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Monge-Ampère equation

let Ω ⊂ Rn be a convex domain containing no line

on the interior Ωo we consider the Monge-Ampère equation

log detF ′′ = 2F

we look for a convex solution with boundary conditions

lim
x→∂Ω

F (x) = +∞

I exists and is unique (Cheng-Yau, Sasaki, Li, ...)

I real analytic

I equi-a�nely invariant (w.r.t. unimodular a�ne maps)

I Hessian F ′′ turns Ωo into a Riemannian manifold

I maximum principle: Ω̃ ⊂ Ω⇒ F̃ ≥ F



Regular convex cones

De�nition
A regular convex cone K ⊂ Rn is a closed convex cone having
nonempty interior and containing no lines.

The dual cone

K ∗ = {s ∈ Rn | 〈x , s〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.

here Rn is the dual space to Rn



Solutions of MA equation on cones

I invariant w.r.t. unimodular linear maps

I logarithmically homogeneous: F (λx) = − log λ+ F (x) for all
x ∈ K o , λ > 0

I Legendre dual F ∗ of F is a solution for K ∗

F ∗(p) = sup
x∈Ko
〈−p, x〉 − F (x)

supremum attained at p = −F ′(x)

I (F ∗)∗ = F

I x ↔ p is an isometry between K o and (K ∗)o

I level surfaces of F taken to level surfaces of F ∗

I rays in K o taken to rays in (K ∗)o with inversion of the
orientation



A�ne hyperspheres
non-degenerate convex hypersurface in Rn

the a�ne normal is the tangent to the curve made of the gravity
centers of the sections

a hyperbolic proper a�ne sphere is a surface such that all a�ne
normals meet at a point (the center) outside of the convex hull



Connection to Monge-Ampère equation

let M ⊂ Rn be a proper hyperbolic a�ne hypersphere

place the origin at the center of the a�ne hypersphere
the rays from the origin intersect M transversally

let U ⊂ M be an open set such that each ray intersects U at most
once

de�ne F :
⋃
λ>0 λU → R by

F (λx) = − log λ ∀ λ > 0, x ∈ U

then F is convex and satis�es the Monge-Ampère equation
log detF = 2F (Sasaki 85)

the level surfaces of solutions of log detF = 2F are a�ne
hyperspheres



construction of F on
⋃
λ>0 λU



Calabi conjecture

the condition limx→∂K F (x) = +∞ implies that
K o =

⋃
λ>0 λM ' R+ ×M and M is asymptotic to ∂K

Theorem (Calabi conjecture; Fe�erman 76, Cheng-Yau 86, Li
90, and others)

Let K ⊂ Rn be a regular convex cone. Then there exists a unique

foliation of K o by a homothetic family of a�ne complete and

Euclidean complete hyperbolic a�ne hyperspheres which are

asymptotic to ∂K .

Every a�ne complete, Euclidean complete hyperbolic a�ne

hypersphere is asymptotic to the boundary of a regular convex cone.



the foliating hyperspheres are asymptotic to the boundary of K



Properties of a�ne spheres

I real-analytic

I trace of Hessian metric F ′′ is the Blaschke metric g of the
a�ne sphere

I equi-a�nely invariant (unimodular a�ne maps)

I Ricci curvature is non-positive and bounded from below by
−(n − 2)g (Calabi 1972)

I duality realized by conormal map

I primal and dual a�ne spheres are isometric
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Self-concordant barriers

De�nition (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone. A (self-concordant
logarithmically homogeneous) barrier on K is a smooth function
F : K o → R on the interior of K such that

I F (αx) = −ν logα + F (x) (logarithmic homogeneity)

I F ′′(x) � 0 (convexity)

I limx→∂K F (x) = +∞ (boundary behaviour)

I |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)

for all tangent vectors h at x .
The homogeneity parameter ν is called the barrier parameter.



