A partial differential equation characterizing determinants of symmetric cones

Roland Hildebrand

Université Grenoble 1 / CNRS

September 21, 2012 / MAP 2012, Konstanz

▲□ ▶ ▲ □ ▶ ▲

Outline

Symmetric cones

- Geometric characterization
- Algebraic characterization

2 Jordan algebras

- Exponential and logarithm
- Trace forms and determinant
- 3 The partial differential equation
 - Hessian metrics
 - The PDE
 - Connection with Jordan algebras

Geometric characterization Algebraic characterization

Outline

Symmetric cones

- Geometric characterization
- Algebraic characterization
- 2 Jordan algebras
 - Exponential and logarithm
 - Trace forms and determinant
- 3 The partial differential equation
 - Hessian metrics
 - The PDE
 - Connection with Jordan algebras

(4) (3) (4) (4) (4)

< 🗇 🕨

Geometric characterization Algebraic characterization

Regular convex cones

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is a closed convex cone having nonempty interior and containing no lines.

let $\langle \cdot, \cdot \rangle$ be a scalar product on \mathbb{R}^n

$$\mathcal{K}^* = \{ \mathcal{p} \in \mathbb{R}_n \, | \, \langle x, \mathcal{p} \rangle \geq 0 \quad \forall \; x \in \mathcal{K} \}$$

is called the dual cone

Geometric characterization Algebraic characterization

Symmetric cones

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is called self-dual if there exists a scalar product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n such that $K = K^*$.

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is called homogeneous if the automorphism group Aut(K) acts transitively on K^o .

Definition

A self-dual, homogeneous regular convex cone is called symmetric.

< □ > < @ >

→ ∃ → < ∃</p>

Geometric characterization Algebraic characterization

Jordan algebras

an algebra A is a vector space V equipped with a bilinear operation $\bullet: V \times V \rightarrow V$

Definition

An algebra J is a Jordan algebra if

•
$$x \bullet y = y \bullet x$$
 for all $x, y \in J$ (commutativity)

•
$$x^2 \bullet (x \bullet y) = x \bullet (x^2 \bullet y)$$
 for all $x, y \in J$ (Jordan identity)
where $x^2 = x \bullet x$.

Definition

A Jordan algebra is formally real or Euclidean if $\sum_{k=1}^{m} x_k^2 = 0$ implies $x_k = 0$ for all k, m.

< ロ > < 同 > < 回 > < 回 >

э

Geometric characterization Algebraic characterization

Examples

let Q be a real symmetric matrix and $e \in \mathbb{R}^n$ such that $e^T Q e = 1$ the quadratic factor $\mathcal{J}_n(Q)$ is the space \mathbb{R}^n equipped with the multiplication

$$x \bullet y = e^T Q x \cdot y + e^T Q y \cdot x - x^T Q y \cdot e$$

let \mathcal{H} be an algebra of Hermitian matrices over a real coordinate algebra ($\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$) then the corresponding Hermitian Jordan algebra is the vecto space underlying \mathcal{H} equipped with the multiplication

$$A \bullet B = \frac{AB + BA}{2}$$

Geometric characterization Algebraic characterization

Examples

let *Q* be a real symmetric matrix and $e \in \mathbb{R}^n$ such that $e^T Q e = 1$ the quadratic factor $\mathcal{J}_n(Q)$ is the space \mathbb{R}^n equipped with the multiplication

$$x \bullet y = e^T Q x \cdot y + e^T Q y \cdot x - x^T Q y \cdot e$$

let \mathcal{H} be an algebra of Hermitian matrices over a real coordinate algebra ($\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$) then the corresponding Hermitian Jordan algebra is the vector space underlying \mathcal{H} equipped with the multiplication

$$A \bullet B = \frac{AB + BA}{2}$$

Geometric characterization Algebraic characterization

Classification of Euclidean Jordan algebras

Theorem (Jordan, von Neumann, Wigner 1934)

Every Euclidean Jordan algebra is a direct product of a finite number of Jordan algebras of the following types:

- quadratic factor with matrix Q of signature $+ \cdots -$
- real symmetric matrices
- complex Hermitian matrices
- quaternionic Hermitian matrices
- octonionic Hermitian 3 × 3 matrices

< ロ > < 同 > < 回 > < 回 > < □ > <

Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

The symmetric cones are exactly the cones of squares of Euclidean Jordan algebras, $K = \{x^2 \mid x \in J\}$.

