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Conic programs

Definition
A regular convex cone K ⊂ Rn is a closed convex cone having nonempty interior and
containing no lines.

The dual cone
K∗ = {y ∈ Rn | 〈x , y〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.

Definition
A conic program over a regular convex cone K ⊂ Rn is an optimization problem of the
form

min
x∈K
〈c, x〉 : Ax = b.

every convex optimization problem can be written as a conic program



Geometric interpretation

the feasible set is the intersection
of K with an affine subspace

min
x
〈c ′, x〉 : A′x + b′ ∈ K

explicit parametrization



Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)
Let K ⊂ Rn be a regular convex cone. A (self-concordant logarithmically
homogeneous) barrier on K is a smooth function F : Ko → R on the interior of K
such that

I F (αx) = −ν logα+ F (x) (logarithmic homogeneity)

I F ′′(x) � 0 (convexity)

I limx→∂K F (x) = +∞ (boundary behaviour)

I |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)

for all tangent vectors h at x .
The homogeneity parameter ν is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)
Let K ⊂ Rn be a regular convex cone and F : Ko → R a barrier on K with parameter
ν. Then the Legendre transform F∗ is a barrier on −K∗ with parameter ν.

I the map x 7→ F ′(x) takes the level surfaces of F to the level surfaces of F∗

I the map x 7→ −F ′(x) is an isometry between Ko and (K∗)o with respect to the
Hessian metrics defined by F ′′, (F∗)′′



Interior-point methods

let K ⊂ Rn be a regular convex cone
let F : Ko → R be a barrier on K
consider the conic program

min
x∈K
〈c, x〉 : Ax = b

for τ > 0, solve instead the unconstrained problem

min
x∈Rn

τ〈c, x〉+ F (x) : Ax = b

I unique minimizer x∗(τ) ∈ Ko for every τ > 0

I solution depends continuously on τ (central path)

I x∗(τ)→ x∗ as τ →∞

path-following methods:
alternate Newton steps and increments of τ
the smaller the barrier parameter ν, the faster we can increase τ safely



Second fundamental form

let M ⊂M be a submanifold of a (pseudo-)Riemannian space

choose a point x ∈ M and a tangent vector h ∈ TxM

consider the geodesics γM , γM in M and in M through x with velocity h

there is a second-order deviation

γM(t)− γM(t) =

(
d2

dt2

∣∣∣∣
t=0

(γM − γM)

)
·
t2

2
+ O(t3)

whose main term depends quadratically on h

the acceleration is called the second fundamental form II of M

IIx : TxM × TxM → (TxM)⊥

TxM tangent subspace, (TxM)⊥ normal subspace



the second fundamental form measures the deviation of M from a geodesic
submanifold

it is also called the extrinsic curvature



Para-Kähler space

consider the product E2n = Rn × Rn = {u = (x , p) | x ∈ Rn, p ∈ Rn}

for a vector space, we may identify the space with the tangent spaces at its points

E2n carries natural structures:

I ||u||2 = 〈x , p〉 is a flat pseudo-Riemannian metric G with neutral signature

I dx ∧ dp is a symplectic form ω, ω(u1, u2) = 1
2

(〈x1, p2〉 − 〈x2, p1〉)
I (x , p) 7→ (x ,−p) is an involution J whose eigenspaces define completely

integrable distributions

these structures are compatible:

I ∇̂ω = 0 (∇̂ is the parallel transport of G)

I Jg = ω

E2n is a (the) flat para-Kähler space form



Barriers as Lagrangian submanifolds

duality K ⊂ Rn ↔ K∗ ⊂ Rn, x ↔ p = −F ′(x)

to a barrier F on a cone K associate the submanifold

M = {(x , p) ∈ E2n | x ∈ Ko , p = −F ′(x)}

the structures defined by F on Ko have a natural explanation in terms of the
structures defined by E2n on its submanifold M

I the metric g = F ′′ on Ko is ν times the submanifold metric on M, g = ν · G |M
I M is a non-degenerate definite Lagrangian submanifold, ω|M = 0

I J is a bijection between the tangent and the normal subspaces to M

I F ′′′ = ω · II = Jg · II

Theorem
The self-concordance condition on F is equivalent to the boundedness of the extrinsic
curvature of M. The barrier parameter ν measures the supremum of the norm of the
extrinsic curvature.

