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Figure 1: Uniqueness of minima in the convex and non-convex case

2 Simplest problems and methods

The difference between Min-Cut and Max-Cut comes from the fact that the former can be reduced to a convex
problem with polynomial size in the data, while the latter cannot.

Definition 2.1. A set X ⊂ Rn is called convex if for every x, y ∈ X and λ ∈ (0, 1) we have λx+ (1− λ)y ∈ X.
A function f : X → R on a convex set X is called convex if for every x, y ∈ X and λ ∈ (0, 1) we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), and concave if the opposite inequality holds.
If the feasible set X and the cost function f(x) in the minimization problem minx∈X f(x) are convex, then

the problem is called convex. Convexity of the problem guarantees that every local minimum is also a global
minimum.

2.1 Examples of simple convex problems

Convex quadratic function: We wish to minimize the function f(x) = 1
2x

TAx+ bTx with A real symmetric
and with positive eigenvalues. The minimizer can be found analytically via the gradient condition f ′(x) =
Ax+ b = 0. This problem hence reduces to solving a linear system of equations Ax = −b.

Remark 2.2. It is less costly to solve a linear system directly rather than to compute the inverse A−1 and to
proceed by the analytic formula x = −A−1b.

Linear function over ellipsoid: We wish to solve the problem

min
x

cTx : (x− x0)
TA−1(x− x0) ≤ 1,

with A real symmetric and with positive eigenvalues, and with c ̸= 0. The feasible set of the problem is an
ellipsoid centered on x0.
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The minimizer x∗ has to lie on the boundary of the ellipsoid, with the level surface through the minimizer
being tangent to the ellipsoid and the gradient pointing inside the ellipsoid. Therefore there exists λ < 0 such
that λc = 2A−1(x∗ − x0), yielding x∗ = x0 +

λ
2Ac. We also get

1 = (x∗ − x0)
TA−1(x∗ − x0) =

λ2

4
cTAA−1Ac =

λ2

4
cTAc,

yielding λ = − 2√
cTAc

and finally

x∗ = x0 −
Ac√
cTAc

.

Quadratic function over Euclidean ball: Consider the problem

min
x∈Rn

xTAx : ∥x∥2 ≤ 1.

Here A is real symmetric, but not necessarily positive semi-definite. If A ⪰ 0, then the objective function is
convex, and x = 0 is a local and hence global minimum. If λmin(A) < 0, then by homogeneity the minimum is
achieved on the boundary of the ball. The gradient of the objective must then be proportional to the gradient
2x of the constraint, and there exists λ ∈ R such that 2Ax = 2λx. It follows that λ is an eigenvalue of A and x
is the corresponding unit norm eigenvector. We then get for the value of the objective that xTAx = λxTx = λ.
Hence the minimum of the objective is achieved at the eigenvector corresponding to the minimum eigenvalue
λmin(A).

The problem is formally non-convex, but can be rewritten equivalently in convex form. With X = xxT we
have

xTAx = ⟨A,X⟩, ∥x∥22 = tr X,

and hence the problem is equivalent to

min
X∈Sn

⟨A,X⟩ : tr X ≤ 1, X ⪰ 0, rk X ≤ 1.

Here ⟨A,B⟩ =
∑n

i,j=1 AijBij is the Frobenius scalar product between symmetric matrices. Removing the rank
constraint, we obtain a semi-definite program (SDP). However, this SDP has always a solution of rank not
exceeding 1, and in generic position this solution is unique.

Quadratic function over sphere: Here we replace the inequality constraint by an equality constraint,

min
x∈Rn

xTAx : ∥x∥2 = 1.

As in the previous problem the solution is the eigenvector to the minimal eigenvalue of A.
An equivalent convex problem is the SDP

min
X∈Sn

⟨A,X⟩ : tr X = 1, X ⪰ 0.

The Euclidean ball and the sphere in the previous examples can be replaced by an ellipsoid or the boundary
of an ellipsoid, because these can be reduced to a ball or a sphere by a coordinate transformation.

Line search with bisection: We wish to minimize a convex function f : R ⊃ I → R, or more generally a
function which is strictly monotonically decreasing for x ≤ x∗ and strictly monotonically increasing for x ≥ x∗,
where x∗ is the minimizer of the function, and I is a (not necessarily finite) interval. We assume that a minimizer
x∗ exists and that given a point x, there is a means to determine whether x ≤ x∗ or x ≥ x∗, e.g., by computing
the derivative f ′(x).

We commence with an initial guess x0 and check whether x0 is smaller or larger than x∗. Assume without
loss of generality that x0 < x∗. Then we choose d > 0 and λ > 1 and compute recursively a sequence of points

xk+1 = xk + d · λk. After n ≈ log(1+
(x∗−x0)(λ−1)

d )

log λ steps we arrive at a point xn such that xn−1 ≤ x∗ ≤ xn, and
xn − xn−1 < d · λn.
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We now set I0 = [xn−1, xn] and construct recursively a sequence of nested intervals Ik ⊂ Ik−1 with mid-
points yk. Here Ik is either the left half or the right half of Ik−1, depending on whether yk−1 ≥ x∗ or yk−1 ≤ x∗.
After log2

xn−xn−1

ϵ < log2
d·λn

ϵ steps we arrive at an interval of length ϵ which contains a minimizer.

Line search with golden ratio: We wish to solve the same problem as before, but this time given a point
x we only have information on the value f(x).

We commence with two initial points x0 < x1 and determine the corresponding function values. Suppose
without loss of generality that f(x0) > f(x1). Then there exists a minimizer x∗ > x0. We compute again a
sequence of points xk+1 = xk + d · λk, until after n = O(log x∗−x0

d ) steps we arrive at a point xn such that
f(xn) ≥ f(xn−1). Thus we have three points xn−2 < xn−1 < xn such that f(xn−1) ≤ min(f(xn−2), f(xn)). It
follows that the minimizer lies in the interval I0 = [xn−2, xn].

We now construct recursively a sequence of nested intervals Ik+1 ⊂ Ik which contain the minimizer. At
each step we have already computed the end-points xk−, xk+ of the interval Ik and a point xkm in its interior.

