac{5}{4}a\sqrt{\frac{25}{4}a^2 - 4} + 2\ln \left(\frac{5}{4}a - \sqrt{\frac{25}{16}a^2 - 1} \right). \end{split}$$

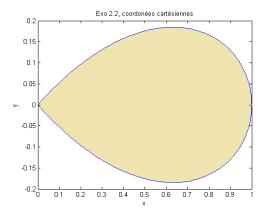
Ici nous avons utilisé $x_{\min} + x_{\max} = \frac{5}{2}a$, $x_{\max} - x_{\min} = \sqrt{\frac{25}{4}a^2 - 4}$, $x_{\min}x_{\max} = 1$.

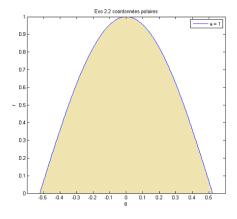
2.2. Soit D la surface en coordonnées cartésiennes et D' son image en coordonnées polaires. Alors l'aire de la surface est égale à

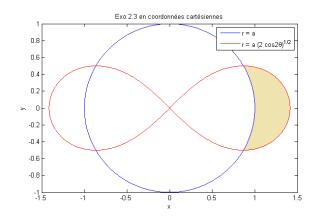
$$\iint_{D} dx \, dy = \iint_{D'} \left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| \, dr \, d\theta = \iint_{D'} \det \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix} \, dr \, d\theta = \int_{-\pi/6}^{\pi/6} \int_{0}^{a \cos 3\theta} r \, dr \, d\theta \\
= \int_{-\pi/6}^{\pi/6} \left[\frac{r^{2}}{2} \right]_{0}^{a \cos 3\theta} \, d\theta = \int_{-\pi/6}^{\pi/6} \frac{a^{2} \cos^{2} 3\theta}{2} \, d\theta = \frac{a^{2}}{4} \int_{-\pi/6}^{\pi/6} (1 + \cos 6\theta) \, d\theta = \frac{a^{2}}{4} \left[\theta + \frac{1}{6} \sin 6\theta \right]_{-\pi/6}^{\pi/6} \\
= \frac{a^{2}}{4} \cdot \frac{\pi}{3} = \frac{\pi a^{2}}{12}.$$

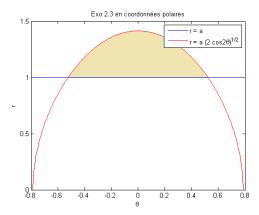
2.3. En passant aux coordonnées polaires les relations deviennent $r^4 = 2a^2r^2(\cos^2\theta - \sin^2\theta)$, $r^2 \ge a^2$, ce qui est équivalent à $r = a\sqrt{2}\cos 2\theta$ et $r \ge a$. Les courbes $r = a\sqrt{2}\cos 2\theta$ et r = a s'intersectent dans les points $\theta = \frac{1}{2}\arccos\frac{1}{2} = \pm\frac{\pi}{6}$. L'aire de la surface entre les courbes est donc égale











à

$$\iint_{D} dx \, dy = \iint_{D'} \left| \frac{\partial(x, y)}{\partial(r, \theta)} \right| \, dr \, d\theta = \int_{-\pi/6}^{\pi/6} \int_{a}^{a\sqrt{2\cos 2\theta}} r \, dr \, d\theta = \int_{-\pi/6}^{\pi/6} \left[\frac{r^{2}}{2} \right]_{a}^{a\sqrt{2\cos 2\theta}} \, d\theta$$

$$= \int_{-\pi/6}^{\pi/6} \left(a^{2}\cos 2\theta - \frac{a^{2}}{2} \right) \, d\theta = \frac{a^{2}}{2} [\sin 2\theta - \theta]_{-\pi/6}^{\pi/6} = a^{2} \left(\sin \frac{\pi}{3} - \frac{\pi}{6} \right) = a^{2} \left(\frac{\sqrt{3}}{2} - \frac{\pi}{6} \right).$$