Every symmetric cone can be hence represented as a direct product of a finite number of the following irreducible symmetric cones:

- Lorentz (or second order) cone $L_n = \left\{ (x_0, \dots, x_{n-1}) \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2} \right\}$
- matrix cones S₊(n), H₊(n), Q₊(n) of real, complex, or quaternionic hermitian positive semi-definite matrices
- Albert cone O₊(3) of octonionic hermitian positive semi-definite 3 × 3 matrices

Exponential and logarithm Trace forms and determinant

Outline

Symmetric cones

- Geometric characterization
- Algebraic characterization

2 Jordan algebras

- Exponential and logarithm
- Trace forms and determinant
- 3 The partial differential equation
 - Hessian metrics
 - The PDE
 - Connection with Jordan algebras

A B > A B

Exponential and logarithm Trace forms and determinant

Unital and simple Jordan algebras

Definition

A Jordan algebra is called unital if it possesses a unit element e, satisfying $u \bullet e = u$ for all $u \in J$.

Definition

A Jordan algebra is called simple if it is not nil and has no non-trivial ideal.

Theorem (Jordan, von Neumann, Wigner 1934)

Euclidean Jordan algebras are unital and decompose in a unique way into a direct product of simple Jordan algebras.

Exponential and logarithm Trace forms and determinant

Exponential map

define recursively $u^{m+1} = u \bullet u^m$ with $u^0 = e$, define the exponential map

$$\exp(u) = \sum_{k=0}^{\infty} \frac{u^k}{k!}$$

Theorem (Köcher)

Let J be a Euclidean Jordan algebra and K its cone of squares. Then the exponential map is *injective* and its image is the interior of K,

$$\exp[J]=K^o.$$

Exponential and logarithm Trace forms and determinant

let J be a Euclidean Jordan algebra with cone of squares K then we can define the logarithm

 $\log: K^o \to J$

as the inverse of the exponential map

Exponential and logarithm Trace forms and determinant

Definition

Definition

Let *J* be a Jordan algebra. A symmetric bilinear form γ on *J* is called trace form if $\gamma(u, v \bullet w) = \gamma(u \bullet v, w)$ for all $u, v, w \in J$.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Generic minimum polynomial

for every u in a unital Jordan algebra there exists m such that

•
$$u^0, u^1, \dots, u^{m-1}$$
 are linearly independent
• $u^m = \sigma_1 u^{m-1} - \sigma_2 u^{m-2} + \dots - (-1)^m \sigma_m u^0$
• $\sigma_u(\lambda) = \lambda^m - \sigma_1 \lambda^{m-1} + \dots + (-1)^m \sigma_m$ is the minimum polynomial of u

Theorem (Jacobson, 1963)

There exists a unique minimal polynomial $p(\lambda) = \lambda^m - \sigma_1(u)\lambda^{m-1} + \dots + (-1)^m \sigma_m(u)$, the generic minimum polynomial, such that $p_u|p$ for all u. The coefficient $\sigma_k(u)$ is homogeneous of degree k in u. The coefficient $t(u) = \sigma_1(u)$ is called generic trace and the coefficient $n(u) = \sigma_m(u)$ the generic norm.

< ロ > < 同 > < 回 > < 回 > < 回 >

Exponential and logarithm Trace forms and determinant

Generic bilinear trace form

Theorem (Jacobson)

Let J be a unital Jordan algebra. The symmetric bilinear form

$$\tau(u,v)=t(u\bullet v)$$

is a trace form, called the generic bilinear trace form.

for Euclidean Jordan algebras with cone of squares K we have

$$\log n(x) = t(\log x) = \tau(e, \log x)$$

for all $x \in K^o$

Exponential and logarithm Trace forms and determinant

Euclidean Jordan algebras

Theorem (Köcher)

Let J be a unital real Jordan algebra. Then the following conditions are equivalent.

- J is Euclidean
- there exists a positive definite trace form γ on J.

if J is a simple Euclidean Jordan algebra, then any non-degenerate trace form γ on J is proportional to the generic bilinear trace form τ

```
hence \gamma(e, \log x) is proportional to \log n(x)
```

< ロ > < 同 > < 回 > < 回 > < □ > <

Symmetric cones Hessian metrics Jordan algebras The PDE The partial differential equation Connection with Jordan algebras