Assume now that xk+−xkm

xk+−xk−
= α =

√
5−1
2 ≈ 0.618, i.e., xkm divides Ik at a golden ratio. To this end we have to

choose d = α
1−α = 1 + α =

√
5+1
2 . We choose the next iterate xk+1 = xk− + xk+ − xkm such that it divides Ik

also at a golden ratio, but lies in the other half of Ik. If now f(xk+1) > f(xkm), then we discard the end-point
xk+ of Ik which is closer to xk+1, if f(xk+1) < f(xkm), then we discard the other end-point xk− which is closer
to xkm. We again end up with three points xk±, xkm, xk+1, two of which are the end-points of the new interval
Ik+1 and one of which divides this interval at a golden ratio. At each step the length of the interval decreases
by a factor α. After logα−1

xn−xn−2

ϵ steps we arrive at an interval of length ϵ which contains a minimizer.

In the line search methods considered above, the number of known digits of the minimizer increases linearly
with the index k of the iteration. Such a convergence behaviour is called linear.

2.2 Ellipsoid method

If a separating oracle is available, then there exists a simple polynomial-time iterative method to solve general
convex optimization problems, the ellipsoid method. Here a separating oracle, given a point x ∈ Rn, outputs a
non-zero vector g such that a minimizer x∗ of the problem is guaranteed to satisfy the condition ⟨g, x∗−x⟩ ≤ 0.
This may be, e.g., the gradient f ′(x) of the cost function at a feasible point x.

The initial data are an ellipsoid E0 = {x ∈ Rn | (x− x0)
TP−1

0 (x− x0) ≤ 1} centered at the initial iterate x0

and containing a minimizer. At iteration step k we call the separation oracle at the center xk of the ellipsoid
Ek to obtain a vector gk+1 such that ⟨gk+1, xk − x∗⟩ ≥ 0. Then we compute the new ellipsoid Ek+1 centered on
the new iterate xk+1 by

xk+1 = xk − 1

n+ 1

Pkgk+1√
gTk+1Pkgk+1

,

Pk+1 =
n2

n2 − 1

(
Pk − 2

n+ 1

Pkgk+1(Pkgk+1)
T

gTk+1Pkgk+1

)
.

The volume of the ellipsoids Ek decreases exponentially and each ellipsoid is guaranteed to contain a minimizer
of the problem.

The method is impractical in most situations due to its slow convergence and numerical instabilities. It can
be used for small-dimensional convex problems if little information other than the separation oracle is available.

2.3 Non-convex problems

Non-convex problems are in general much more difficult to solve than convex problems. When using local
descent methods one can hope only for convergence to a local minimum.

Below we present a number of methods for unconstrained minimization.

Line search: At each iteration, we choose a descent direction dk at the current iterate xk. Then we solve
the one-dimensional problem

min
α>0

f(xk + αdk)
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as a sub-problem. Note that we do not need to solve the sub-problem to high accuracy. A coarse approximation
of the minimum will suffice for serving as the next iterate xk+1.

If the function is of class C1, then we may choose dk = −f ′(xk) and obtain a gradient descent algorithm.
Note that we implicitly assume the presence of a Euclidean structure on the underlying space, since we identify
the co-vector −f ′(xk) with the vector dk.

If the function is of class C2 and with positive definite Hessian, then we may choose dk = −(f ′′(xk))
−1f ′(xk).

This will be a Newton-type method.
There exist schemes which combine directions from several previous steps and achieve an acceleration of

convergence. Quasi-Newton schemes build an approximation of the Hessian based on previously computed
values of the gradient.

Trust region methods: At each iteration, we construct an approximation of the cost function around the
current iterate xk. Then we construct a sub-problem from the original problem with the approximation instead
of f and the additional constraint ||x− xk|| ≤ c. The feasible set of this constraint is the trust region where we
are confident in our approximation of f . If the minimizer of the sub-problem gives a lower as expected decrease
of the original cost function, then we decrease the constant c.

Regularization: At each iteration we add a regularizing term to the objective function, usually proportional
to ||x−xk||p for some p ≥ 1, and approximate the objective function by, e.g., a second order Taylor polynomial.
The regularizing term has the effect of holding the next iterate close to the previous one, where the approximation
is valid.

Constrained optimization problems can be converted to unconstrained ones by adding barriers or penalty
functions. While the former are defined on the feasible set and tend to +∞ at its boundary, the latter are zero
on the feasible set and penalize constraint violations by an increasing value outside of the feasible set.

Another strategy is to approximate the original problem globally by a convex one with polynomial complexity
(relaxation). Relaxations may consist in

� dropping non-convex constraints (rank constraints, integer or binary constraints);

� replacing non-convex constraints by stronger or weaker ones (convexification of objective, replace positivity
conditions on polynomials by sums of squares conditions).

Problems with integer or binary constraints can be solved by dedicated branch-and-bound methods. Here
the feasible set is split into several smaller parts (branching), and the problem restricted to a given part is
relaxed and solved (bounding), resulting in a search tree.

These methods will be considered in more detail in the second part of the course.

3 Mathematical background

3.1 Norms

Optimization problems can rarely be solved exactly. Most often a solution algorithm delivers a sequence of
iterates that converge to an optimal solution of the problem. In order to define convergence and to measure the
quality of approximation, we shall need the notions of topology and norm.

Definition 3.1. Let V be a real vector space. A function · : V × V → R is called a scalar product if

� u · v = v · u for all u, v ∈ V ,

� (au+ bv) · w = a(u · w) + b(v · w) for all a, b ∈ R, u, v, w ∈ V ,

� u · u ≥ 0 for all u ∈ V and u · u = 0 if and only if u = 0.

Equivalently, a scalar product is a symmetric positive definite bilinear form on V .

Definition 3.2. Let V be a real vector space. A function || · || : V → R+ is called a norm if

9



Efficient Methods in Optimization Fall 2022

� ||u|| = 0 if and only if u = 0,

� ||au|| = |a| · ||u|| for all a ∈ R and u ∈ V ,

� ||u+ v|| ≤ ||u||+ ||v|| for all u, v ∈ V .

Every scalar product on V defines a norm by ||u|| =
√
u · u, but not every norm can be represented in such

a way. Norms defined by scalar products are called Euclidean.

Every norm on V defines a distance function, or metric, by d(u, v) := ||u− v||.
Two norms || · ||, || · ||′ are called strongly equivalent if there exist constants α, β > 0 such that

α||u|| ≤ ||u||′ ≤ β||u||

for all u ∈ V . In finite-dimensional vector spaces every two norms are strongly equivalent, because the continuous

positive function ||u||
||u||′ attains its minimum and its maximum on the unit sphere.

The unit ball and the open unit ball of a norm || · || are the sets

B1 = {u ∈ V | ||u|| ≤ 1}, Bo
1 = {u ∈ V | ||u|| < 1},

respectively.