3. Pour calculer le volume d'un corps $D \subset \mathbb{R}^3$ il faut déterminer les nombres

$$z_{\min} = \min_{(x,y,z) \in D} z,$$
 $z_{\max} = \max_{(x,y,z) \in D} z,$

après pour $c \in [z_{\min}, z_{\max}]$ les fonctions d'une variable

$$y_{\min}(c) = \min_{(x,y,c) \in D} y, \qquad y_{\max}(c) = \max_{(x,y,c) \in D} y,$$

enfin pour $c \in [z_{\min}, z_{\max}], c' \in [y_{\min}(c), y_{\max}(c)]$ les fonctions de deux variables

$$x_{\min}(c', c) = \min_{(x, c', c) \in D} x, \qquad x_{\max}(c', c) = \max_{(x, c', c) \in D} x.$$

Le volume est alors donné par le triple intégrale

$$\int_{z_{\min}}^{z_{\max}} \int_{y_{\min}(z)}^{y_{\max}(z)} \int_{x_{\min}(y,z)}^{x_{\max}(y,z)} dx \, dy \, dz.$$

On intègre alors sur $c \in [z_{\min}, z_{\max}]$ l'aire de l'intersection de D avec le plan $\{z = c\}$. De la même façon, l'aire de cette surface est l'intégrale sur $c' \in [y_{\min}(c), y_{\max}(c)]$ de la longueur de l'intersection de cette surface avec la ligne droite $\{y = c', z = c\}$.

On peut aussi choisir un autre ordre des variables.

3.1. Nous avons $z_{\min} = 0$, $z_{\max} = 1$. Pour $c \in [0,1]$, l'intersection de D_1 avec le plan $\{z = c\}$ est un disque centré sur (0,0,c) et de rayon $r = \sqrt{1-c}$. L'aire de ce disque est $\pi r^2 = \pi(1-c)$. Alors

$$Vol(D_1) = \int_0^1 \pi(1-z) \, dz = \pi \left[z - \frac{z^2}{2} \right]_0^1 = \frac{\pi}{2}.$$

3.2. De la même façon, $z_{\min}=-1$, $z_{\max}=1$. Pour $c\in[-1,1]$, l'intersection de D_2 avec le plan $\{z=c\}$ est un disque centré sur (0,0,c) et de rayon $r=\sqrt{1-c^2}$. L'aire de ce disque est $\pi r^2=\pi(1-c^2)$. Alors

$$Vol(D_2) = \int_{-1}^{1} \pi(1-z^2) dz = \pi \left[z - \frac{z^3}{3} \right]_{-1}^{1} = \pi \left(1 - \frac{1}{3} + 1 - \frac{1}{3} \right) = \frac{4}{3}\pi.$$

3.3. Le pair (x,y) parcourt le triangle $\{x \ge 0, y \ge x, x+y \le 2\}$, et $0 \le z \le x^2 + y^2$. Alors

$$Vol(D_3) = \int_0^1 \int_x^{2-x} (x^2 + y^2) \, dy \, dx = \int_0^1 \left[x^2 y + \frac{y^3}{3} \right]_x^{2-x} \, dx = \int_0^1 \left(2x^2 - x^3 + \frac{(2-x)^3}{3} - \frac{4x^3}{3} \right) \, dx$$
$$= \int_0^1 \frac{8 - 12x + 12x^2 - 8x^3}{3} \, dx = \frac{4}{3} \left[2x - \frac{3}{2}x^2 + x^3 - \frac{x^4}{2} \right]_0^1 = \frac{4}{3}.$$

4. Calculer les intégrales doubles.

4.1. Le domaine D est le disque unitaire, qui est symétrique par rapport à la transformation $(x,y)\mapsto (x,-y)$. Par contre, la foncion à intégrer change le signe sous cette transformation. Alors $\iint_D f(x,y)\,dx\,dy = -\iint_D f(x,y)\,dx\,dy$, et la valeur de l'intégrale est égale à 0.

