A family of semidefinite relaxations

for cones of positive polynomials

Roland Hildebrand, LJK
University Grenoble 1 / CNRS

BFG'09, Leuven

September 15, 2009

Outline

- cones of positive polynomials
- Newton polytopes
- SOS relaxations
- generalized copositive cones
- relaxations based on copositive cones

Cones of positive polynomials

$\mathcal{L}_{\mathcal{A}}$ - linear space of polynomials

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} x^{\alpha}
$$

$\mathcal{A} \subset \mathbb{N}^{n}-$ set of multi-indices
$\operatorname{dim} \mathcal{L}_{\mathcal{A}}=\# \mathcal{A}$
the polynomial is identified with the coefficient vector c_{α}
$\mathcal{P}_{\mathcal{A}}$ cone of positive polynomials in coefficient space

Example: Motzkin polynomial
$\mathcal{A}=\{(4,2,0),(2,4,0),(0,0,6),(2,2,2)\}$,
$p_{M}(x, y, z)=x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2} \sim(1,1,1,-3)^{T} \in \mathcal{P}_{\mathcal{A}}$

Newton polytope

for $p \in \mathcal{L}_{\mathcal{A}}$

$$
N(p)=\operatorname{conv}\left\{\alpha \mid c_{\alpha}(p) \neq 0\right\}
$$

Newton polytope associated with p

$$
N_{\mathcal{A}}=\cup_{p \in \mathcal{L}_{\mathcal{A}}} N(p)=\operatorname{conv} \mathcal{A}
$$

Newton polytope associated with $\mathcal{L}_{\mathcal{A}}$
Theorem Let $p \in \mathcal{P}_{\mathcal{A}}$ and let $\alpha^{*} \in \mathcal{A}$ be extremal in $N(p)$. Then $c_{\alpha^{*}}>0$ and α^{*} is even.
hence assume w.r.o.g. that the extremal points of \mathcal{A} are even otherwise $\mathcal{P}_{\mathcal{A}}$ contained in proper subspace of $\mathcal{L}_{\mathcal{A}}$

$$
\begin{gathered}
\text { Sums of squares } \\
\Sigma_{\mathcal{A}}=\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k}: p=\sum_{k=1}^{N} q_{k}^{2}\right\} \\
\Sigma_{h, \mathcal{A}}=\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k}: p h=\sum_{k=1}^{N} q_{k}^{2}\right\}
\end{gathered}
$$

h nonzero positive polynomial
$\Sigma_{\mathcal{A}}, \Sigma_{h, \mathcal{A}}$ inner semidefinite relaxations of $\mathcal{P}_{\mathcal{A}}$
in general $\Sigma_{\mathcal{A}} \neq \mathcal{P}_{\mathcal{A}}$, not even $\operatorname{dim} \Sigma_{\mathcal{A}}=\operatorname{dim} \mathcal{P}_{\mathcal{A}}$, e.g. $p_{M} \notin \Sigma_{\mathcal{A}}$

Theorem Let $p=\sum_{k=1}^{N} q_{k}^{2}$. Then $N\left(q_{k}\right) \subset N(p) / 2 \forall k=1, \ldots, N$.
\Rightarrow if $p=\sum_{k=1}^{N} q_{k}^{2} \in \mathcal{P}_{\mathcal{A}}$, then $q_{k} \in \mathcal{L}_{N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}}$

Structure of $\Sigma_{\mathcal{A}}$

$\mathcal{F} \subset \mathbb{N}^{n}, \quad x_{\mathcal{F}}$ the vector of monomials $\left\{x^{\beta}\right\}_{\beta \in \mathcal{F}}$

$$
\begin{aligned}
\Sigma_{\mathcal{F}, \mathcal{A}} & =\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists N, q_{k} \in \mathcal{L}_{\mathcal{F}}: p(x)=\sum_{k=1}^{N} q_{k}^{2}\right\} \\
& =\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists C \succeq 0: p(x)=x_{\mathcal{F}}^{T} C x_{\mathcal{F}}\right\}
\end{aligned}
$$

is an inner semidefinite relaxation for $\mathcal{P}_{\mathcal{A}}$
w.r.o.g. $\mathcal{F} \subset N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}$
\mathcal{F} smaller \Rightarrow relaxation weaker
$\Sigma_{\mathcal{A}}=\Sigma_{N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}, \mathcal{A}}$ is the strongest of this type, taking $\mathcal{F} \supset N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}$ yields the same relaxation

