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Simplex pivot operation
the tableau −γ ξT

µ M
with basic set B and non-basic set N evolves by the rules

i ← j
j ← i

µB̃ ← µB̃ −M−1
ij MB̃jµi

µi ← M−1
ij µi

ξÑ ← ξÑ −M−1
ij ξjMT

iÑ
ξj ← −M−1

ij ξj
−γ ← −γ −M−1

ij ξjµi
MB̃Ñ ← MB̃Ñ −M−1

ij MB̃jMiÑ
MB̃j ← −M−1

ij MB̃j
MiÑ ← M−1

ij MiÑ
Mij ← M−1

ij


when pivoting at Mij , where B̃ = B \ {i}, Ñ = N \ {j}



Primal simplex method

evolves the primal feasible (µ ≥ 0) simplex tableau until either
unbounded-ness or optimality is detected

each step consists of the following stages:
▶ choose column j ∈ N such that ξj < 0
▶ among those rows k ∈ B such that Mkj > 0, let i be the index

minimizing the ratio M−1
kj µk

▶ update the tableau by pivoting at element Mij

algorithm stops if
▶ all ξj are nonnegative (optimality)
▶ all Mkj are non-positive (unbounded-ness)



Example

consider the LP

min
x∈R2

+

(3x2 − 4x1) :

x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6

introduce slacks

x3 = 1−x1+2x2, x4 = 6−2x1−x2
feasible set and objective level
lines



vertex (x1, x2) = (0, 0)
corresponds to basic set
B = (3, 4), non-basic set
N = (1, 2), value 0 with tableau

0 −4 3
1 1 −2
6 2 1

▶ choose pivot column 1
(ξ1 = −4 < 0)

▶ choose pivot row 3
( µ3

M31
= 1 < 3 = µ4

M41
)

▶ pivot at element M31



we arrive at the vertex
(x1, x2) = (1, 0) with basic set
B = (1, 4), non-basic set
N = (3, 2), value −4, and
tableau
4 4 −5
1 1 −2
4 −2 5

▶ choose pivot column 2
(ξ2 = −5 < 0)

▶ choose pivot row 4
(M42 = 5 > 0)

▶ pivot at element M42



we arrive at the vertex
(x1, x2) = (13

5 , 4
5) with basic set

B = (1, 2), non-basic set
N = (3, 4), value −8, and
tableau

8 2 1
13
5

1
5

2
5

4
5 −2

5
1
5

tableau is optimal, ξ ≥ 0



Dual simplex method

evolves the dual feasible (ξ ≥ 0) simplex tableau until either
infeasibility or optimality is detected

each step consists of the following stages:
▶ choose column i ∈ B such that µi < 0
▶ among those columns k ∈ N such that Mik < 0, let j be the

index minimizing the ratio −M−1
ik ξk

▶ update the tableau by pivoting at element Mij

algorithm stops if
▶ all µi are nonnegative (optimality)
▶ all Mik are nonnegative (infeasibility)



Example
consider again the LP

min
x∈R2

+

(3x2 − 4x1) :

x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6

with optimal solution
(x1, x2) = (13

5 , 4
5)

suppose we add a new constraint

x1 ≤ 2

introduce a new slack variable

x5 = 2− x1

optimal point becomes infeasible



the new slack is basic, and we
have to add a new row to the
tableau
now B = (1, 2, 5), N = (3, 4)

we have

x5 = 2− (13
5 −

1
5x3 −

2
5x4)

= −3
5 − (−1

5x3−
2
5x4)

8 2 1
13
5

1
5

2
5

4
5 −2

5
1
5

−3
5 −1

5 −2
5



B = (1, 2, 5), N = (3, 4)

8 2 1
13
5

1
5

2
5

4
5 −2

5
1
5

−3
5 −1

5 −2
5

dual simplex step:
▶ choose pivot row 5

(µ5 = −3
5 < 0)

▶ choose pivot column 4
(− ξ4

M54
= 5

2 < 10 = − ξ3
M53

)
▶ pivot at element M54



we arrive at the vertex
(x1, x2) = (2, 1

2) with basic set
B = (1, 2, 4), non-basic set
N = (3, 5), value −13

2 , and
tableau

13
2

3
2

5
2

2 0 1
1
2 −1

2
1
2

3
2

1
2 −5

2

tableau is optimal, µ ≥ 0



Mixed integer linear programs

linear program with additional integrality constraints on a part of
the decision variables

min
x≥0
⟨c, x⟩ : Ax = b, xi ∈ Z ∀ i ∈ I

in general NP-hard

removing the integrality constraints yields the linear relaxation

min
x≥0
⟨c, x⟩ : Ax = b

feasible set of LP larger than that of MILP
optimal value of LP is a lower bound on the value of the MILP



Branching

let x∗ be the solution of the LP relaxation

if x∗
I happens to be integral, then x∗ is optimal also for the MILP

in general there exists an index i ∈ I such that x∗
i is fractional

branching on xi means constructing the two linear programs

min
x≥0
⟨c, x⟩ : Ax = b, xi ≤ ⌊x∗

i ⌋ (1)

min
x≥0
⟨c, x⟩ : Ax = b, xi ≥ ⌈x∗

i ⌉ (2)

▶ feasible sets of LPs (1),(2) are disjoint
▶ their union contains the feasible set of the original MILP
▶ but does not contain the former LP solution x∗

the minimum of the values of LPs (1),(2) is a better lower bound



Branch-and-bound

MILP solvers
▶ recursively split the feasible set of the MILP into smaller parts

(branch)
▶ and solve the corresponding LP relaxations (bound)

in addition there may be modules strengthening the LP relaxations:

▶ presolve algorithms tightening the bounds on the integer
variables

▶ cuts separating fractional solutions from the feasible set of the
MILP



Use of dual simplex

the LPs obtained by branching differs from the original LP by one
constraint, namely an integer bound on the branching variable xi

in the optimal simplex table of the original LP the slack
corresponding to the constraint is basic (the constraint is not
active)

changing the constraint amounts to changing the corresponding
value in the vector b to a negative value in (−1, 0)
this modification turns the table infeasible, but it remains dual
feasible

hence we may return the table to optimality by the dual simplex
method



Example

consider the MILP

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x ∈ Z2

linear relaxation:

min
x∈R2

+

(3x2 − 4x1) :

x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6

solution (13
5 , 4

5), value −8



Example

branch on x1
value at optimal solution x∗

1 = 13
5

next LP:

min
x∈R2

+

(3x2 − 4x1) :

x1−2x2 ≤ 1, 2x1+x2 ≤ 6, x1 ≤ 2

solution (2, 1
2), value −13

2

the second LP is infeasible with constraint x1 ≥ 3



Example

branch on x2, value at optimal solution x∗
2 = 1

2

next LPs:

min
x∈R2

+

(3x2 − 4x1) :

x1−2x2 ≤ 1, 2x1+x2 ≤ 6, x1 ≤ 2, x2 ≥ 1

or

x1−2x2 ≤ 1, 2x1+x2 ≤ 6, x1 ≤ 2, x2 ≤ 0

solutions (2, 1) and (1, 0)
values −5 and −4

both LPs have integer solutions
optimal value of the MILP is the lower one −5, solution is (2, 1)


