Convex projective programming

Roland Hildebrand

Weierstrass Institute, Berlin

July 31, 2013

Outline

Conic optimization

- Conic programs
- Duality
- Radial transformations

Projective programming

- Conic programs in projective space
- Duality
- Feasibility
- Affine counterpart

Regular convex cones

Definition

A regular convex cone $K \subset \mathbb{R}^{n}$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$
K^{*}=\left\{s \in \mathbb{R}_{n} \mid\langle x, s\rangle \geq 0 \quad \forall x \in K\right\}
$$

of a regular convex cone K is also regular.

Conic programs

Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^{n}$ is an optimization problem of the form

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

Geometric interpretation

the feasible set is the intersection of K with an affine subspace
$$
\min _{z}\left\langle c^{\prime}, z\right\rangle: A^{\prime} z+b^{\prime} \in K
$$
explicit parametrization

Duality

primal program

$$
\min _{x \in K}\langle c, x\rangle: A x=b
$$

dualizing constraint $A x=b$ gives

$$
\min _{x \in K} \max _{z}(\langle c, x\rangle-\langle z, A x-b\rangle)
$$

Duality

primal program

$$
\min _{x \in K}\langle c, x\rangle: A x=b
$$

dualizing constraint $A x=b$ gives

$$
\begin{gathered}
\min _{x \in K} \max _{z}(\langle c, x\rangle-\langle z, A x-b\rangle) \\
\max _{z} \min _{x \in K}\left(-\left\langle A^{T} z-c, x\right\rangle+\langle b, z\rangle\right)
\end{gathered}
$$

Duality

primal program

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

dualizing constraint $A x=b$ gives

$$
\begin{gathered}
\min _{x \in K} \max _{z}(\langle c, x\rangle-\langle z, A x-b\rangle) \\
\max _{z} \min _{x \in K}\left(-\left\langle A^{T} z-c, x\right\rangle+\langle b, z\rangle\right)
\end{gathered}
$$

minimizing over x gives the dual program

$$
\max _{s=-\left(A^{\top} z-c\right) \in K^{*}}\langle b, z\rangle
$$

Assumptions

suppose the conic program satisfies:

- the cost function is not constant on the feasible set ($c \notin \operatorname{row}(A)$)
- the feasible set is properly affine $(b \neq 0)$ these conditions transform into each other under duality

Affine spaces

primal affine space

$$
P_{A}=\{x \mid A x=b\} \subset \mathbb{R}^{n}
$$

$\operatorname{dim} P_{A}=k, n-k$ number of rows of A
dual affine space

$$
D_{A}=\left\{s \mid \exists z: s=-\left(A^{T} z-c\right)\right\} \subset \mathbb{R}_{n}
$$

$\operatorname{dim} D_{A}=n-k$
$\operatorname{dim} P_{A}+\operatorname{dim} D_{A}=n$

Linear spaces

$P_{A}=\{x \mid A x=b\}, D_{A}=\left\{s \mid \exists z: s=-\left(A^{T} z-c\right)\right\}$
primal displacements: $P_{\Delta}=\{\delta x \mid A \delta x=0\}$ dual displacements: $D_{\Delta}=\left\{\delta s \mid \exists z: \delta s=-A^{T} \delta z\right\}$
$\langle\delta x, \delta s\rangle=0, P_{\Delta}=D_{\Delta}^{\perp}$

Linear spaces

$P_{A}=\{x \mid A x=b\}, D_{A}=\left\{s \mid \exists z: s=-\left(A^{T} z-c\right)\right\}$
primal displacements: $P_{\Delta}=\{\delta x \mid A \delta x=0\}$ dual displacements: $D_{\Delta}=\left\{\delta s \mid \exists z: \delta s=-A^{T} \delta z\right\}$ $\langle\delta x, \delta s\rangle=0, P_{\Delta}=D_{\Delta}^{\perp}$
let P_{L}, D_{L} be the linear hulls of P_{A}, D_{A}
$P_{\Delta} \subset P_{L}, D_{\Delta} \subset D_{L}$ yields $P_{L}^{\perp} \subset D_{\Delta}, D_{L}^{\perp} \subset P_{\Delta}$