$\mathcal{P}_{\mathcal{A}}$ as generalized copositive cone

suppose $\mathcal{F}+\mathcal{F} \supset \mathcal{A}$

$$
\begin{gathered}
\mathcal{X}_{\mathcal{F}}=\left\{x_{\mathcal{F}} \mid x \in \mathbb{R}^{n}\right\}, \quad \mathcal{C}_{\mathcal{F}}=\left\{C \mid X^{T} C X \geq 0 \quad \forall X \in \mathcal{X}_{\mathcal{F}}\right\} \\
\mathcal{P}_{\mathcal{A}}=\left\{p \in \mathcal{L}_{\mathcal{A}} \mid \exists C \in \mathcal{C}_{\mathcal{F}}: p(x)=x_{\mathcal{F}}^{T} C x_{\mathcal{F}}\right\}
\end{gathered}
$$

Definition [Luo,Sturm,Zhang 2003] Let $\mathcal{X} \subset \mathbb{R}^{m}$. A quadratic form C is called copositive w.r. to the domain \mathcal{X} if $x^{T} C x \geq 0$ for all $x \in \mathcal{X}$.
$\mathcal{C}_{\mathcal{F}}$ cone of copositive forms w.r. to $\mathcal{X}_{\mathcal{F}}$
in general $\mathcal{C}_{\mathcal{F}}$ contains a linear subspace, induced by linear dependencies between the elements of $X X^{T}, X \in \mathcal{X}_{\mathcal{F}}$
condition $p \in \mathcal{L}_{\mathcal{A}}$ translates into linear constraints on C

Structure of $\mathcal{P}_{\mathcal{A}}$ (cont.)

$\mathcal{P}_{\mathcal{A}}$ is a projection of a section of the copositive cone $\mathcal{C}_{\mathcal{F}}$ projection: along the linear subspace
section: sets coefficients with indices in $(\mathcal{F}+\mathcal{F}) \backslash \mathcal{A}$ to zero

relaxation $\Sigma_{\mathcal{F}, \mathcal{A}}:$ copositive cone w.r. to $\mathcal{X}_{\mathcal{F}}$ replaced by PSD cone (copositive w.r. to the whole space $\mathbb{R}^{\# \mathcal{F}}$)
larger domain \Rightarrow smaller copositive cone
$\Sigma_{\mathcal{F}, \mathcal{A}}$ projection of a section of the PSD cone

LMI representable copositive cones

examples of domains \mathcal{X} with LMI representable copositive cone:

$$
\mathcal{X}=\{x \mid B(x) \geq 0\}, \quad \mathcal{X}=\{x \mid B(x)=0\}
$$

B quadratic form (\mathcal{S}-lemma)

$$
\mathcal{X}=\mathbb{R}_{+}^{k}, \quad k=1, \ldots, 4
$$

(classical copositive cones)

$$
\mathcal{X}=E \cap H
$$

E ellipsoid, H affine half-space ([Sturm,Zhang 2001])
\mathcal{X} set of rank 1 matrices of size $2 \times n$ (matrices PSD $2 n \times 2 n$ block-Hankel)

$\mathcal{X}_{\mathcal{F}}$ for different \mathcal{F}

Theorem (Main observation) Let $\mathcal{F}=\left\{\beta^{1}, \ldots, \beta^{N}\right\} \subset \mathbb{Z}^{n}$, $\mathcal{F}^{\prime}=\left\{\beta^{\prime 1}, \ldots, \beta^{\prime N}\right\} \subset \mathbb{Z}^{n}$ s.t.