4.2

$$\iint_D xy \, dx \, dy = \int_0^1 \int_0^{1-x} xy \, dy \, dx = \int_0^1 \left[\frac{xy^2}{2} \right]_0^{1-x} \, dx = \int_0^1 \frac{x(1-x)^2}{2} \, dx = \left[\frac{x^2}{4} - \frac{x^3}{3} + \frac{x^4}{8} \right]_0^1 = \frac{1}{24}.$$

4.3. On a $x^2 \le x$ sur D et alors $x \in [0, 1]$. Alors

$$\iint_D x^2 dx = \int_0^1 \int_{x^2}^x x^2 dy dx = \int_0^1 (x^3 - x^4) dx = \left[\frac{x^4}{4} - \frac{x^5}{5} \right]_0^1 = \frac{1}{20}.$$

4.4. Avec $X=x+y,\ Y=x-y$ on a $|\frac{\partial(X,Y)}{\partial(x,y)}|=\det\begin{pmatrix}1&1\\1&-1\end{pmatrix}=2$ et $|\frac{\partial(x,y)}{\partial(X,Y)}|=\frac{1}{2}$. Dans les nouvelles coordonnées nous avons $x^2+y^2=\frac{X^2+Y^2}{2},$ et le domaine devient $D'=\{(X,Y)\,|\, X\geq 1,\ Y\geq 0,\ X^2+Y^2\leq 2\}.$ On a aussi $x^2-y^2=XY,\ xy=\frac{X^2-Y^2}{4},$ et la fonction à intégrer devient $XYe^{(X^2-Y^2)/4}.$ On obtient

$$\iint_{D} f(x,y) \, dx \, dy = \frac{1}{2} \iint_{D'} XY e^{(X^{2}-Y^{2})/4} \, dX \, dY = \frac{1}{2} \int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2}-X^{2}} XY e^{(X^{2}-Y^{2})/4} \, dY \, dX
= \frac{1}{2} \int_{1}^{\sqrt{2}} X e^{X^{2}/4} \left[-2e^{-Y^{2}/4} \right]_{0}^{\sqrt{2}-X^{2}} \, dX = \frac{1}{2} \int_{1}^{\sqrt{2}} X e^{X^{2}/4} \left(-2e^{-(2-X^{2})/4} + 2 \right) \, dX
= \int_{1}^{\sqrt{2}} \left(-X e^{(X^{2}-1)/2} + X e^{X^{2}/4} \right) \, dX = \left[2e^{X^{2}/4} - e^{(X^{2}-1)/2} \right]_{1}^{\sqrt{2}}
= \left(e^{1/2} - 2e^{1/4} + 1 \right) = (e^{1/4} - 1)^{2}.$$

4.5. On passe aux coordonnées polaires. Le domaine D devient $D' = \{(r,\theta) \mid r \leq \sqrt{\pi}, \ \theta \in [0,\pi/4]\}$. La fonction f devient $r\cos\theta\cos r$. Le Jacobien du changement des coordonnées est donné par $|\frac{\partial(x,y)}{\partial(r,\theta)}| = r$. On obtient

$$\iint_{D} f(x,y) \, dx \, dy = \iint_{D'} r^{2} \cos \theta \cos r \, dr \, d\theta = \int_{0}^{\sqrt{\pi}} r^{2} \cos r \, dr \cdot \int_{0}^{\pi/4} \cos \theta \, d\theta$$
$$= \left[r^{2} \sin r - 2 \sin r + 2r \cos r \right]_{0}^{\sqrt{\pi}} \cdot \left[\sin \theta \right]_{0}^{\pi/4} = \frac{\sqrt{2}}{2} (\pi \sin \sqrt{\pi} - 2 \sin \sqrt{\pi} + 2\sqrt{\pi} \cos \sqrt{\pi}).$$

L'intégrale de $r^2 \cos r$ peut être obtenu par intégration partielle.

5. Le barycentre C d'une surface D est donné par $\frac{\iint_D (x,y) \, dx \, dy}{\iint_D \, dx \, dy}$. Si la surface possède une densité ρ , la formule devient $\frac{\iint_D (x,y) \rho(x,y) \, dx \, dy}{\iint_D \rho(x,y) \, dx \, dy}$.

