A partial differential equation characterizing determinants of symmetric cones

Roland Hildebrand

Université Grenoble 1 / CNRS
September 21, 2012 / MAP 2012, Konstanz

Outline

(9) Symmetric cones

- Geometric characterization
- Algebraic characterization
(2) Jordan algebras
- Exponential and logarithm
- Trace forms and determinant
(3) The partial differential equation
- Hessian metrics
- The PDE
- Connection with Jordan algebras

Outline

(1) Symmetric cones

- Geometric characterization
- Algebraic characterization
(2) Jordan algebras
- Exponential and logarithm
- Trace forms and determinant
(3) The partial differential equation
- Hessian metrics
- The PDE
- Connection with Jordan algebras

Regular convex cones

Definition

A regular convex cone $K \subset \mathbb{R}^{n}$ is a closed convex cone having nonempty interior and containing no lines.
let $\langle\cdot, \cdot\rangle$ be a scalar product on \mathbb{R}^{n}

$$
K^{*}=\left\{p \in \mathbb{R}_{n} \mid\langle x, p\rangle \geq 0 \quad \forall x \in K\right\}
$$

is called the dual cone

Symmetric cones

Definition

A regular convex cone $K \subset \mathbb{R}^{n}$ is called self-dual if there exists a scalar product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} such that $K=K^{*}$.

Definition

A regular convex cone $K \subset \mathbb{R}^{n}$ is called homogeneous if the automorphism group $\operatorname{Aut}(K)$ acts transitively on K^{0}.

Definition

A self-dual, homogeneous regular convex cone is called symmetric.

Jordan algebras

an algebra A is a vector space V equipped with a bilinear operation • : $V \times V \rightarrow V$

Definition

An algebra J is a Jordan algebra if

- $x \bullet y=y \bullet x$ for all $x, y \in J$ (commutativity)
- $x^{2} \bullet(x \bullet y)=x \bullet\left(x^{2} \bullet y\right)$ for all $x, y \in J$ (Jordan identity)
where $x^{2}=x \bullet x$.

Definition

A Jordan algebra is formally real or Euclidean if $\sum_{k=1}^{m} x_{k}^{2}=0$ implies $x_{k}=0$ for all k, m.

Examples

let Q be a real symmetric matrix and $e \in \mathbb{R}^{n}$ such that $e^{T} Q e=1$ the quadratic factor $\mathcal{J}_{n}(Q)$ is the space \mathbb{R}^{n} equipped with the multiplication

$$
x \bullet y=e^{T} Q x \cdot y+e^{T} Q y \cdot x-x^{T} Q y \cdot e
$$

let \mathcal{H} be an algebra of Hermitian matrices over a real
coordinate algebra ($\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$)
then the corresponding Hermitian Jordan algebra is the vector space underlying \mathcal{H} equipped with the multiplication

Examples

let Q be a real symmetric matrix and $e \in \mathbb{R}^{n}$ such that $e^{T} Q e=1$ the quadratic factor $\mathcal{J}_{n}(Q)$ is the space \mathbb{R}^{n} equipped with the multiplication

$$
x \bullet y=e^{T} Q x \cdot y+e^{T} Q y \cdot x-x^{T} Q y \cdot e
$$

let \mathcal{H} be an algebra of Hermitian matrices over a real coordinate algebra ($\mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{O}$) then the corresponding Hermitian Jordan algebra is the vector space underlying \mathcal{H} equipped with the multiplication

$$
A \bullet B=\frac{A B+B A}{2}
$$

Classification of Euclidean Jordan algebras

Theorem (Jordan, von Neumann, Wigner 1934)

Every Euclidean Jordan algebra is a direct product of a finite number of Jordan algebras of the following types:

- quadratic factor with matrix Q of signature $+\cdots-$
- real symmetric matrices
- complex Hermitian matrices
- quaternionic Hermitian matrices
- octonionic Hermitian 3×3 matrices

Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

The symmetric cones are exactly the cones of squares of Euclidean Jordan algebras, $K=\left\{x^{2} \mid x \in J\right\}$.
Every symmetric cone can be hence represented as a direct product of a finite number of the following irreducible symmetric cones:

- Lorentz (or second order) cone

$$
L_{n}=\left\{\left(x_{0}, \ldots, x_{n-1}\right) \mid x_{0} \geq \sqrt{x_{1}^{2}+\cdots+x_{n-1}^{2}}\right\}
$$

- matrix cones $S_{+}(n), H_{+}(n), Q_{+}(n)$ of real, complex, or quaternionic hermitian positive semi-definite matrices
- Albert cone $O_{+}(3)$ of octonionic hermitian positive semi-definite 3×3 matrices

Outline

○
Symmetric cones

- Geometric characterization
- Algebraic characterization
(2) Jordan algebras
- Exponential and logarithm
- Trace forms and determinant
(3) The partial differential equation
- Hessian metrics
- The PDE
- Connection with Jordan algebras

Unital and simple Jordan algebras

Definition

A Jordan algebra is called unital if it possesses a unit element e, satisfying $u \bullet e=u$ for all $u \in J$.

Definition

A Jordan algebra is called simple if it is not nil and has no non-trivial ideal.

Theorem (Jordan, von Neumann, Wigner 1934)

Euclidean Jordan algebras are unital and decompose in a unique way into a direct product of simple Jordan algebras.

Exponential map

define recursively $u^{m+1}=u \bullet u^{m}$ with $u^{0}=e$, define the exponential map

$$
\exp (u)=\sum_{k=0}^{\infty} \frac{u^{k}}{k!}
$$

Theorem (Köcher)

Let J be a Euclidean Jordan algebra and K its cone of squares. Then the exponential map is injective and its image is the interior of K,

$$
\exp [J]=K^{\circ}
$$

Logarithm

let J be a Euclidean Jordan algebra with cone of squares K then we can define the logarithm

$$
\log : K^{\circ} \rightarrow J
$$

as the inverse of the exponential map

Definition

Definition

Let J be a Jordan algebra. A symmetric bilinear form γ on J is called trace form if $\gamma(u, v \bullet w)=\gamma(u \bullet v, w)$ for all $u, v, w \in J$.

Generic minimum polynomial

for every u in a unital Jordan algebra there exists m such that

- $u^{0}, u^{1}, \ldots, u^{m-1}$ are linearly independent
- $u^{m}=\sigma_{1} u^{m-1}-\sigma_{2} u^{m-2}+\cdots-(-1)^{m} \sigma_{m} u^{0}$
$p_{u}(\lambda)=\lambda^{m}-\sigma_{1} \lambda^{m-1}+\cdots+(-1)^{m} \sigma_{m}$ is the minimum polynomial of u

Theorem (Jacobson, 1963)

There exists a unique minimal polynomial $p(\lambda)=\lambda^{m}-\sigma_{1}(u) \lambda^{m-1}+\cdots+(-1)^{m} \sigma_{m}(u)$, the generic minimum polynomial, such that $p_{u} \mid p$ for all u. The coefficient $\sigma_{k}(u)$ is homogeneous of degree k in u. The coefficient $t(u)=\sigma_{1}(u)$ is called generic trace and the coefficient $n(u)=\sigma_{m}(u)$ the generic norm.

Generic bilinear trace form

Theorem (Jacobson)

Let J be a unital Jordan algebra. The symmetric bilinear form

$$
\tau(u, v)=t(u \bullet v)
$$

is a trace form, called the generic bilinear trace form.
for Euclidean Jordan algebras with cone of squares K we have

$$
\log n(x)=t(\log x)=\tau(e, \log x)
$$

for all $x \in K^{o}$

Euclidean Jordan algebras

Theorem (Köcher)

Let J be a unital real Jordan algebra. Then the following conditions are equivalent.