Examples:

� p-norms on Rn: ||x||p = (
∑n

k=1 |xk|p)
1/p

, p ∈ [1,+∞); ||x||∞ = maxk |xk|;

� Euclidean norms on Rn: ||x|| =
√
xTAx, A real symmetric with all eigenvalues positive;

� matrix (Schatten) p-norms on Rn×m: ||A||p =
(∑min(n,m)

k=1 σk(A)p
)1/p

, p ∈ [1,+∞); ||A||∞ = maxk σk(A);

� matrix (Schatten) p-norms on Sn: ||A||p = (
∑n

k=1 |λk(A)|p)1/p, p ∈ [1,+∞); ||A||∞ = maxk |λk(A)|.

Here Sn is the n(n+1)
2 -dimensional real vector space of real symmetric n × n matrices, σk(A) are the singular

values, and λk(A) the eigenvalues of the matrix A.
The matrix 1-norms are also called nuclear norms, the matrix 2-norms Frobenius norms, and the matrix

∞-norms spectral norms. The Frobenius norm can be computed as ||A||2 =
∑

i,j A
2
ij without resorting to the

eigenvalues. On positive semi-definite matrices the nuclear norm equals the trace
∑

i Aii.

Attention: There exist also other matrix p-norms defined by ||A||p = sup||x||p=1 ||Ax||p which are derived
from the p-norms on the vector spaces the matrix is acting on as a linear operator. In this notion the spectral
norm is, e.g., given by ||A||2, not ||A||∞.

Figure 2: Unit balls of some vector p-norms in the plane

0-”norms” and sparsity: The expressions for the p-norms above are also defined for p ∈ (0, 1), but these
are not anymore norms, because the unit balls cease to be convex, which is equivalent to a violation of the
triangle inequality. Nevertheless, the expressions

lim
p→0

n∑
k=1

|xk|p, lim
p→0

min(n,m)∑
k=1

σk(A)p, lim
p→0

n∑
k=1

|λk(A)|p
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are of interest for optimization, because the measure the number of non-zero components of a vector x ∈ Rn

and the rank of a matrix A ∈ Rn×m or A ∈ Sn, respectively.
It is sometimes a desirable feature of the solution of an optimization problem that it be sparse (low number

of non-zero components) or low rank in case of a matrix decision variable. In order to enforce such behaviour,
one can add a penalty term µ||x||1 or µ||A||1 to the objective function of the problem, where µ > 0 is a weight
which emphasizes the importance of the sparsity / low rank property over the original objective function value
of the solution.

Dual norm: Let ∥ · ∥ be a norm on a vector space V . The dual norm is defined on the dual vector space
V ∗ by

∥y∥∗ = sup
∥x∥≤1

⟨x, y⟩.

Exercise: Show that the dual to the p-norm ∥ · ∥p is the q-norm ∥ · ∥q with q defined by 1
p + 1

q = 1.
Scalar products and duality: A scalar product on a vector space V can be interpreted as a bijection

between V and its dual:
x 7→ ⟨x, ·⟩ = (y 7→ ⟨x, y⟩) .

If in some algorithm dual vectors are identified with primal vectors, then implicitly the presence of a scalar
product is assumed. Such algorithms are not invariant with respect to general affine transformations of the
coordinate system, they are invariant only with respect to orthogonal transformations preserving the scalar
product.

In particular, in gradient descent methods gradients (dual vectors) are interpreted as directions (primal
vectors). Hence, e.g., a change of the unit of measurement in one of the coordinates modifies the sequence of
iterates produced by the method.

3.2 Affine space

We have seen that the notion of convexity relies on the ability to define the segment [x, y] = {λx+(1−λ)y |λ ∈
[0, 1]} between points of the set under consideration. Obviously the notion of segment is invariant not only
under automorphisms of the underlying vector space, but also under translations which do not preserve the zero
vector and are hence not automorphisms. We therefore do not need the full structure of a vector space in order
to work with convex sets. It is sufficient to keep the structure of an affine space, which can be obtained from a
vector space by forgetting the location of the zero vector.

Definition 3.3. Let V be a real vector space. An affine space with associated vector space V is a set A together
with a map + : A× V → A such that

� x+ 0 = x for all x ∈ A,

� (x+ u) + v = x+ (u+ v) for all x ∈ A, u, v ∈ V ,

� v 7→ x+ v is a bijection between V and A for all x ∈ A.

Example: An affine subspace A of a vector space W is an affine space in the sense above. The associated
vector space V is the linear subspace of W spanned by the differences of the elements of A. In particular, the
vector space W itself is also an affine space, with the associated vector space being again W .

The third property of the definition allows to consider the elements of V as differences between points in A:
for x, y ∈ A we define x− y to be the unique vector v ∈ V such that x = y+ v. The points of the segment [x, y],
where x, y ∈ A, can then be written as

λx+ (1− λ)y = y + λ(x− y).

Since x−y is a vector, its multiple λ(x−y) is also a vector, and hence the right-hand side of the relation is again
a point of the affine space. Generally, every combination of points of affine space with coefficients summing to
0 can be interpreted as a vector in V , since it can be written as a linear combination of differences of elements
of A. Therefore every combination with coefficients summing to 1 can be seen again as a point in affine space,
because it can be written as an element of affine space plus a combination of points with coefficients summing
to 0.
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Figure 3: Affine hulls of sets of points

Definition 3.4. Let x1, . . . , xk be points in an affine space A. Then
∑k

i=1 λixi is called an affine combination

of the points x1, . . . , xk if
∑k

i=1 λi = 1.

A finite set {x1, . . . , xk} of points in an affine spaceA is called affinely independent if the relations
∑k

i=1 λiui =

0,
∑k

i=1 λi = 0 imply λi = 0 for all i = 1, . . . , k.
An affine basis of an affine space A is an affinely independent set {x1, . . . , xn} such that every element of A

is an affine combination of x1, . . . , xn.

If {x1, . . . , xn} is an affine basis of A, then {x2 − x1, . . . , xn − x1} is a basis of the vector space associated to
A. Hence the dimension of A is equal to n− 1, i.e., the number of elements in any of its affine bases, minus 1.

Definition 3.5. The affine hull of a subset X ⊂ A of an affine space is the set of all affine combinations of
elements of X.

An affine subspace of A is a subset of A which equals its affine hull.

The affine hull of an arbitrary subset X is the smallest affine subspace of A which contains X, or equivalently,
the intersection of all affine subspaces containing X.