5.1.

$$C = \frac{\int_{-1}^{1} \int_{x^{2}}^{1} (x, y) \, dy \, dx}{\int_{-1}^{1} \int_{x^{2}}^{1} \, dy \, dx} = \frac{\int_{-1}^{1} \left[(xy, \frac{y^{2}}{2}) \right]_{x^{2}}^{1} \, dx}{\int_{-1}^{1} (1 - x^{2}) \, dx} = \frac{\int_{-1}^{1} (x - x^{3}, \frac{1 - x^{4}}{2}) \, dx}{\left[x - \frac{x^{3}}{3} \right]_{-1}^{1}} = \frac{\left[(\frac{x^{2}}{2} - \frac{x^{4}}{4}, \frac{5x - x^{5}}{10}) \right]_{-1}^{1}}{\frac{4}{3}}$$
$$= \frac{3}{4}(0, \frac{4}{5}) = (0, \frac{3}{5}).$$

5.2. Ici le domaine est donné par $D = \{(x,y) | 0 \le y \le \sqrt{1-x^2}\}$. Son image en coordonnées polaires est $D' = \{(r,\theta) | r \le 1, \ \theta \in [0,\pi]\}$. Son barycentre est alors donné par

$$C = \frac{\iint_D(x,y) \, dx \, dy}{\iint_D \, dx \, dy} = \frac{\iint_{D'} r(r\cos\theta, r\sin\theta) \, dr \, d\theta}{\iint_{D'} r \, dr \, d\theta} = \frac{\int_0^1 r^2 \, dr \cdot \int_0^{\pi} (\cos\theta, \sin\theta) \, d\theta}{\int_0^1 r \, dr \cdot \int_0^{\pi} \, d\theta} = \frac{\frac{1}{3}(0,2)}{\frac{\pi}{2}} = (0, \frac{4}{3\pi}).$$

5.3. Le disque est symétrique par rapport à la transformation $(x, y) \mapsto (x, -y)$. Alors son barycentre est de la forme (c, 0). On a

$$c = \frac{\int_0^2 \int_{-\sqrt{1-(x-1)^2}}^{\sqrt{1-(x-1)^2}} x \cdot x |y| \, dy \, dx}{\int_0^2 \int_{-\sqrt{1-(x-1)^2}}^{\sqrt{1-(x-1)^2}} x |y| \, dy \, dx} = \frac{2 \int_0^2 \int_0^{\sqrt{1-(x-1)^2}} x^2 y \, dy \, dx}{2 \int_0^2 \int_0^{\sqrt{1-(x-1)^2}} x y \, dy \, dx} = \frac{\int_0^2 \left[x^2 \frac{y^2}{2} \right]_0^{\sqrt{1-(x-1)^2}} \, dx}{\int_0^2 \left[x \frac{y^2}{2} \right]_0^{\sqrt{1-(x-1)^2}} \, dx}$$
$$= \frac{\int_0^2 x^2 \frac{1-(x-1)^2}{2} \, dx}{\int_0^2 x^2 \frac{1-(x-1)^2}{2} \, dx} = \frac{\int_0^2 x^3 (2-x) \, dx}{\int_0^2 x^2 (2-x) \, dx} = \frac{8/5}{4/3} = \frac{6}{5}.$$

Ici nous avons utilisé que $\int_{-a}^{a} f(y) dy = 2 \int_{0}^{a} f(y) dy$ pour f(y) une fonction paire, en particulier f(y) = |y|.

6. La longueur d'une courbe σ donnée sous forme paramétrisée $(x(t),y(t),z(t)),\,t\in[a,b],$ est calculée par

$$l(\sigma) = \int_a^b ||\frac{d\sigma}{dt}|| dt = \int_a^b \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2 + (\frac{dz}{dt})^2} dt.$$

6.1. L'intervalle d'intégration est $t \in [0,1]$. Alors

$$l = \int_0^1 \sqrt{3^2 + (6t)^2 + (6t^2)^2} dt = \int_0^1 \sqrt{(3 + 6t^2)^2} dt = [3t + 2t^3]_0^1 = 5.$$

Par comparaison, la longueur du segment entre les extrémités de la courbe est égale à $\sqrt{22}$.