- $\beta^{k} \equiv \beta^{\prime k} \bmod 2$ for all $k=1, \ldots, N$
- the images of the matrices $\left(\beta^{1}, \ldots, \beta^{N}\right)^{T}$ and $\left(\beta^{\prime 1}, \ldots, \beta^{N}\right)^{T}$ coincide Then the closures of $\mathcal{X}_{\mathcal{F}}$ and $\mathcal{X}_{\mathcal{F}^{\prime}}$ coincide.
$\Leftrightarrow \exists$ invertible linear map $\mathcal{H}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ s.t. $\mathcal{F}^{\prime}=\mathcal{H}[\mathcal{F}]$ and parity is preserved on \mathcal{F}

Consequence: $\mathcal{C}_{\mathcal{F}}=\mathcal{C}_{\mathcal{F}^{\prime}}$
$\mathcal{A} \rightarrow \mathcal{A}^{\prime}=\mathcal{H}[\mathcal{A}]$ corresponds to a nonlinear change of variables x in \mathbb{R}^{n} $\mathcal{F}+\mathcal{F} \supset \mathcal{A} \Rightarrow \mathcal{F}^{\prime}+\mathcal{F}^{\prime} \supset \mathcal{A}^{\prime}$

$$
\mathcal{P}_{\mathcal{A}}=\mathcal{P}_{\mathcal{A}^{\prime}}, \quad \Sigma_{\mathcal{F}, \mathcal{A}}=\Sigma_{\mathcal{F}^{\prime}, \mathcal{A}^{\prime}}
$$

Motzkin polynomial: $\mathcal{F}=\{(0,0,3),(1,2,0),(2,1,0),(1,1,1)\}$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
-1 & 2 & 0 \\
2 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 & 2 & 1 \\
0 & 2 & 1 & 1 \\
3 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
0 & 3 & 0 & 1 \\
0 & 0 & 3 & 1 \\
3 & 0 & 0 & 1
\end{array}\right) \\
& \mathcal{F}^{\prime}=\{(0,0,3),(3,0,0),(0,3,0),(1,1,1)\}
\end{aligned}
$$

Motzkin polynomial
$p_{M}^{\prime}(x, y, z)=x^{6}+y^{6}+z^{6}-3 x^{2} y^{2} z^{2}=\left(x^{2}+y^{2}+z^{2}\right)\left(x^{4}+y^{4}+z^{4}-x^{2} y^{2}-y^{2} z^{2}-z^{2} x^{2}\right)$

$$
\left(\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
-1 / 2 & 1 & -1 / 2 \\
-1 / 2 & -1 / 2 & 1
\end{array}\right) \succeq 0
$$

p_{M}^{\prime} is SOS
moreover: $\mathcal{P}_{\mathcal{A}}=\mathcal{P}_{\mathcal{A}^{\prime}}=\Sigma_{\mathcal{A}^{\prime}}$

$$
p_{1}(c)=c_{1} x^{4} y^{2}+c_{2} x^{2} y^{4}+c_{3} z^{6}-c_{4} x^{2} y^{2} z^{2}, \quad p_{2}(c)=c_{2} x^{6}+c_{1} y^{6}+c_{3} z^{6}-c_{4} x^{2} y^{2} z^{2}
$$

$$
p_{1}(c) \geq 0 \Leftrightarrow p_{2}(c) \geq 0 \Leftrightarrow p_{2}(c) \text { is } \operatorname{SOS}
$$

New family of relaxations

let again $\mathcal{F}=N_{\mathcal{A}} / 2 \cap \mathbb{N}^{n}$
$\Sigma_{\mathcal{F}, \mathcal{A}}=\Sigma_{\mathcal{F}^{\prime}, \mathcal{A}^{\prime}}$ but we can have

$$
\mathcal{F}^{\prime \prime} \supset \mathcal{F}^{\prime} \quad \text { strictly }
$$

s.t.

$$
N_{\mathcal{F}^{\prime \prime}}=N_{\mathcal{F}^{\prime}}=N_{\mathcal{A}^{\prime}} / 2
$$

relaxation $\Sigma_{\mathcal{A}^{\prime}}=\Sigma_{\mathcal{F}^{\prime \prime}, \mathcal{A}^{\prime}}$ with $\mathcal{F}^{\prime \prime}=N_{\mathcal{A}^{\prime}} / 2 \cap \mathbb{Z}^{n}$ can be sharper than $\Sigma_{\mathcal{A}}$ we can have $\operatorname{dim} \Sigma_{\mathcal{A}^{\prime}}>\operatorname{dim} \Sigma_{\mathcal{A}}$
the relaxation can even be exact for some \mathcal{A}^{\prime}
\mathcal{H} isomorphism of $\mathbb{Z}^{n}(\operatorname{det} \mathcal{H}= \pm 1)$, then $\Sigma_{\mathcal{A}}=\Sigma_{\mathcal{A}^{\prime}}$
\Rightarrow we can consider equivalence classes