Given an affine basis {x1, . . . , xn} of A, we can represent every point x ∈ A uniquely as an affine combination
x =

∑n
i=1 λixi. The coefficients λ1, . . . , λn are called the barycentric coordinates of x with respect to the basis

{x1, . . . , xn}.

Definition 3.6. A map f : A → B between affine spaces A,B with associated vector spaces U, V is called
affine if it preserves affine combinations, i.e., f(

∑
k λkxk) =

∑
k λkf(xk) for all xk ∈ A and all λk such that∑

k λk = 1.
An affine isomorphism is a bijective affine map.

If we turn the affine spaces into vector spaces by arbitrarily designating a point x0 as the origin and identifying
an arbitrary point x of the affine space with the vector x− x0, then the affine maps turn out to be linear maps
plus translations by a constant vector.

3.3 Topology

Defining a topology on a set allows one to define the notion of convergence of sequences of points to points of
the set. This is necessary since usually the output of an optimization algorithm will not consist of an optimal
solution of the optimization problem, but merely of a sequence of iterates which converge to an optimal solution.

Definition 3.7. Let X be a set. A collection T of subsets U ⊂ X is called a topology on X if

� ∅, X ∈ T ,

� finite intersections of sets in T are again in T ,

� arbitrary unions of sets in T are again in T .
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The set X equipped with a topology T is called a topological space.
The topology defines which subsets of X are open and which are closed : U ⊂ X is open if U ∈ T and it is

closed if X \ U ∈ T . If x ∈ X is a point, then any open set containing x is called a neighbourhood of x.
In this way, finite unions of closed sets and arbitrary intersections of closed sets are again closed.
Infinite unions of closed sets do not need to be closed, however: in Rn we have

⋃
r<1 Br = Bo

1 , where Br is
the closed ball of radius r, and Bo

1 the open unit ball.

Definition 3.8. Let U ⊂ X be a subset of a topological space. The interior of U , denoted intU or Uo, is the
largest open set contained in U , or equivalently, the union of all open sets contained in U .

The closure of U , denoted clU or Ū , is the smallest closed set containing U , or equivalently, the intersection
of all closed sets containing U .

The boundary of U , denoted bdU or ∂U , is the difference Ū \ Uo.
Let U be a subset of an affine space. The relative interior of U , denoted riU , is the interior of U in the

topology of the affine hull of U .
The relative boundary of U , denoted rbdU , is the difference Ū \ riU .

Example: Let X = R and U = Q the subset of rational numbers. Then Uo = ∅ and Ū = R.
Definition 3.9. Let U, V ⊂ X be subsets of a topological space. The U is called dense in V if U ⊂ V ⊂ Ū .

The topology allows to define the notion of convergence.

Definition 3.10. Let X be a topological space. A sequence x1, x2, . . . of points converges to a point x∗ if for
every open set U ⊂ X containing x∗, there exists a number NU such that xk ∈ U for all k ≥ NU .

Thus {xk} converges to x∗ if the sequence eventually enters and no more leaves arbitrarily small neighbour-
hoods of x∗.

Often it is convenient to define or describe topologies by the following simpler notion.

Definition 3.11. Let X be a set. A collection B of subsets U ⊂ X is called a base if

�

⋃
U∈B = X,

� for every U1, U2 ∈ B and every x ∈ U1 ∩ U2 there exists U3 ∈ B such that x ∈ U3 ⊂ U1 ∩ U2.

Every base defines a topology by taking the open subsets of X to be arbitrary unions of elements of B. On
the other hand, every topology can be defined by a base, the largest such base being the topology itself.

A norm on a vector space V induces a topology on V by the base

B = {u+ εBo
1 |u ∈ V, ε > 0}.

Thus a set U ⊂ V is open if for every u ∈ U there exists a constant ε > 0 such that u+ εB1 ⊂ U .
The notion of convergence can then be reformulated as follows: a sequence {xk} converges to x∗ if and only

if limk→∞ ||xk − x∗|| = 0.
Strongly equivalent norms define the same topology on V . In finite dimension all norms are strongly equiv-

alent, hence every norm defines the same topology on V .

Definition 3.12. Let S be a set. A hull operator on S is a map cl : 2S → 2S assigning subsets of S to subsets
of S, and satisfying the following properties:

� extensivity: X ⊂ cl X for all X ⊂ S

� monotonicity: cl X ⊂ cl Y for all X ⊂ Y ⊂ S

� idempotence: cl(cl X) = cl X for all X ⊂ S.

The closure operator in a topological space is a hull operator, but not every hull operator defines a topology
on S. For this also the property

cl(X ∪ Y ) = cl X ∪ cl Y ∀ X,Y ⊂ S

is needed.
The affine hull is an example of a hull operator violating this condition. We shall see more examples of hull

operators below.
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Figure 4: Convex hulls of sets of points

4 Convex sets

Convex sets are defined via affine combinations of two elements with nonnegative coefficients.

Definition 4.1. A subset X ⊂ A of a real vector space or a real affine space is called convex if for all x, y ∈ X
and all λ ∈ [0, 1] we have

λx+ (1− λ)y ∈ X.

Examples:

� the empty set ∅,

� the whole space A,

� singletons {x},

� affine subspaces,

� open or closed affine half-spaces,

� open or closed norm balls x+ rBo
1 , x+ rB1 around arbitrary points.

Here open and closed affine half-spaces are sets of the form {x ∈ A | a(x) < b} and {x ∈ A | a(x) ≤ b},
respectively, where a is a non-constant linear functional on A and b ∈ R.

4.1 Convex hull

Definition 4.2. Let x1, . . . , xk be points in an affine space A. Then
∑k

i=1 λixi is called a convex combination

of the points x1, . . . , xk if
∑k

i=1 λi = 1 and λi ≥ 0, i = 1, . . . , k.
The convex hull of a subset X ⊂ A of an affine space is the set of all convex combinations of elements of X.

It is denoted by convX.

Lemma 4.3. A set X is convex if and only if it equals its convex hull.

Proof. Let X = convX. Then, in particular, convex combinations of any two elements of X belong to X. Hence
X is convex.

Let X be convex. We show by induction on k that a convex combination of k elements of X is in X. The
definition of convexity yields the base of the induction for k = 2. Suppose we have proven that any convex
combination of k−1 elements of X is in X. Let x1, . . . , xk ∈ X and let x =

∑k
i=1 λixi be a convex combination.