6.2.

$$\begin{split} l &= \int_0^1 \sqrt{(-e^{-t}\cos t - e^{-t}\sin t)^2 + (-e^{-t}\sin t + e^{-t}\cos t)^2 + (-e^{-t})^2} \, dt \\ &= \int_0^1 e^{-t} \sqrt{(\cos t + \sin t)^2 + (-\sin t + \cos t)^2 + 1} \, dt = \sqrt{3} [-e^{-t}]_0^1 = \sqrt{3} (1 - e^{-1}). \end{split}$$

6.3. Pour obtenir une paramétrisation de la courbe, on passe de x,y aux coordonnées polaires r,θ . Les équations deviennent $r^2=z$, $\tan\theta=\tan z$. Il suit que $r=\sqrt{z},\,\theta=z$. Alors on peut utiliser z comme paramètre, et $x=\sqrt{z}\cos z,\,y=\sqrt{z}\sin z$. L'intervalle d'intégration est $[0,\frac{\pi}{6}]$. La longueur de la courbe est donc donnée par

$$\begin{split} l &= \int_0^{\pi/6} \sqrt{\left(\frac{\cos z}{2\sqrt{z}} - \sqrt{z}\sin z\right)^2 + \left(\frac{\sin z}{2\sqrt{z}} + \sqrt{z}\cos z\right)^2 + 1} \, dz \\ &= \int_0^{\pi/6} z^{-1/2} \sqrt{\left(\frac{\cos z}{2} - z\sin z\right)^2 + \left(\frac{\sin z}{2} + z\cos z\right)^2 + z} \, dz = \int_0^{\pi/6} z^{-1/2} \sqrt{\frac{1}{4} + z^2 + z} \, dz \\ &= \int_0^{\pi/6} \left(\sqrt{z} + \frac{1}{2\sqrt{z}}\right) dz = \left[\frac{2}{3}z^{3/2} + z^{1/2}\right]_0^{\pi/6} = \frac{2}{3} \left(\frac{\pi}{6}\right)^{3/2} + \left(\frac{\pi}{6}\right)^{1/2}. \end{split}$$

7. Un point mobile se déplace le long d'une courbe $\sigma=(x(t),y(t),z(t))$ paramétrée par $t\in[a,b]$. Le travail de force $\vec{F}=F_x\vec{i}+F_y\vec{j}+F_z\vec{k}$ est alors donné par

$$W = \int_{a}^{b} \left\langle \frac{d\sigma}{dt}, \vec{F} \right\rangle dt = \int_{a}^{b} \left(\frac{dx}{dt} F_{x} + \frac{dy}{dt} F_{y} + \frac{dz}{dt} F_{z} \right) dt.$$

Alors on obtient

$$W = \int_0^{2\pi} (-a\sin t \cdot a\cos t + a\cos t \cdot a\sin t + b\cdot bt) dt = b^2 \int_0^{2\pi} t dt = b^2 \frac{(2\pi)^2}{2} = 2b^2 \pi^2.$$

Le cas spécial $\vec{F}=-\nabla\phi,$ c'est-à-dire si la force est moins le gradient d'un potentiel $\phi,$ est plus simple. On obtient

$$W = -\int_a^b \langle \frac{d\sigma}{dt}, \nabla \phi \rangle dt = -\int_a^b \frac{d\phi(\sigma(t))}{dt} dt = -[\phi(\sigma(t))]_a^b = \phi(\sigma(a)) - \phi(\sigma(b)).$$

Le travail ne dépend donc pas de la courbe même, il dépend seulement de ses extrémités.