Outline

Symmetric cones

- Geometric characterization
- Algebraic characterization

2 Jordan algebras

- Exponential and logarithm
- Trace forms and determinant

3 The partial differential equation

- Hessian metrics
- The PDE
- Connection with Jordan algebras

A B > A B

Hessian metrics The PDE Connection with Jordan algebras

Notation for derivatives

let $F : U \to \mathbb{R}$ be a smooth function on $U \subset \mathbb{A}^n$, where \mathbb{A}^n is the *n*-dimensional affine real space

we note
$$\frac{\partial F}{\partial x^{\alpha}} = F_{,\alpha}$$
, $\frac{\partial^2 F}{\partial x^{\alpha} \partial x^{\beta}} = F_{,\alpha\beta}$ etc.

note $F^{,\alpha\beta}$ for the inverse of the Hessian

Hessian metrics The PDE Connection with Jordan algebras

Hessian metrics

Definition

Let $U \subset \mathbb{A}^n$ be a domain equipped with a pseudo-metric g. Then g is called Hessian if there locally exists a smooth function F such that g = F''. The function F is called Hessian potential.

the geodesics of a pseudo-metric obey the equation

$$\ddot{\pmb{x}}^{lpha} + \sum_{eta\gamma} \Gamma^{lpha}_{eta\gamma} \dot{\pmb{x}}^{eta} \dot{\pmb{x}}^{\gamma}$$

with $\Gamma^{\alpha}_{\beta\gamma}$ the Christoffel symbols for a Hessian metric we have

$$\Gamma^{\alpha}_{\beta\gamma} = \frac{1}{2}\sum_{\delta} F^{,\alpha\delta} F_{,\beta\gamma\delta}$$

Hessian metrics The PDE Connection with Jordan algebras

Parallelism condition

the third derivative F''' of the Hessian potential is parallel with respect to the Hessian metric F'' if

$$\frac{\partial}{\partial \mathbf{x}^{\delta}} \mathbf{F}_{,\alpha\beta\gamma} + \sum_{\eta} \left(\Gamma^{\eta}_{\alpha\delta} \mathbf{F}_{,\beta\gamma\eta} + \Gamma^{\eta}_{\beta\delta} \mathbf{F}_{,\alpha\gamma\eta} + \Gamma^{\eta}_{\gamma\delta} \mathbf{F}_{,\alpha\beta\eta} \right) = \mathbf{0}$$

in short notation $\hat{D}D^3F = 0$, with *D* the flat connection of \mathbb{A}^n and \hat{D} the Levi-Civita connection of the Hessian metric

$$\mathcal{F}_{,lphaeta\gamma\delta} = rac{1}{2}\sum_{
ho\sigma}\mathcal{F}^{,
ho\sigma}\left(\mathcal{F}_{,lphaeta
ho}\mathcal{F}_{,\gamma\delta\sigma} + \mathcal{F}_{,lpha\gamma
ho}\mathcal{F}_{,eta\delta\sigma} + \mathcal{F}_{,lpha\delta
ho}\mathcal{F}_{,eta\gamma\sigma}
ight)$$

ヘロン 人間と 人間と 人間と

Hessian metrics The PDE Connection with Jordan algebras

Integrability condition

differentiating with respect to x^{η} and substituting the fourth order derivatives by the right-hand side, we get

$$\begin{split} F_{,\alpha\beta\gamma\delta\eta} &= \frac{1}{4} \sum_{\rho,\sigma,\mu,\nu} F^{,\rho\sigma} F^{,\mu\nu} \left(F_{,\beta\eta\nu} F_{,\alpha\rho\mu} F_{,\gamma\delta\sigma} + F_{,\alpha\eta\mu} F_{,\rho\beta\nu} F_{,\gamma\delta\sigma} \right. \\ &+ F_{,\gamma\eta\nu} F_{,\alpha\rho\mu} F_{,\beta\delta\sigma} + F_{,\alpha\eta\mu} F_{,\rho\gamma\nu} F_{,\beta\delta\sigma} + F_{,\beta\eta\nu} F_{,\gamma\rho\mu} F_{,\alpha\delta\sigma} \\ &+ F_{,\gamma\eta\mu} F_{,\rho\beta\nu} F_{,\alpha\delta\sigma} + F_{,\beta\eta\nu} F_{,\delta\rho\mu} F_{,\alpha\gamma\sigma} + F_{,\delta\eta\mu} F_{,\rho\beta\nu} F_{,\alpha\gamma\sigma} \\ &+ F_{,\delta\eta\nu} F_{,\alpha\rho\mu} F_{,\beta\gamma\sigma} + F_{,\alpha\eta\mu} F_{,\rho\delta\nu} F_{,\beta\gamma\sigma} + F_{,\delta\eta\nu} F_{,\gamma\rho\mu} F_{,\alpha\beta\sigma} \\ &+ F_{,\gamma\eta\mu} F_{,\rho\delta\nu} F_{,\alpha\beta\sigma} \right) \end{split}$$