If any of the coefficients λi vanishes, then x is actually a convex combination of strictly less than k elements
and is in X by the induction hypothesis. Assume λi > 0 for all i = 1, . . . , k. Then we have

x =

k−1∑
i=1

λixi + λkxk =

(
k−1∑
i=1

λi

)
k−1∑
i=1

λi∑k−1
j=1 λj

xi + λkxk = (1− λk)y + λkxk.
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Here y =
∑k−1

i=1
λi∑k−1

j=1 λj
xi is a convex combination of k − 1 elements of X and is hence in X. The point x has

then been represented as convex combination of two elements of X and is hence also in X.

The following assertion follows immediately from Definition 4.1.

Lemma 4.4. Arbitrary intersections of convex sets are convex.

Corollary 4.5. The convex hull of a set X is the smallest convex set which contains X, namely the intersection
of all convex sets containing X.

Proof. Since convex combinations of convex combinations are again convex combinations of the original points,
the convex hull of X is equal to its own convex hull. By Lemma 4.3 it is hence convex. On the other hand, any
convex set Y containing X must contain at least the convex hull of X, because Y ⊃ X implies Y = convY ⊃
convX.

Further examples of convex sets:

� polytopes (convex hulls of a finite set of points),

� polyhedra (finite intersections of closed affine half-spaces),

� simplices (convex hull of an affinely independent set of points).

4.2 Operations preserving convexity

We now consider more operations which preserve convexity.

Definition 4.6. Let X,Y be subsets of a vector space. The set

X + Y := {x+ y |x ∈ X, y ∈ Y }

is called Minkowski sum of X,Y .
This definition can be extended to the case where one of the sets X,Y is a subset of an affine space and the

other a subset of the underlying vector space.

The following assertions follow easily from the definition of convexity.

� the Minkowski sum of convex sets is convex,

� images of convex sets under affine maps are convex,

� pre-images of convex sets under affine maps are convex,

� the interior Xo of a convex set X is convex,

� the relative interior ri X of a convex set X is convex,

� the closure cl X of a convex set X is convex.

We now come to the interplay between convexity and topology.

Lemma 4.7. Let X ̸= ∅ be convex. Then ri X ̸= ∅.
For non-convex sets this is in general not the case (consider X = Q ⊂ R, then ri X = ∅).

Proof. The affine hull affX possesses an affine basis of points in X. To construct such a basis, pick an arbitrary
point x1 ∈ X. If aff {x1} = affX, then {x1} is an affine basis of affX. If aff {x1} ̸= affX, then there exists a
point x2 ∈ X \ aff {x1}. This point x2 is affinely independent of x1. We now repeat the process by comparing
aff {x1, x2} with affX and adjoin another affinely independent point x3 ∈ X if these affine hulls are not equal.
Obviously the affine hulls become equal after dim affX + 1 steps.
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Figure 5: Proof of Lemma 4.8. Radii are shown in italic.

Let hence x1, . . . , xk ∈ X form an affine basis of the affine hull of X. Then the simplex Σ = conv{x1, . . . , xk}
is a subset of X, and the relative interior of Σ is given by the set

ri Σ =

{
k∑

i=1

λixi |λi > 0,

k∑
i=1

λi = 1

}
.

Since affΣ = affX, any point in ri Σ is also in ri X.

We now need an auxiliary lemma.

Lemma 4.8. Let X be a convex set, let x ∈ ri X and y ∈ clX. Then the half-open segment [x, y) = {λx+ (1−
λ)y |λ ∈ (0, 1]} is a subset of ri X.

Proof. By definition there exists r > 0 such that (x+ rB1) ∩ affX ⊂ X. Let λ ∈ (0, 1] and z = λx+ (1− λ)y.
Set ρ = λr

1+λ . Since y ∈ clX, there exists w ∈ X such that ||y − w|| < ρ.
Set u = x+w−y. Then u ∈ affX as an affine combination of points in affX. Moreover, ||u−x|| = ||w−y|| < r.

Hence (u+ (r − ||u− x||)B1) ∩ affX ⊂ (x+ rB1) ∩ affX ⊂ X. We then get

λ[(u+ (r − ||u− x||)B1) ∩ affX] + (1− λ)w = [z + w − y + λ(r − ||y − w||)B1] ∩ affX ⊂ X

by the convexity of X. But

z + w − y + λ(r − ||y − w||)B1 ⊃ z + (λ(r − ||y − w||)− ||y − w||)B1

and λ(r− ||y−w||)− ||y−w|| = (1+λ)(ρ− ||y−w||) > 0. Therefore (z+(1+λ)(ρ− ||y−w||)B1)∩ affX ⊂ X,
and z ∈ ri X.

This will allow us to show that for convex sets the relative interior and the closure can be obtained from
each other.

Lemma 4.9. Let X be a convex set. Then cl ri X = clX and ri clX = ri X.

Proof. Clearly cl ri X ⊂ clX and ri clX ⊃ ri X.
Let y ∈ clX. Then X ̸= ∅ and there exists a point x ∈ ri X. It follows that [x, y) ⊂ ri X, and hence

y ∈ cl ri X.
Let now z ∈ ri clX. Then X ̸= ∅ and there exists x ∈ ri X. Further there exists ε > 0 such that

(z + εB1) ∩ affX ⊂ clX. We have [x, z] ⊂ affX, and there exists y ∈ (z + εB1) ∩ affX such that y lies on the
line through x and z and such that z ∈ [x, y). But then z ∈ ri X by Lemma 4.8.
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Figure 6: Were z ∈ X, then y′, which is closer to x than y, would also be in X.

4.3 Distance from a convex set

Let X ⊂ Rn be a non-empty closed convex set, and let d(x, y) =
√∑n

i=1(xi − yi)2 be the Euclidean distance
function on Rn. Then the distance function

D(x) = inf
y∈X

d(x, y)

is everywhere defined. Moreover, the infimum is attained for every x ∈ Rn.
Indeed, let z ∈ X be a point and set r = ||x− z||. Then

inf
y∈X

d(x, y) = inf
y∈X∩(x+rB1)

d(x, y).

But X∩(x+rB1) is compact, and hence the infimum on this intersection is attained. But then also the infimum
over X is attained at the same point.

Moreover, the infimum is unique. Assume there exist two points y, y′ ∈ X such that d(x, y) = d(x, y′) = D(x).

Then D(x) ≤ d(x, y+y′

2 ) =
√
D2(x)− ||y′−y||2

4 , which gives ||y′ − y||2 ≤ 0 and hence y′ = y.