Dans notre cas on peut mettre $\phi = -\frac{x^2 + y^2 + z^2}{2}$. Sur la courbe on a $\phi(\sigma(t)) = -\frac{a^2 + b^2 t^2}{2}$. On obtient donc

$$W = \phi(\sigma(0)) - \phi(\sigma(2\pi)) = -\frac{a^2}{2} + \frac{a^2 + b^2(2\pi)^2}{2} = 2b^2\pi^2.$$

8. 8.1. On note l(t) pour la longueur de la courbe $\sigma = (x, y, z)$ entre $\sigma(0)$ et $\sigma(t)$.

$$l(t) = \int_0^t \sqrt{(\frac{dx}{ds})^2 + (\frac{dy}{ds})^2 + (\frac{dz}{ds})^2} \, ds = \int_0^t \sqrt{(e^t \cos t - e^t \sin t)^2 + (e^t \sin t + e^t \cos t)^2 + (e^t)^2} \, dt$$
$$= \int_0^t \sqrt{3}e^t \, dt = \sqrt{3}(e^t - 1).$$

La longueur entre $\sigma(0)$ et $\sigma(1)$ est donc égale à $l(1) = \sqrt{3}(e-1)$. L'équation $l(t) = 4\sqrt{3}$ nous donne $t = \ln 5$.

8.2. La force s'exprime comme $\vec{F} = -\nabla \phi$ pour $\phi = -\frac{z^2}{2}$. Sur la courbe on a $\phi(\sigma(t)) = -\frac{e^{2t}}{2}$. Alors

$$W = \phi(\sigma(0)) - \phi(\sigma(1)) = -\frac{1}{2} + \frac{e^2}{2}.$$

9. 9.1. On a $r\vec{u}_r = (x,y)$. La force \vec{F} s'exprime alors comme $-\nabla \phi$ pour $\phi = \frac{k(x^2 + y^2)}{2}$. On a alors

$$W = \phi(M_1) - \phi(M_2) = \frac{ka^2}{2} - \frac{kb^2}{2}.$$

9.2. Le champ de vecteurs \vec{F} s'écrit comme $-\nabla \phi$ avec $\phi = \frac{k}{r}$. Ici ϕ est le potentiel gravitationnel, avec k < 0. Le travail entre M_1 et M_2 est donné par $\phi(M_1) - \phi(M_2) = k(\frac{1}{r_1} - \frac{1}{r_2})$.

10. Soit $\Gamma(t) = (x(t), y(t))$ une courbe paramétrée, $t \in [a, b]$, et $\vec{u} = u_x \vec{i} + u_y \vec{j}$ un champ de vecteurs. Alors par définition

$$\int_{\Gamma} u_x \, dx + u_y \, dy = \int_{a}^{b} \left(u_x \frac{dx}{dt} + u_y \frac{dy}{dt} \right) dt = \int_{a}^{b} \langle \vec{u}, \frac{d\Gamma}{dt} \rangle \, dt.$$

On observe que l'intégrale est du même type que dans les exercices précédents.

10.1. On paramètre la courbe par la variable x. Alors

$$I_1 = \int_0^1 \left(-\sqrt{x}\ln(x+1) + \sqrt{x}\frac{dy}{dx}\right) dx = \int_0^1 \sqrt{x}\left(-\ln(x+1) + \ln(x+1) + \frac{x-1}{x+1}\right) dx = \int_0^1 2z^2 \frac{z^2-1}{z^2+1} dz$$

$$= 2\int_0^1 \left(z^2 - 2 + \frac{2}{z^2+1}\right) dz = 2\left[\frac{z^3}{3} - 2z + 2\arctan z\right]_0^1 = 2\left(\frac{1}{3} - 2 + 2\frac{\pi}{4}\right) = -\frac{10}{3} + \pi.$$

Ici nous avons fait le changement de variables $z = \sqrt{x}$.