Application of barriers

used in interior-point methods for the solution of conic programs

inf
x∈K
〈c , x〉 : Ax = b

de�ne a family of convex optimization problems

inf
x
τ〈c, x〉+ F (x) : Ax = b

parameterized by τ > 0

the solution x∗(τ) tends to the solution x∗ of the original problem
if t → +∞

the smaller the barrier parameter ν, the faster the IP method can
increase τ and converge to x∗



Dual barrier

Theorem (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone and F : K o → R a barrier on

K with parameter ν. Then the Legendre transform

F ∗(p) = supx∈Ko 〈−p, x〉+ F (x) is a barrier on K ∗ with the same

parameter ν.

I the map I : x 7→ p = −F ′(x) takes the level surfaces of F to
the level surfaces of F ∗

I I takes rays in K o to rays in (K ∗)o with inversion of the
orientation

I I is an isometry between K o and (K ∗)o with respect to the
Hessian metrics de�ned by F ′′, (F ∗)′′



Canonical barrier

Theorem (H., 2014; independently D. Fox, 2015)

Let K ⊂ Rn be a regular convex cone. Then the convex solution of

the Monge-Ampère equation log detF ′′ = 2F with boundary

condition F |∂K = +∞ is a logarithmically homogeneous

self-concordant barrier (the canonical barrier) on K with parameter

ν = n.

main idea of proof: use non-positivity of the Ricci curvature

already conjectured by O. Güler

I invariant under the action of SL(R, n)

I �xed under unimodular automorphisms of K

I additive under the operation of taking products

I invariant under duality
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Splitting theorem

Theorem (Tsuji 1982; Loftin 2002)

Let K ⊂ Rn+1 be a regular convex cone, and F : K o → R a locally

strongly convex logarithmically homogeneous function.

Then the Hessian metric on K o splits into a direct product of a

radial 1-dimensional part and a transversal n-dimensional part. The

submanifolds corresponding to the radial part are rays, the

submanifolds corresponding to the transversal part are level

surfaces of F .

the isometry de�ned by the Legendre duality respects the splitting
but inverts the direction of the rays



all nontrivial information is contained in the transversal part



Projective images of cones

let RPn,RPn be the primal and dual real projective space � lines
and hyperplanes through the origin of Rn+1

let F : K o → R be a barrier on a regular convex cone K ⊂ Rn+1

the canonical projection Π : Rn+1 \ {0} → RPn maps K \ {0} to a
compact convex subset C ⊂ RPn

the canonical projection Π∗ : Rn+1 \ {0} → RPn maps K ∗ \ {0} to
a compact convex subset C ∗ ⊂ RPn

the interiors of C ,C ∗ are isomorphic to the mutually isometric
transversal factors of K o , (K ∗)o and acquire the metric of these
factors



passing to the projective space removes the radial factor



Product of linear spaces

neither the vector space Rn nor its dual Rn carry a canonical metric
only a family of equivalent metrics which all lead to the same �at
a�ne connection

the product Rn × Rn has a lot more structure

I �at pseudo-Riemannian metric
G ((x , p); (y , q)) = 1

2(〈x , q〉+ 〈y , p〉)
I symplectic form ω((x , p); (y , q)) = 1

2(〈x , q〉 − 〈y , p〉)
I inversion J : (x , p) 7→ (x ,−p) of the tangent bundle with

integrable eigenspace distributions

I compatibility conditions ∇̂ω = 0, G = ωJ

these all together de�ne a �at para-Kähler space form



Product of projective spaces

between elements of RPn,RPn there is an orthogonality relation

the set
M = {(x , p) ∈ RPn × RPn | x 6⊥ p}

is dense in RPn × RPn

its complement

∂M = {(x , p) ∈ RPn × RPn | x ⊥ p}
' O(n + 1)/(O(1)× O(1)× O(n − 1))

is a submanifold of RPn × RPn of codimension 1



Para-Kähler structure onM

Theorem (Gadea, Montesinos Amilibia 1989)