Definition 4.10. Let X be a closed convex set and x be a point. The unique point y ∈ X which minimizes the
distance to x is called the projection of x on X.

Fix x ∈ Rn \X and let y ∈ X be such D(x) = d(x, y) > 0. Set u = x− y and e = u
||u|| and define the closed

half-space
H = {z ∈ Rn | eT z ≤ eT y}.

The boundary to this half-space is the hyperplane through y which is perpendicular to e, and H is the half-space
opposite to x.

Claim: X ⊂ H. Indeed, let z ∈ X \ H. Then on the line segment [z, y] there exists a point y′ which is
strictly closer to x than y. But z, y ∈ X, hence y′ ∈ X, contradicting the optimality of y (see Fig. 6).

Therefore we have the inclusion {y} ⊂ X ⊂ H. Now consider D(x′) at an arbitrary point x′ ̸∈ H. We have
the bounds

d(x′, y) ≥ min
y′∈X

d(x′, y′) = D(x′) ≥ min
y′∈H

d(x′, y′).

Set u′ = x′ − x and decompose this vector into a component v which is orthogonal to e and a component αe
which is collinear with e, u′ = αe+ v (see Fig. 7). We get

d(x′, y) = ||(α+ ||u||)e+ v|| =
√
(α+ ||u||)2 + ||v||2, min

y′∈H
d(x′, y′) = α+ ||u||,

in the second case the minimizer y′ ∈ H of the distance to x′ being given by y′ = y + v. Therefore we obtain
the explicit bounds

α+ ||u|| ≤ D(x′) ≤ (α+ ||u||)

√
1 +

||v||2
(α+ ||u||)2

= α+ ||u||+O(||v||2).
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Figure 7: Upper and lower bound on D(x′).

Since D(x) = ||u|| and α = eTu′ = eT (x′ − x), we get

D(x′) = D(x) + eT (x′ − x) +O(||x′ − x||2).

This decomposition can be seen as the first order Taylor approximation of D around x. It follows that D(x) is
differentiable at x and its gradient is given by e.

We get the following result.

Theorem 4.11. Let X ⊂ Rn be a closed convex set, and let D(x) be the Euclidean distance from x to X. Let
further u(x) ∈ Rn be the difference between x and the projection of x on X. Then at any point x ̸∈ X the

function D(x) is differentiable, and its gradient is given by u(x)
||u(x)|| .

4.4 Separation

In this subsection we consider a fundamental property of convex sets, namely that convex sets can be separated
or supported by hyperplanes. The latter property is closely linked to duality which we shall consider later.

Definition 4.12. Let X,Y be non-empty convex sets. The distinct parallel affine hyperplanes

H1 = {x | aTx = b1}, H2 = {x | aTx = b2}

separate X and Y strongly if
sup
x∈X

aTx ≤ b1 < b2 ≤ inf
y∈Y

aT y.

We say that X and Y can be separated strongly if there exist affine hyperplanes which separate them strongly.
Here a(x) := aTx is a non-zero linear functional, represented by a non-zero vector in any given coordinate

system.
We may also say that the linear functional a separates X,Y strongly.

Definition 4.13. Let X,Y be non-empty convex sets. The affine hyperplane

H = {x | aTx = b}

separates X and Y properly if

sup
x∈X

aTx ≤ b ≤ inf
y∈Y

aT y, inf
x∈X

aTx < sup
y∈Y

aT y.

We say that X and Y can be separated properly if there exists an affine hyperplane which separates them
properly.

Thus H separates X and Y properly if X and Y lie in opposite closed half-spaces with respect to H and at
least one of the sets X,Y is not contained in H.

We may also say that the linear functional a separates X,Y properly.
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Figure 8: (a) H1, H2 separate X,Y strongly; (b) H separates X,Y properly; (c) H does not separate X,Y .

Clearly strong separation implies proper separation, but there exist non-intersecting closed convex sets which
can be separated properly but not strongly.

Example: Consider the sets X = {(x1, x2) |x1 > 0, x1x2 ≥ 1}, Y = {(y1, y2) | y1 < 0, y1y2 ≤ −1}. Then the
hyperplane H = {x | eT1 x = 0} separates X and Y properly, where e1 = (1, 0)T . However, X and Y cannot be
separated strongly, because the distance between these sets is zero.

We shall now consider the special case when one of the sets is a singleton.

Lemma 4.14. Let V be a real vector space equipped with a Euclidean distance function. Let X be a non-
empty closed convex set and y a point. Then the singleton {y} can be separated strongly from X if and only if
d(y,X) = minx∈X d(x, y) > 0.

Proof. If y ∈ X, then {y} cannot be separated strongly from X. Hence assume that y ̸∈ X. Then d(y,X) > 0.
Let y∗ ∈ X be the projection of y on X. Set a = y − y∗ ̸= 0. Then the hyperplanes H1 = {x | aTx = aT y} and
H2 = {x | aTx = aT y∗} separate X and {y} strongly.

Lemma 4.15. Let X ⊂ V be a convex set and let y ̸∈ ri X. Then {y} and X can be properly separated.

Proof. Introduce a Euclidean distance in the ambient vector space V .
If y ̸∈ clX, then d(y, clX) > 0 and {y} can be strongly separated from clX. The same hyperplanes then

separate {y} from X strongly, and thus {y} and X can be separated properly.
Hence assume that y ∈ clX \ ri X = rbdX, where rbdX denotes the relative boundary of X. Let A be the

affine hull of X. Then there exists a sequence of points {yk}k≥1 such that yk ∈ A \ clX and limk→∞ yk = y.
Let y∗k be the projection of yk on clX, and let ak = yk − y∗k, ek = ak

||ak|| . Let e
∗ be an accumulation point of the

sequence {ek} which must exist because all ek are elements of the unit sphere. Without loss of generality we
may assume that {ek} converges to e.

For every fixed z ∈ clX we have aTk yk > aTk y
∗
k ≥ aTk z and hence eTk yk > eTk z. Passing to the limit k → ∞,

we get that eT y ≥ eT z. However, the linear functional x 7→ eTx is not constant on A and thus not constant on
X by construction. Therefore the hyperplane H = {x | eTx = eT y} separates {y} and clX properly. Thus it
separates {y} from X properly.

The main result of this subsection is the following Separation Theorem.

Theorem 4.16. The non-empty convex sets X and Y can be separated properly if and only if their relative
interiors do not intersect.