- J is Euclidean
- there exists a positive definite trace form γ on J .
if J is a simple Euclidean Jordan algebra, then any non-degenerate trace form γ on J is proportional to the generic bilinear trace form τ
hence $\gamma(e, \log x)$ is proportional to $\log n(x)$

Outline

(1)
Symmetric cones

- Geometric characterization
- Algebraic characterization
(2) Jordan algebras
- Exponential and logarithm
- Trace forms and determinant
(3) The partial differential equation
- Hessian metrics
- The PDE
- Connection with Jordan algebras

Notation for derivatives

let $F: U \rightarrow \mathbb{R}$ be a smooth function on $U \subset \mathbb{A}^{n}$, where \mathbb{A}^{n} is the n-dimensional affine real space
we note $\frac{\partial F}{\partial x^{\alpha}}=F_{, \alpha}, \frac{\partial^{2} F}{\partial x^{\alpha} \partial x^{\beta}}=F_{, \alpha \beta}$ etc.
note $F, \alpha \beta$ for the inverse of the Hessian

Hessian metrics

Definition

Let $U \subset \mathbb{A}^{n}$ be a domain equipped with a pseudo-metric g. Then g is called Hessian if there locally exists a smooth function F such that $g=F^{\prime \prime}$. The function F is called Hessian potential.
the geodesics of a pseudo-metric obey the equation

$$
\ddot{x}^{\alpha}+\sum_{\beta \gamma} \Gamma_{\beta \gamma}^{\alpha} \dot{x}^{\beta} \dot{x}^{\gamma}
$$

with $\Gamma_{\beta \gamma}^{\alpha}$ the Christoffel symbols
for a Hessian metric we have

$$
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} \sum_{\delta} F^{, \alpha \delta} F_{, \beta \gamma \delta}
$$

Parallelism condition

the third derivative $F^{\prime \prime \prime}$ of the Hessian potential is parallel with respect to the Hessian metric $F^{\prime \prime}$ if

$$
\frac{\partial}{\partial \boldsymbol{X}^{\delta}} F_{, \alpha \beta \gamma}+\sum_{\eta}\left(\Gamma_{\alpha \delta}^{\eta} F_{, \beta \gamma \eta}+\Gamma_{\beta \delta}^{\eta} F_{, \alpha \gamma \eta}+\Gamma_{\gamma \delta}^{\eta} F_{, \alpha \beta \eta}\right)=0
$$

in short notation $\hat{D} D^{3} F=0$, with D the flat connection of \mathbb{A}^{n} and \hat{D} the Levi-Civita connection of the Hessian metric

$$
F_{, \alpha \beta \gamma \delta}=\frac{1}{2} \sum_{\rho \sigma} F^{, \rho \sigma}\left(F_{, \alpha \beta \rho} F_{, \gamma \delta \sigma}+F_{, \alpha \gamma \rho} F_{, \beta \delta \sigma}+F_{, \alpha \delta \rho} F_{, \beta \gamma \sigma}\right)
$$

Integrability condition

differentiating with respect to x^{η} and substituting the fourth order derivatives by the right-hand side, we get

$$
\begin{aligned}
& F_{, \alpha \beta \gamma \delta \eta}=\frac{1}{4} \sum_{\rho, \sigma, \mu, \nu} F^{, \rho \sigma} F^{, \mu \nu}\left(F_{, \beta \eta \nu} F_{, \alpha \rho \mu} F_{, \gamma \delta \sigma}+F_{, \alpha \eta \mu} F_{, \rho \beta \nu} F_{, \gamma \delta \sigma}\right. \\
& \quad+F_{, \gamma \eta \nu} F_{, \alpha \rho \mu} F_{, \beta \delta \sigma}+F_{, \alpha \eta \mu} F_{, \rho \gamma \nu} F_{, \beta \delta \sigma}+F_{, \beta \eta \nu} F_{, \gamma \rho \mu} F_{, \alpha \delta \sigma} \\
& \quad+F_{, \gamma \eta \mu} F_{, \rho \beta \nu} F_{, \alpha \delta \sigma}+F_{, \beta \eta \nu} F_{, \delta \rho \mu} F_{, \alpha \gamma \sigma}+F_{, \delta \eta \mu} F_{, \rho \beta \nu} F_{, \alpha \gamma \sigma} \\
& \quad+F_{, \delta \eta \nu} F_{, \alpha \rho \mu} F_{, \beta \gamma \sigma}+F_{, \alpha \eta \mu} F_{, \rho \delta \nu} F_{, \beta \gamma \sigma}+F_{, \delta \eta \nu} F_{, \gamma \rho \mu} F_{, \alpha \beta \sigma} \\
& \left.\quad+F_{, \gamma \eta \mu} F_{, \rho \delta \nu} F_{, \alpha \beta \sigma}\right)
\end{aligned}
$$