$$
D_{L}^{\perp} \subset P_{\Delta} \subset P_{L}, \quad P_{L}^{\perp} \subset D_{\Delta} \subset D_{L}
$$

codimensions equal 1

Level sets

$P_{L}=\{x \mid \exists \alpha: A x=\alpha b\}, D_{L}=\left\{s \mid \exists z, \beta: s=-\left(A^{T} z-\beta c\right)\right\}$ for $\delta s=-A^{T} \delta z \in D_{\Delta}$ we have $\langle\delta s, x\rangle=-\delta z^{T} A x=-\alpha \delta z^{T} b$ hence $P_{L}^{\perp}=\left\{-A^{T} \delta z \mid b^{T} \delta z=0\right\}$
$D_{L}^{\perp}=\{\delta x \mid A \delta x=0,\langle c, x\rangle=0\}$
the orthogonal subspaces $P_{L}^{\perp}, D_{L}^{\perp}$ define precisely those directions in D_{A}, P_{A} where the dual and primal cost functions do not change $P_{L}^{\perp}, D_{L}^{\perp}$ define the displacements of the level sets

P_{A} / D_{L}^{\perp} is canonically isomorphic to the (affine) line of cost function values

Primal and dual values

duality gap

- primal and dual feasible values form intervals
- interiors of the intervals do not intersect
- there may or may not be a duality gap
- if the intervals intersect, the primal and dual feasible points corresponding to the intersection are orthogonal and optimal

Radial transformations

the image of the feasible set is not affinely equivalent to the original
it is projectively equivalent
P_{L}, D_{L} are invariant, but P_{Δ}, D_{Δ} are not

Transformation of the cost function

the image of the cost function is in general not affine it is linear-fractional the ensemble of the level sets is preserved

Equivalent conic programs

linear-fractional functions can be made affine by a monotonic transformation of the function value, $a=m \circ /$
such transformations preserve the ensemble of level sets
the minimum is mapped to the minimum

Equivalent conic programs

linear-fractional functions can be made affine by a monotonic transformation of the function value, $a=m \circ /$
such transformations preserve the ensemble of level sets
the minimum is mapped to the minimum
we get another conic program whose minimum is a multiple of the original one

neither the feasible set nor the cost function are affinely equivalent
but the solution of one conic program can easily be obtained from the solution of the other
can we find a framework in which the two conic programs are the same?

Is there a possibility to build a theory of convex projective programming?

- have to optimize over subsets of projective space
- have to give up notion of the value of the cost function
- what remains are the level sets and their ordering

Cones in projective space

\mathbb{P}^{n-1} — projective space, set of 1-dimensional subspaces of \mathbb{R}^{n} \mathbb{P}_{n-1} - dual projective space, set of 1-dimensional subspaces of \mathbb{R}_{n}
$\pi: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}, \pi_{*}: \mathbb{R}_{n} \backslash\{0\} \rightarrow \mathbb{P}_{n-1}$ - projections
$K \subset \mathbb{R}^{n}$ regular convex cone, $C=\pi[K \backslash\{0\}] \subset \mathbb{P}^{n+1}$
$K^{*} \subset \mathbb{R}^{n}$ dual cone, $C^{*}=\pi_{*}\left[K^{*} \backslash\{0\}\right] \subset \mathbb{P}_{n-1}$
C, C^{*} compact convex sets containing no projective lines

Feasible sets in projective space

$$
P_{A}=\{x \mid A x=b\}, D_{A}=\left\{s \mid \exists z: s=-\left(A^{T} z-c\right)\right\}
$$

$P_{P}=\pi\left[P_{A}\right]=\pi\left[P_{L} \backslash\{0\}\right], D_{P}=\pi\left[D_{A}\right]=\pi\left[D_{L} \backslash\{0\}\right]$ are projective subspaces of dimensions $k, n-k$
the primal and dual feasible sets project to $C \cap P_{P} \subset \mathbb{P}^{n-1}$, $C^{*} \cap D_{P} \subset \mathbb{P}_{n-1}$