Proof. For the sake of contradiction, suppose there exists z ∈ ri X ∩ ri Y and a hyperplane H = {x | aTx = b}
which separates X and Y properly. Then

aT z ≤ sup
x∈X

aTx ≤ b ≤ inf
y∈Y

aT y ≤ aT z,

and hence all inequalities are satisfied with equality.
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Let A be the affine hull of X. Then there exists ε > 0 such that (z + εB1) ∩A ⊂ X, and hence

sup
x∈(z+εB1)∩A

aTx ≤ aT z.

It follows that the linear functional x 7→ aTx is constant on A and hence also on X. Likewise, this functional is
constant on the affine hull of Y and hence also on Y . But this contradicts the second condition infx∈X aTx <
supy∈Y aT y implied by proper separation of X and Y by H.

Therefore, if X and Y can be separated properly, then ri X∩ri Y = ∅. Let us prove the converse implication.
Assume that ri X ∩ ri Y = ∅. Then 0 ̸∈ ri X − ri Y = {x − y |x ∈ ri X, y ∈ ri Y }. By Lemma 4.15 the

singleton {0} can then be properly separated from ri X − ri Y . This implies that there exists a non-zero a such
that

0 ≤ inf
x∈ri X, y∈ri Y

aT (x− y), 0 < sup
x∈ri X, y∈ri Y

aT (x− y).

Dropping the relative interior will not change the infimum or the supremum, which yields

sup
x∈X

aTx ≤ inf
y∈Y

aT y, inf
x∈X

aTx < sup
y∈Y

aT y.

Therefore X and Y can be separated properly.

A similar reasoning allows to prove the following necessary and sufficient condition for strong separation.

Theorem 4.17. Let X,Y ⊂ V be non-empty convex sets and let V be equipped with a Euclidean distance. Then
X and Y can be separated strongly if and only if d(X,Y ) = infx∈X,y∈Y d(x, y) > 0.

Proof. If the distinct parallel affine hyperplanes H1, H2 separate X and Y strongly, then d(X,Y ) ≥ d(H1, H2) >
0.

Let on the other hand d(X,Y ) > 0. Then also d({0}, X − Y ) = d({0}, cl(X − Y )) > 0. Let a ̸= 0 be the
projection of {0} on cl(X − Y ). Then

inf
x∈X

aTx− sup
y∈Y

aT y = inf
z∈X−Y

aT z = inf
z∈cl(X−Y )

aT z = ||a||2

and hence infx∈X aTx > supy∈Y aT y. It is now easily seen that X and Y can be strongly separated.

In particular, a compact convex set can always be strongly separated from a closed convex set if the sets do
not intersect. This follows from the fact that the distance function reaches its minimum on the compact set.

Definition 4.18. Let X be a non-empty convex set and x ∈ rbdX. A hyperplane H which separates {x} from
X properly is called a supporting hyperplane to X at x.

By Lemma 4.15 supporting hyperplanes exist at every relative boundary point. Moreover, the intersection
of X with a supporting hyperplane has strictly lower dimension than X, because X is not contained in the
hyperplane by definition of proper separation.

Lemma 4.19. Let X ̸= V be a closed convex set. Then X equals the intersection of all closed half-spaces which
contain X.

Proof. Let C be the intersection of all closed half-spaces which contain X. By assumption there exists a point
x ̸∈ X. Then {x} can be strongly separated from X, and there exists a closed half-space containing X. Thus C
is non-empty and X ⊂ C.

Let now z ∈ C \X. Then {z} can be strongly separated from X, and there exists a closed half-space which
contains X but not z. This leads to a contradiction, and such z cannot exist.
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Figure 9: Lemma 4.20: The supporting linear functional u can be represented as a combination of the functionals
a1, a2 corresponding to the active constraints with nonnegative coefficients.

4.5 Theorem on the alternative

Polyhedral sets are particularly simple convex sets. If a hyperplane is supporting to a polyhedral set P , then
this relation can be certified in the form of a convex combination of the inequalities defining the polyhedral set.

Lemma 4.20. Let P = {x |Ax ≤ b} be a non-empty polyhedral set, and let H = {x |uTx = b0} be a hyperplane
containing a point x∗ ∈ P and such that the open half-space C = {x |uTx > b0} has an empty intersection with
P , i.e., uTx∗ = b0, uTx ≤ b0 for all P . Then there exists a nonnegative vector µ ≥ 0 such that u = ATµ,
b0 = bTµ.

Proof. Let I be the set of indices of rows for which the inequality Ax∗ ≤ b is an equality, i.e., the index set of
active constraints at x∗. Then there exists ϵ > 0 such that for all x ∈ x∗ +Bϵ we have (Ax)j < bj for all j ̸∈ I.
Define another polyhedral set by P ′ = {x | (Ax)i ≤ bi ∀ i ∈ I}. Then P ⊂ P ′. We claim that C has also an
empty intersection with P ′, i.e., uTx ≤ b0 for all x ∈ P ′.

Indeed, suppose there exists z ∈ P ′ such that uT z > uTx∗. Then for all λ ∈ (0, 1] we have zλ = λz + (1 −
λ)x∗ ∈ P ′ and uT zλ > uTx∗. But for λ small enough we have zλ ∈ x∗ +Bϵ, and hence zλ ∈ P , a contradiction.

We now define the polyhedral cone K = {ATµ |µ ≥ 0, µj = 0 ∀ j ̸∈ I}. We claim that u ∈ K.
Indeed, suppose u ̸∈ K. Then u can be separated from K, and there exists δ such that uT δ > 0, vT δ ≤ 0 for

all v ∈ K. In particular, (Aδ)i ≤ 0 for all i ∈ I. Hence x∗ + δ ∈ P ′. But then uT (x∗ + δ) ≤ uTx∗ and uT δ ≤ 0,
a contradiction.

Hence there exists µ ≥ 0, µj = 0 for all j ̸∈ I, such that u = ATµ. It follows that µT (Ax∗ − b) = 0 and
b0 = µTAx∗ = µT b, which yields the desired assertion.

As a consequence, we obtain the following Theorem on the Alternative.

Theorem 4.21. (Farkas) Let P = {x |Ax ≤ b} be a polyhedral set. Then either P ̸= ∅, or there exists µ ≥ 0
such that µTA = 0, µT b = −1.

Proof. Clearly if P ̸= ∅, then such a µ cannot exist.
Let P = ∅. Then the non-empty polyhedral set

P ′ = {(x, t) |Ax− bt = (A,−b)(xT , t)T ≤ 0}

has an empty intersection with the open half-space C = {(x, t) | t = (0, 1)(xT , t)T > 0}. By the Lemma 4.20
there exists µ ≥ 0 such that (0, 1) = µT (A,−b).