anti-commuting δ, η gives the integrability condition

$$F^{,\rho\sigma}F^{,\mu\nu}\left(F_{,\beta\eta\nu}F_{,\delta\rho\mu}F_{,\alpha\gamma\sigma}+F_{,\alpha\eta\mu}F_{,\rho\delta\nu}F_{,\beta\gamma\sigma}+F_{,\gamma\eta\mu}F_{,\rho\delta\nu}F_{,\alpha\beta\sigma}\right.\\\left.-F_{,\beta\delta\nu}F_{,\eta\rho\mu}F_{,\alpha\gamma\sigma}-F_{,\alpha\delta\mu}F_{,\rho\eta\nu}F_{,\beta\gamma\sigma}-F_{,\gamma\delta\mu}F_{,\rho\eta\nu}F_{,\alpha\beta\sigma}\right)=0.$$

Symmetric cones Hessian metrics Jordan algebras The PDE The partial differential equation Connection with Jordan algebras

let
$$K^{lpha}_{eta\gamma} = -\Gamma^{lpha}_{eta\gamma} = -rac{1}{2}\sum_{\delta} \mathcal{F}^{,lpha\delta}\mathcal{F}_{,eta\gamma\delta}$$
, then $K^{lpha}_{eta\gamma} = K^{lpha}_{\gammaeta}$

contracting the integrability condition with $F^{,\eta\zeta}$, we get

$$egin{aligned} &\sum_{\mu,
ho} \left(\mathcal{K}^{\zeta}_{lpha\mu} \mathcal{K}^{\mu}_{\delta
ho} \mathcal{K}^{
ho}_{eta\gamma} + \mathcal{K}^{\zeta}_{eta\mu} \mathcal{K}^{\mu}_{\delta
ho} \mathcal{K}^{
ho}_{lpha\gamma} + \mathcal{K}^{\zeta}_{\gamma\mu} \mathcal{K}^{\mu}_{\delta
ho} \mathcal{K}^{
ho}_{lphaeta} \\ &- \mathcal{K}^{\mu}_{lpha\delta} \mathcal{K}^{\zeta}_{
ho\mu} \mathcal{K}^{
ho}_{eta\gamma} - \mathcal{K}^{\mu}_{eta\delta} \mathcal{K}^{\zeta}_{
ho\mu} \mathcal{K}^{
ho}_{lpha\gamma} - \mathcal{K}^{\mu}_{eta\delta} \mathcal{K}^{\zeta}_{
ho\mu\mu} \mathcal{K}^{
ho}_{lphaeta} \right) = \mathbf{0} \end{aligned}$$

this is satisfied if and only if

$$\sum_{\alpha,\beta,\gamma,\delta,\mu,\rho} \left(\mathsf{K}^{\zeta}_{\alpha\mu} \mathsf{K}^{\mu}_{\delta\rho} \mathsf{K}^{\rho}_{\beta\gamma} u^{\alpha} u^{\beta} u^{\gamma} v^{\delta} - \mathsf{K}^{\mu}_{\alpha\delta} \mathsf{K}^{\zeta}_{\rho\mu} \mathsf{K}^{\rho}_{\beta\gamma} u^{\alpha} u^{\beta} u^{\gamma} v^{\delta} \right) = 0$$

for all tangent vectors u, v

Hessian metrics The PDE Connection with Jordan algebras

Jordan algebra defined by F

choose a point $e \in U$ and define a multiplication on T_eU by $u \bullet v = K(u, v)$,

$$(u \bullet v)^{lpha} = \sum_{eta, \gamma} K^{lpha}_{eta\gamma} u^{eta} v^{\gamma}$$

then $T_e U$ becomes a commutative algebra Jthe integrability condition becomes

$$K(K(K(u,u),v),u) = K(K(u,v),K(u,u))$$

or

$$(u^2 \bullet v) \bullet u = (u \bullet v) \bullet u^2$$

hence J is a Jordan algebra

< ロ > < 同 > < 回 > < 回 >

э

Symmetric cones Jordan algebras The partial differential equation Connection with Jordan algebras