I ν bounds the deviation of M from a totally geodesic submanifold of E2n

I geodesic submanifolds of E2n correspond to quadratic functions



Symmetric cones

Definition
A self-dual, homogeneous convex cone is called symmetric.

I self-dual: K = K∗

I homogeneous: AutK acts transitively on Ko

conic programs over symmetric cones are efficiently solvable by interior-point methods
due to the existence of self-scaled barriers [Nesterov, Nemirovski, 1994]

I linear programs (LP) over Rn
+ ∼ 106 variables

I conic quadratic programs (CQP) over Ln ∼ 104 variables

I semi-definite programs (SDP) over S+(n) ∼ 102 variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuMi, ...) and commercial (CPLEX, MOSEK, ...) solvers
available



Self-scaled barriers on symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)
Every symmetric cone can be represented as a direct product of a finite number of the
following irreducible symmetric cones:

I Lorentz (or second order) cone Ln =
{

(x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}
I matrix cones S+(n), H+(n), Q+(n) of real, complex, or quaternionic hermitian

positive semi-definite matrices

I Albert cone O+(3) of octonionic hermitian positive semi-definite 3× 3 matrices

barriers on irreducible symmetric cones

I Lorentz cone Ln: F (x) = − log(x2
0 − x2

1 − · · · − x2
n−1)

I matrix cones: F (X ) = − log detX

barriers on reducible symmetric cones
weighted sums of the barriers on the irreducible components

example: K = Rn
+, F (x) = −

∑n
k=1 αk log xk , αk ≥ 1



Main result

Theorem
Let K ⊂ Rn be a regular convex cone, and let F : Ko → Rn be a convex,
logarithmically homogeneous function such that limx→∂K F (x) = +∞. Then the
following are equivalent:

I K is a symmetric cone and F a self-scaled barrier,

I the product of the inversion J with the extrinsic curvature of the submanifold
M ⊂ E2n is parallel with respect to the geodesic flow on Ko ,

I the derivative F ′′′ is parallel with respect to the geodesic flow on Ko , ∇̂F ′′′ = 0.

a barrier is self-scaled if and only if the acceleration of the geodesics on M is invariant
with respect to the geodesic flow on M

the barrier F behaves in some precise sense as a primal-dual 3rd order polynomial: it is
the mean between the cases when F is cubic and when F∗ is cubic

the parallelism condition is local



Explicit equation

we note ∂F
∂xα

= F,α, ∂2F
∂xα∂xβ

= F,αβ etc.

note F ,αβ for the inverse of the Hessian

we adopt the Einstein summation convention over repeating indices, e.g.,

F ,αβF,βγ :=
n∑
β=1

F ,αβF,βγ = δαγ

then ∇̂F ′′′ = 0 is equivalent to the 4-th order quasi-linear PDE

F,αβγδ =
1

2
F ,ρσ

(
F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ

)
F is self-scaled if and only if it is a solution to this PDE

a solution can be recovered from the values of F ,F ′,F ′′,F ′′′ at a single point



Idea of proof

differentiating with respect to xη and substituting the fourth order derivatives by the
right-hand side, we get

F,αβγδη =
1

4
F ,ρσF ,µν

(
F,βηνF,αρµF,γδσ + F,αηµF,ρβνF,γδσ

+ F,γηνF,αρµF,βδσ + F,αηµF,ργνF,βδσ + F,βηνF,γρµF,αδσ

+ F,γηµF,ρβνF,αδσ + F,βηνF,δρµF,αγσ + F,δηµF,ρβνF,αγσ

+ F,δηνF,αρµF,βγσ + F,αηµF,ρδνF,βγσ + F,δηνF,γρµF,αβσ

+ F,γηµF,ρδνF,αβσ
)

anti-commuting δ, η gives the integrability condition

F ,ρσF ,µν
(
F,βηνF,δρµF,αγσ + F,αηµF,ρδνF,βγσ + F,γηµF,ρδνF,αβσ

−F,βδνF,ηρµF,αγσ − F,αδµF,ρηνF,βγσ − F,γδµF,ρηνF,αβσ
)

= 0.

define a multiplication on the tangent space by

(u • v)α =
1

2
F ,αδF,δβγu

βvγ

this defines a commutative algebra satisfying the Jordan identity

(u2 • v) • u = (u • v) • u2

connection between Jordan algebras and symmetric cones is long known
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