The spaceM is a hyperbolic para-Kähler space form, it carries a

natural para-Kähler structure with constant negative sectional

curvature.

para-Kähler manifold:

I even dimension

I pseudo-metric of neutral signature

I symplectic structure satisfying ∇ω = 0

I para-complex structure J satisfying g(X ,Y ) = ω(JX ,Y )

J is an involution of TxM with the ±1 eigenspaces forming
n-dimensional integrable distributions



Representation of barriers
the bijection x 7→ −F ′(x) factors through to an isometry between
C o and (C ∗)o

K o −F ′
−→ (K ∗)o

Π ↓ Π∗ ↓
C o ∼ K o/R+

IF−→ (C ∗)o ∼ (K ∗)o/R+

de�ne the smooth submanifold
MF as the graph of the isometry
IF

MF = Π×Π∗
[{

(x ,−F ′(x)) | x ∈ K o
}]
⊂M

dimMF = n = 1
2 dimM



Geometric interpretation

the manifold MF consists of pairs (x , p)
where

I x is a line through a point y ∈ K o

I p is parallel to the hyperplane
which is tangent to the level
surface of F at y

if y → ŷ ∈ ∂K , then p tends to a
supporting hyperplane at ŷ



Properties of MF

Theorem
Let F : K o → R be a barrier on a regular convex cone K ⊂ Rn+1

with parameter ν. The manifold MF ⊂ RPn × RPn is

I a complete nondegenerate hyperbolic Lagrangian submanifold

ofM
I its submanifold metric is −ν−1 times the metric induced by

the isometry IF
I its second fundamental form II satis�es

C = ν−1F ′′′[h, h, h′] = 2ω(II (h̃, h̃), h̃′)

for all vectors h, h′ tangent to the level surfaces of F and their

images h̃, h̃′ on the tangent bundle TMF .

C is called the cubic form and is totally symmetric
C 7→ −C if K 7→ K ∗



Self-concordance and curvature

Corollary

Let K ⊂ Rn+1 be a regular convex cone and F : K o → R a locally

strongly convex logarithmically homogeneous function with

parameter ν.
Then F is self-concordant if and only if the Lagrangian submanifold

MF ⊂M has its second fundamental form bounded by γ = ν−2√
ν−1 .

the barrier parameter determines how close MF is to a geodesic
submanifold ofM



Images of conic boundaries

the canonical projection
Π× Π∗ : (Rn+1 \ {0})× (Rn+1 \ {0})→ RPn × RPn maps the set

∆K = {(x , p) ∈ (∂K \ {0})× (∂K ∗ \ {0}) | x ⊥ p}

to a set δK ⊂ ∂M

Lemma
The set δK is is homeomorphic to Sn−1.
The projections π, π∗ of RPn × RPn to the factors map δK onto

∂C and ∂C ∗, respectively.
For every barrier F on K , ∂MF = δK .

call δK the boundary frame corresponding to the cone K



Geometric interpretation

the boundary frame δK consists of pairs
z = (x , p) ∈ ∂M where

I the line x contains a ray in ∂K

I p is a supporting hyperplane at x



Primal-dual representation of a barrier

I complete negative de�nite Lagrangian submanifold, ' Rn

I bounded by δK ' Sn−1

I second fundamental form bounded by γ = ν−2√
ν−1



Canonical barrier and minimal submanifolds

De�nition
LetM be a pseudo-Riemannian manifold. Then M ⊂M is a
minimal submanifold if M is a stationary point of the volume
functional with respect to variations with compact support.

a submanifold is minimal if and only if its mean curvature vanishes
identically

Theorem (H., 2011)

Let K ⊂ Rn be a regular convex cone and F : K o → R be a barrier

on K .