Trace form

the pseudo-metric g = F''(e) satisfies

$$\begin{split} g(u \bullet v, w) &= \sum_{\beta, \gamma, \delta, \rho} F_{,\beta\gamma} K_{\delta\rho}^{\beta} u^{\delta} v^{\rho} w^{\gamma} \\ &= -\frac{1}{2} \sum_{\beta, \gamma, \delta, \rho, \sigma} F_{,\beta\gamma} F_{,\delta\rho\sigma} F^{,\sigma\beta} u^{\delta} v^{\rho} w^{\gamma} = -\frac{1}{2} \sum_{\gamma, \delta, \rho} F_{,\delta\rho\gamma} u^{\delta} v^{\rho} w^{\gamma} \\ &= -\frac{1}{2} \sum_{\beta, \gamma, \delta, \rho, \sigma} F_{,\beta\delta} u^{\delta} F_{,\rho\gamma\sigma} F^{,\sigma\beta} v^{\rho} w^{\gamma} \\ &= \sum_{\beta, \gamma, \delta, \rho} F_{,\delta\beta} u^{\delta} K_{\rho\gamma}^{\beta} v^{\rho} w^{\gamma} = g(u, v \bullet w). \end{split}$$

hence g is a trace form

Hessian metrics The PDE Connection with Jordan algebras

Algebra defined by F

Theorem (H., 2012)

Let $F : U \to \mathbb{R}$ be a solution of the equation $\hat{D}D^3F = 0$. Let $e \in U$ and let J be the algebra defined on T_eU by the structure coefficients $K^{\alpha}_{\beta\gamma} = -\frac{1}{2}\sum_{\delta} F^{,\alpha\delta}F_{,\beta\gamma\delta}$ at e. Then J is a Jordan algebra, and the Hessian metric g = F''(e) is a non-degenerate trace form on J.

- if *F* is convex and log-homogeneous, then *J* is Euclidean
- if in addition J is simple, then g is proportional to the generic bilinear trace τ

Hessian metrics The PDE Connection with Jordan algebras

Logarithmically homogeneous functions

Definition

Let $U \subset \mathbb{R}^n$ be an open conic set. A logarithmically homogeneous function on U is a smooth function $F : U \to \mathbb{R}$ such that

$$F(\alpha x) = -\nu \log \alpha + F(x)$$

for all $\alpha > 0$, $x \in U$. The scalar ν is called the homogeneity parameter.

Hessian metrics The PDE Connection with Jordan algebras

F defined by algebra

Theorem (H., 2012)

Let J be a Euclidean Jordan algebra and K its cone of squares. Let γ be a non-degenerate trace form on J. Then $F : K^o \to \mathbb{R}$ defined by

$$F(\mathbf{x}) = -\gamma(\mathbf{e}, \log \mathbf{x})$$

is a solution of the equation $\hat{D}D^3F = 0$ such that $F''(e) = \gamma$ and, under identification of T_eK^o and J, the multiplication in J is given by $K^{\alpha}_{\beta\gamma} = -\frac{1}{2}\sum_{\delta} F^{,\alpha\delta}F_{,\beta\gamma\delta}$ at e.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hessian metrics The PDE Connection with Jordan algebras

Main results

Theorem (H., 2012)

Let $K = K_1 \times \cdots \times K_m$ be a symmetric cone and K_1, \ldots, K_m its irreducible factors. Then for every set of non-zero reals $\alpha_1, \ldots, \alpha_m$, the function $F : K^o \to \mathbb{R}$ given by

$$F(A_1,\ldots,A_m)=-\sum_{k=1}^m\alpha_k\log n(A_k)$$

is log-homogeneous and satisfies the equation $\hat{D}D^3F = 0$. The function F is convex if and only if $\alpha_k > 0$ for all k.

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Theorem (H., 2012)

Let $U \subset \mathbb{A}^n$ be a subset of affine space and let $F : U \to \mathbb{R}$ be a log-homogeneous convex solution of the equation $\hat{D}D^3F = 0$. Then there exists a symmetric cone $K = K_1 \times \cdots \times K_m \subset \mathbb{A}^n$, positive reals $\alpha_1, \ldots, \alpha_m$, and a constant c such that F can be extended to a solution $\tilde{F} : K^o \to \mathbb{R}$ given by

$$\tilde{F}(A_1,\ldots,A_m) = -\sum_{k=1}^m \alpha_k \log n(A_k) + c.$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

when dropping convexity assumption, generalization beyond Euclidean Jordan algebras possible:

Hildebrand R. Centro-affine hypersurface immersions with parallel cubic form. arXiv preprint math.DG:1208.1155

Thank you

< ロ > < 同 > < 回 > < 回 > < 回 >