Orthogonal subspaces

affine subspaces $A \subset \mathbb{R}^{n}$ do not have an orthogonal affine space $A^{\perp} \subset \mathbb{R}_{n}$
but projective subspaces $P \subset \mathbb{P}^{n-1}$ have an orthogonal projective space $P^{\perp} \subset \mathbb{P}_{n-1}$
let $L=\pi^{-1}[P] \cup\{0\} \subset \mathbb{R}^{n}$, and $L^{\perp} \subset \mathbb{R}_{n}$ its orthogonal subspace define $P^{\perp}=\pi^{*}\left[L^{\perp} \backslash\{0\}\right]$
if $\operatorname{dim} P=k$, then $\operatorname{dim} L=k+1, \operatorname{dim} L^{\perp}=n-k-1$, $\operatorname{dim} P^{\perp}=n-k-2,\left(P^{\perp}\right)^{\perp}=P$ $\operatorname{dim} P+\operatorname{dim} P^{\perp}=n-2$
let $P \subset \mathbb{P}^{n-1}, D \subset P_{n-1}$ be projective subspaces, then

$$
P^{\perp} \subset D \quad \Leftrightarrow \quad D^{\perp} \subset P
$$

Orthogonality and duality

we have $D_{L}^{\perp} \subset P_{L}, P_{L}^{\perp} \subset D_{L}$ with codimension 2
apply projections π, π_{*}
we get $D_{P}^{\perp} \subset P_{P}, P_{P}^{\perp} \subset D_{P}$ with codimension 2
Lemma Let $P_{1}, P_{2} \subset \mathbb{P}^{n-1}$ be projective subspaces of dimensions k_{1}, k_{2} such that $P_{1} \subset P_{2}$ and $k_{2}-k_{1}=2$. Then the set of projective subspaces P of dimension $k, k_{1}<k<k_{2}$, such that $P_{1} \subset P \subset P_{2}$, is isomorphic to the projective line \mathbb{P}^{1}.
the affine line P_{A} / D_{L}^{\perp} of cost function values is replaced by the projective line

Values of feasible points

$C \subset \mathbb{P}^{n-1}, C^{*} \subset \mathbb{P}_{n-1}-$ dual pair of closed convex sets containing no lines
let $x \in C \cap P_{P}$ be a primal feasible point
Lemma If $x \notin D_{P}^{\perp}$, then there exists a unique projective subspace P of dimension $k-1$ such that $x \in P$ and $D_{P}^{\perp} \subset P \subset P_{P}$.
call this the value of the point x
the map \perp is an isomorphism between the projective line of primal values and the set of subspaces D such that $P_{P}^{\perp} \subset D \subset D_{P}$, i.e., the projective line of dual values
we shall identify them in the sequel

Values and orthogonality

Lemma Let $P_{P} \subset \mathbb{P}^{n-1}, D_{P} \subset \mathbb{P}_{n-1}$ be projective subspaces of dimension $k, n-k$ such that $D_{P}^{\perp} \subset P_{P}$. Let P, D be such that $D_{P}^{\perp} \subset P \subset P_{P}, P_{P}^{\perp} \subset D \subset D_{P}$, each inclusion being proper. Let $x \in P \backslash D_{P}^{\perp}, s \in D \backslash P_{P}^{\perp}$ be points. Then $D=P^{\perp}$ if and only if $x \perp s$.
if $D=P^{\perp}$, then $x \in P$ yields $s \in D=P^{\perp} \subset x^{\perp}$