anti-commuting δ, η gives the integrability condition

$$
\begin{aligned}
& F^{, \rho \sigma} F^{, \mu \nu}\left(F_{, \beta \eta \nu} F_{, \delta \rho \mu} F_{, \alpha \gamma \sigma}+F_{, \alpha \eta \mu} F_{, \rho \delta \nu} F_{, \beta \gamma \sigma}+F_{, \gamma \eta \mu} F_{, \rho \delta \nu} F_{, \alpha \beta \sigma}\right. \\
& \left.\quad-F_{, \beta \delta \nu} F_{, \eta \rho \mu} F_{, \alpha \gamma \sigma}-F_{, \alpha \delta \mu} F_{, \rho \eta \nu} F_{, \beta \gamma \sigma}-F_{, \gamma \delta \mu} F_{, \rho \eta \nu} F_{, \alpha \beta \sigma}\right)=0 .
\end{aligned}
$$

let $K_{\beta \gamma}^{\alpha}=-\Gamma_{\beta \gamma}^{\alpha}=-\frac{1}{2} \sum_{\delta} F^{, \alpha \delta} F_{, \beta \gamma \delta}$, then $K_{\beta \gamma}^{\alpha}=K_{\gamma \beta}^{\alpha}$
contracting the integrability condition with $F, \eta \zeta$, we get

$$
\begin{aligned}
& \sum_{\mu, \rho}\left(K_{\alpha \mu}^{\zeta} K_{\delta \rho}^{\mu} K_{\beta \gamma}^{\rho}+K_{\beta \mu}^{\zeta} K_{\delta \rho}^{\mu} K_{\alpha \gamma}^{\rho}+K_{\gamma \mu}^{\zeta} K_{\delta \rho}^{\mu} K_{\alpha \beta}^{\rho}\right. \\
& \left.\quad-K_{\alpha \delta}^{\mu} K_{\rho \mu}^{\zeta} K_{\beta \gamma}^{\rho}-K_{\beta \delta}^{\mu} K_{\rho \mu}^{\zeta} K_{\alpha \gamma}^{\rho}-K_{\gamma \delta}^{\mu} K_{\rho \mu}^{\zeta} K_{\alpha \beta}^{\rho}\right)=0
\end{aligned}
$$

this is satisfied if and only if

$$
\sum_{\alpha, \beta, \gamma, \delta, \mu, \rho}\left(K_{\alpha \mu}^{\zeta} K_{\delta \rho}^{\mu} K_{\beta \gamma}^{\rho} u^{\alpha} u^{\beta} u^{\gamma} v^{\delta}-K_{\alpha \delta}^{\mu} K_{\rho \mu}^{\zeta} K_{\beta \gamma}^{\rho} u^{\alpha} u^{\beta} u^{\gamma} v^{\delta}\right)=0
$$

for all tangent vectors u, v

Jordan algebra defined by F

choose a point $e \in U$ and define a multiplication on $T_{e} U$ by
$u \bullet v=K(u, v)$,

$$
(u \bullet v)^{\alpha}=\sum_{\beta, \gamma} K_{\beta \gamma}^{\alpha} u^{\beta} v^{\gamma}
$$

then $T_{e} U$ becomes a commutative algebra J
the integrability condition becomes