10.2. On paramètre le cercle par l'angle $\theta \in [0, 2\pi], x = R\cos\theta, y = R\sin\theta$. Alors

$$I_{2} = \int_{0}^{2\pi} ((2x - y)\frac{dx}{d\theta} + (x + y)\frac{dy}{d\theta}) d\theta = \int_{0}^{2\pi} ((2R\cos\theta - R\sin\theta)(-R\sin\theta) + (R\cos\theta + R\sin\theta)R\cos\theta) d\theta$$
$$= R^{2} \int_{0}^{2\pi} (-\sin\theta\cos\theta + 1) d\theta = R^{2} \left[\theta + \frac{1}{4}\cos 2\theta\right]_{0}^{2\pi} = 2\pi R^{2}.$$

10.3. Le champ $\vec{u} = yz\vec{i} + xz\vec{j} + xy\vec{k}$ est le gradient d'une fonction scalaire, $\vec{u} = -\nabla \phi$ avec $\phi = -xyz$. Introduisons une paramétrisation de Γ par $t \in [a, b]$. Alors

$$I_3 = \int_a^b \langle \vec{u}, \frac{d\Gamma}{dt} \rangle dt = -\int_a^b \frac{d\phi(\Gamma(t))}{dt} dt = \phi(\Gamma(a)) - \phi(\Gamma(b)).$$

Mais la courbe Γ est fermée, et $\Gamma(a) = \Gamma(b)$. Alors $I_3 = 0$.

11. La formule de Green-Riemann postule que pour une courbe Γ fermée lisse délimitant un domaine D on a

$$\int_{\Gamma} u_x \, dx + u_y \, dy = \iint_{D} \left(\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} \right) \, dx \, dy.$$

Ici u_x, u_y sont des fonctions lisses.

11.1. L'aire de D est donné par $A=\iint_D 1\,dx\,dy$. Posons $u_x=-\frac{y}{2},\ u_y=\frac{x}{2}$. Alors $\frac{\partial u_y}{\partial x}-\frac{\partial u_x}{\partial y}=1$. L'application de la formule de Green-Riemann donne le résultat désiré.

11.2. On prend pour Γ le bord de l'ellipse et le parametrise par $\theta \in [0, 2\pi]$. On obtient

$$A = \frac{1}{2} \int_0^{2\pi} \left(x \frac{dy}{d\theta} - y \frac{dx}{d\theta} \right) d\theta = \frac{1}{2} \int_0^{2\pi} \left(a \cos \theta \cdot b \cos \theta - b \sin \theta \cdot (-a \sin \theta) \right) d\theta = \frac{1}{2} \int_0^{2\pi} ab \, d\theta = \pi ab.$$

12. On a $u_x = xy^2$ and $u_y = 2xy$. Alors $\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} = 2x(1-y)$. On a alors

$$\int_{\gamma} \omega = \iint_{K} 2x(1-y) \, dx \, dy = \int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} 2x(1-y) \, dx \, dy = \int_{0}^{1} [x^{2}(1-y)]_{0}^{\sqrt{1-y^{2}}} \, dy$$
$$= \int_{0}^{1} (1-y-y^{2}+y^{3}) \, dy = [y-\frac{y^{2}}{2}-\frac{y^{3}}{3}+\frac{y^{4}}{4}]_{0}^{1} = 1 - \frac{1}{2} - \frac{1}{3} + \frac{1}{4} = \frac{5}{12}.$$

13. On peut, p.ex., prendre $u_x = 0$, $u_y = \frac{1}{2}x^2y$ tel que $\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} = xy$. On pose $\gamma = \partial D$. On a alors

$$\iint_D xy \, dx \, dy = \int_{\gamma} \frac{1}{2} x^2 y \, dy = \int_0^2 \frac{1}{2} (2 - y)^2 y \, dy = \frac{1}{2} [2y^2 - \frac{4}{3}y^3 + \frac{y^4}{4}]_0^2 = \frac{1}{2} (8 - \frac{32}{3} + 4) = \frac{2}{3}.$$

Ici on a utilisé que la forme $\omega=\frac{1}{2}x^2y\,dy$ s'annule sur les axes. L'intégrale sur γ se reduit alors à l'intégrale sur le segment entre (2,0) et (0,2).