Values and orthogonality

Lemma Let $P_{P} \subset \mathbb{P}^{n-1}, D_{P} \subset \mathbb{P}_{n-1}$ be projective subspaces of dimension $k, n-k$ such that $D_{P}^{\perp} \subset P_{P}$. Let P, D be such that $D_{P}^{\perp} \subset P \subset P_{P}, P_{P}^{\perp} \subset D \subset D_{P}$, each inclusion being proper. Let $x \in P \backslash D_{P}^{\perp}, s \in D \backslash P_{P}^{\perp}$ be points. Then $D=P^{\perp}$ if and only if $x \perp s$.
if $D=P^{\perp}$, then $x \in P$ yields $s \in D=P^{\perp} \subset x^{\perp}$

- we have $s \in D_{P}$ and $D_{P}^{\perp} \subset s^{\perp}$
- let now $x \perp s$, then $x \cup D_{P}^{\perp} \subset s^{\perp}$
- this gives $P \subset s^{\perp}, s \in P^{\perp} \cap D$, and $D=P^{\perp}$

Primal and dual values

by convexity of C, C^{*} the sets of primal feasible values and of dual feasible values are intervals on \mathbb{P}^{1}
let $x \in C \cap P_{P}, s \in C^{*} \cap D_{P}$ be points in the interior of the feasible sets, with values P, D
they correspond to feasible points \bar{x}, \bar{s} in the interior of $K \cap P_{A}$, $K^{*} \cap D_{A}$
but $\langle\bar{x}, \bar{s}\rangle>0$, hence $x \not \perp s$, and $P^{\perp} \neq D$
the interiors of the intervals of primal and dual feasible values do not intersect

Infeasibility and feasibility

Theorem The following are equivalent (primal infeasibility):

- $P_{P}^{\perp} \cap\left(C^{*}\right)^{\circ} \neq \emptyset$
- all values are dual feasible
- $P_{P} \cap C=\emptyset$

Theorem The following are equivalent (primal strict feasibility):

- $P_{P}^{\perp} \cap C^{*}=\emptyset$
- the interval of primal feasible values is solid
- $P_{P} \cap C^{0} \neq \emptyset$
depends on the relation between the singular set P_{P}^{\perp} and the dual convex set C^{*}

duality gaps can occur only if P_{P}^{\perp} touches C^{*} or D_{P}^{\perp} touches C

Regular case

let $P_{P}^{\perp} \cap C^{*}=\emptyset, D_{P}^{\perp} \cap C=\emptyset$, then

- both the primal and dual feasible values form a proper closed interval
- the interior of one is the complement of the other (no duality gap)

extremal values correspond to minimization and maximization of the cost function

Corresponding conic program

- optimization over intersection of P_{A} with $K \cup(-K)$
- value $\pm \infty$ becomes an ordinary point

Other objects

distances:

- product $\mathbb{P}^{n-1} \times \mathbb{P}_{n-1}$ is a pseudo-Riemannian space
- distance between pairs (x, s) measured by the projective cross-ratio
barriers:
- can be constructed from log-homogeneous barriers
- represented as Riemannian submanifolds $M \subset \mathbb{P}^{n-1} \times \mathbb{P}_{n-1}$
- self-concordance parameter ν and curvature γ related by $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$
- links to affine differential geometry

Central path

- set of primal-dual feasible points (x, s) on the barrier: $\left(P_{P} \times D_{P}\right) \cap M$
- identifies the interval of primal values with the interval of dual values
- links the two extremal points
- distance on the central path bounds the progress of affine IPM from below

Interior-point methods

let $(x, s),\left(x^{\prime}, s^{\prime}\right)$ be two primal-dual feasible pairs

$\left|I^{\prime}\right| /|I| \leq(\cosh d-\sinh d)^{2}$, where d is the distance between (x, s) and $\left(x^{\prime}, s^{\prime}\right)$

Conclusion

features of the projective theory

- set of objective values is compact
- primal and dual programs are always bounded
- duality gap and feasibility determined by position of singular subspaces $P_{P}^{\perp}, D_{P}^{\perp}$
- simple geometric interpretation of barriers and central paths
- fusion of primal and dual setup
- mathematical basis is affine differential geometry
outlook
- fully projective interior-point methods
- additional structure when cone is symmetric

Thank you