$$
K(K(K(u, u), v), u)=K(K(u, v), K(u, u))
$$

or

$$
\left(u^{2} \bullet v\right) \bullet u=(u \bullet v) \bullet u^{2}
$$

hence J is a Jordan algebra

Trace form

the pseudo-metric $g=F^{\prime \prime}(e)$ satisfies

$$
\begin{aligned}
g & (u \bullet v, w)=\sum_{\beta, \gamma, \delta, \rho} F_{, \beta \gamma} K_{\delta \delta}^{\beta} \mu^{\delta} v^{\rho} w^{\gamma} \\
& =-\frac{1}{2} \sum_{\beta, \gamma, \delta, \rho, \sigma} F_{, \beta \gamma} F_{, \delta \rho \sigma} F^{\sigma \beta} u^{\delta} v^{\rho} w^{\gamma}=-\frac{1}{2} \sum_{\gamma, \delta, \rho} F_{, \delta \rho \gamma} u^{\delta} v^{\rho} w^{\gamma} \\
& =-\frac{1}{2} \sum_{\beta, \gamma, \delta, \rho, \sigma} F_{, \beta \delta} u^{\delta} F_{, \rho \gamma \sigma} F^{, \sigma \beta} v^{\rho} w^{\gamma} \\
& =\sum_{\beta, \gamma, \delta, \rho} F_{, \delta \beta} u^{\delta} K_{\rho \gamma}^{\beta} v^{\rho} w^{\gamma}=g(u, v \bullet w) .
\end{aligned}
$$

hence g is a trace form

Algebra defined by F

Theorem (H., 2012)

Let $F: U \rightarrow \mathbb{R}$ be a solution of the equation $\hat{D} D^{3} F=0$. Let $e \in U$ and let J be the algebra defined on $T_{e} U$ by the structure coefficients $K_{\beta \gamma}^{\alpha}=-\frac{1}{2} \sum_{\delta} F^{, \alpha \delta} F_{, \beta \gamma \delta}$ at e. Then J is a Jordan algebra, and the Hessian metric $g=F^{\prime \prime}(e)$ is a non-degenerate trace form on J .

- if F is convex and log-homogeneous, then J is Euclidean
- if in addition J is simple, then g is proportional to the generic bilinear trace τ

Logarithmically homogeneous functions

Definition

Let $U \subset \mathbb{R}^{n}$ be an open conic set. A logarithmically homogeneous function on U is a smooth function $F: U \rightarrow \mathbb{R}$ such that

$$
F(\alpha x)=-\nu \log \alpha+F(x)
$$

for all $\alpha>0, x \in U$.
The scalar ν is called the homogeneity parameter.

F defined by algebra

Theorem (H., 2012)

Let J be a Euclidean Jordan algebra and K its cone of squares. Let γ be a non-degenerate trace form on J.
Then $F: K^{0} \rightarrow \mathbb{R}$ defined by

$$
F(x)=-\gamma(e, \log x)
$$

is a solution of the equation $\hat{D} D^{3} F=0$ such that $F^{\prime \prime}(e)=\gamma$ and, under identification of $T_{e} K^{0}$ and J, the multiplication in J is given by $K_{\beta \gamma}^{\alpha}=-\frac{1}{2} \sum_{\delta} F^{, \alpha \delta} F_{, \beta \gamma \delta}$ at e.

Main results

Theorem (H., 2012)

Let $K=K_{1} \times \cdots \times K_{m}$ be a symmetric cone and K_{1}, \ldots, K_{m} its irreducible factors.
Then for every set of non-zero reals $\alpha_{1}, \ldots, \alpha_{m}$, the function
$F: K^{\circ} \rightarrow \mathbb{R}$ given by

$$
F\left(A_{1}, \ldots, A_{m}\right)=-\sum_{k=1}^{m} \alpha_{k} \log n\left(A_{k}\right)
$$

is log-homogeneous and satisfies the equation $\hat{D} D^{3} F=0$. The function F is convex if and only if $\alpha_{k}>0$ for all k.

Theorem (H., 2012)

Let $U \subset \mathbb{A}^{n}$ be a subset of affine space and let $F: U \rightarrow \mathbb{R}$ be a log-homogeneous convex solution of the equation $\hat{D} D^{3} F=0$. Then there exists a symmetric cone $K=K_{1} \times \cdots \times K_{m} \subset \mathbb{A}^{n}$, positive reals $\alpha_{1}, \ldots, \alpha_{m}$, and a constant c such that F can be extended to a solution $\tilde{F}: K^{\circ} \rightarrow \mathbb{R}$ given by

$$
\tilde{F}\left(A_{1}, \ldots, A_{m}\right)=-\sum_{k=1}^{m} \alpha_{k} \log n\left(A_{k}\right)+c
$$

when dropping convexity assumption, generalization beyond Euclidean Jordan algebras possible:

Hildebrand R. Centro-affine hypersurface immersions with parallel cubic form. arXiv preprint math.DG:1208.1155

Thank you