Then the submanifold MF ⊂M is minimal if and only if the level

surfaces of F are a�ne hyperspheres.

the canonical barrier is given by the unique minimal complete
negative de�nite Lagrangian submanifold ofM which can be
inscribed in the boundary frame δK ⊂ ∂M
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Conformal type of cones

for 3-dimensional cones K the submanifolds MF are 2-dimensional
MF is a complete non-compact simply connected Riemann surface

Uniformization theorem: Every simply connected Riemann
surface is conformally equivalent to either the unit disc D, or the
complex plane C, or the Riemann sphere S , equipped with either
the hyperbolic metric, or the �at (parabolic) metric, or the
spherical (elliptic) metric, respectively.

due to Klein, Riemann, Schwarz, Koebe, Poincaré, Hilbert, Weyl,
Radó ... 1880�1920

there exists a global (isothermal) chart on MF such that
g = e2φ(dx21 + dx22 )
here z = x1 + ix2, z ∈ D or z ∈ C

cones can be classi�ed with respect to conformal type of their
canonical barrier



Holomorphic cubic di�erential

let K ⊂ R3 be a regular convex cone and F its canonical barrier
let MF be equipped with a complex isothermal coordinate z
the cubic form C can be decomposed as

C =

[(
U1 −U2

−U2 −U1

)
,

(
−U2 −U1

−U1 U2

)]
U = U1 + iU2 is a cubic di�erential, U(w) = U(z)( dz

dw )3 under
coordinate changes

compatibility requirements on φ,U [Liu, Wang 1997]:

∂U

∂z̄
= 0, |U|2 = 2e6φ − 8e4φ

∂2φ

∂z∂z̄

here ∂
∂z = 1

2

(
∂
∂x1
− i ∂

∂x2

)
, ∂
∂z̄ = 1

2

(
∂
∂x1

+ i ∂
∂x2

)
U is holomorphic



Canonical barrier on 3D cones

Theorem (follows from (Simon, Wang 1993))

I Let K ⊂ R3 be a regular convex cone, let MF be the Riemann

surface de�ned by the canonical barrier, with an isothermal

global coordinate z and metric g = e2φ|dz |2. Then the

associated holomorphic cubic di�erential U satis�es

|U|2 = 2e6φ − 2e4φ∆φ = 2e6φ(1 + K),

where ∆ is the ordinary Laplacian and K the Gaussian

curvature.

I Every simply connected non-compact Riemann surface with

complete metric g = e2φ|dz |2 and holomorphic cubic

di�erential U satisfying above relation de�nes a regular convex

cone K ⊂ R3 with its canonical barrier, up to linear

isomorphisms.



Correspondence K ↔ (φ,U)

|U|2 = 2e6φ − 2e4φ∆φ = 2e6φ(1 + K)

I level surfaces of F can be recovered from (φ,U) by solving a
Cauchy initial value problem of a PDE

I [Simon, Wang 1993] gives a necessary and su�cient
integrability condition on φ

I for given φ, U is determined up to a constant factor e iϕ

I the isomorphism classes of cones with isometric canonical
barrier form a S1 family

I K ∗ is on the opposite side w.r.t. K

I for given U, there exists at most one solution φ (maximum
principle)



Known results (selection)

[Dumas, Wolf 2015] polynomials U of degree k correspond to
polyhedral cones K with k + 3 extreme rays
U = zk corresponds to the cone over the regular (k + 3)-gon
MF conformally equivalent to C

[Wang 1997; Loftin 2001; Labourie 2007]
holomorphic functions on compact Riemann
surface of genus ≥ 2 form a
�nite-dimensional space
each such function U determines a unique
metric g on the surface and its universal
cover
the corresponding cone K has an
automorphism group with cocompact action
on the level surfaces on F
∂K is C 1, but in general nowhere C 2

MF conformally equivalent to D



Open questions

Which cones allow barriers such that the corresponding Riemann
surface is conformally equivalent to C?

Which entire functions are cubic forms of an a�ne hypersphere?
Are there functions other than polynomials?

Which holomorphic functions on D are cubic forms of an a�ne
hypersphere?

(All functions U which are bounded in the hyperbolic metric on D
will work [Benoist, Hulin 14].)
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