We provide also a version of the theorem with equalities.
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Corollary 4.22. Let P = {x | Ax ≤ b, Cx = d} be a polyhedral set. Then either P ̸= ∅, or there exists µ ≥ 0,
ν such that µTA+ νTC = 0, µT b+ νT d = −1.

Proof. Represent P = {x | Ax ≤ b, Cx ≤ d, −Cx ≤ −d}. By the previous theorem, either P ̸= ∅, or there exist
µ, ν+, ν− ≥ 0 such that µTA+ νT+C − νT−C = 0, µT b+ νT+d− νT−d = −1. In the latter case, set ν = ν+ − ν−.

4.6 Faces and extremal points

We shall now investigate the structure of the boundary of a convex set.

Definition 4.23. A convex subset F of a convex set X is called a face of X if for every line segment l ⊂ X
such that F ∩ ri l ̸= ∅ we have l ⊂ F .

A face F of X is called proper if F ̸= ∅ and F ̸= X.
A face F of a convex set X is called exposed if there exists a hyperplane H such that F = X ∩ H and

X ̸⊂ H.
The hyperplane H in the last definition necessarily separates F and X properly.

Definition 4.24. Let X be a convex set. A point x ∈ X is called extremal if the singleton {x} is a face of X.
It is called exposed if {x} is an exposed face of X.

From the definition it follows that x ∈ X is an extremal point of X if and only if X \ {x} is convex.

Theorem 4.25. (Strasziewicz, [1, Theorem 18.6]) Let X be closed convex. Then the set of exposed points of X
is dense in the set of its extreme points.

Example: Let R2 ⊃ X = ([−1, 0]× [−1, 1]) ∪B1 be the union of a rectangle and a half-disc. The faces of X
are

� X,

� {−1} × [−1, 1], [−1, 0]× {−1}, [−1, 0]× {1},

� {(x, y)}, where x ≥ 0 and x2 + y2 = 1,

� ∅.

Of these, the zero-dimensional faces {(0,−1)} and {(0, 1)} are not exposed. They can be represented as limits
of exposed points, however.

Lemma 4.26. Intersections of faces and faces of faces are again faces.

Proof. Let F ⊂ X be a face of X and F ′ ⊂ F a face of F . Let l ⊂ X be a line segment such that ri l ∩ F ′ ̸= ∅.
Then ri l ∩ F ̸= ∅, because F ′ ⊂ F . Hence l ⊂ F , because F is a face of X. But then l ⊂ F ′, because F ′ is a
face of F . Hence F ′ is a face of X.

Let F1, F2 be faces of X, and let F = F1 ∩ F2. Let l ⊂ X be a line segment such that ri l ∩ F ̸= ∅. Then
ri l ∩ Fi ̸= ∅ for i = 1, 2, because F ⊂ Fi. Hence l ⊂ Fi, because Fi are faces of X. But then l ⊂ F , and F is
also a face of X.

Definition 4.27. Let X be a closed convex set and x ∈ X. The minimal face of x in X is the smallest face of
X containing x.

It is given by the intersection of all faces containing x. A face F is the minimal face of x if and only if
x ∈ ri F . The set X then decomposes into a disjoint union of the relative interiors of its faces.

We shall now investigate when a closed convex set possesses extremal points. We need the following auxiliary
result.

Lemma 4.28. Let X be a closed convex set. Suppose there exists a point z ∈ X and a non-zero vector v such
that the ray {z + αv |α ≥ 0} is contained in X. Then for every x ∈ X, the ray {x+ αv |α ≥ 0} is contained in
X.
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Proof. Let β > 0 be arbitrary, and set α = β
1−λ for λ ∈ (0, 1). Then we have

λx+ (1− λ)(z + αv) = λx+ (1− λ)z + βv ∈ X

for all λ ∈ (0, 1). Let λ → 1, then by closedness of X we also get x+ βv ∈ X.

Lemma 4.29. Let X be a non-empty closed convex set. Then X has extremal points if and only if X does not
contain a line (a 1-dimensional affine subspace).

Proof. Suppose X contains a line l. Let z, w ∈ l be two distinct points and set v = z − w. By the previous
lemma, for every x ∈ X we have {x+αv |α ∈ R} ⊂ X. Hence through every point of X there runs a line which
belongs to X. Therefore X cannot have extreme points.

Suppose now thatX does not contain a line. We proceed by induction over the dimension ofX. If dimX = 0,
then X is a singleton and contains an extremal point. Suppose we have shown the assertion of the lemma for
all convex sets X with dimX < d. Let dimX = d. Choose a point x ∈ X and consider a line l through x which
lies in the affine hull of X. Since l ̸⊂ X, there exists a point y ∈ l which lies on the relative boundary of X. Let
H be an affine hyperplane separating y from X properly. Then X ′ = H ∩X is a non-empty closed convex set
of dimension dimX ′ < d, and it does not contain a line. By the induction hypothesis, X ′ has extremal points.
But these points have then also to be extremal points of X.

Lemma 4.30. A compact convex set equals the convex hull of its extreme points.

Proof. Clearly the convex hull of the extremal points is a subset of the set itself. We then have to show that
every point is a convex combination of extremal points.

We also proceed by induction on the dimension. If X = ∅ or dimX = 0, then the assertion is evident.
Assume the assertion is proven for dimX < d, and let X be a compact convex set of dimension d. Let x ∈ X
be a point, and let l be a line through x which lies in the affine hull of X. Then l ∩ X must be a closed line
segment, because X is compact. The end-points y, z of this segment lie on the relative boundary of X and x
is a convex combination of y, z. Let Hy, Hz be affine hyperplanes which separate y, z from X properly, and let
Xy = Hy ∩X, Xz = Hz ∩X. The sets Xy, Xz are convex, compact, and have dimension strictly smaller than
d. Hence y, z are convex combinations of extremal points of Xy, Xz, respectively, by the induction hypothesis.
But these extremal points are also extremal points of X. Hence y, z are convex combinations of extremal points
of X, and x is also such a combination.

Now we shall consider the extremal points of polyhedral sets.

Lemma 4.31. A polyhedral set has a finite number of extremal points. In particular, a bounded polyhedral set
is a polytope.

Proof. Let X = {x ∈ Rn |Ax ≤ b} be a polyhedral set, where b ∈ Rm, and let x ∈ X be an extremal point of
X. Let a1, . . . , am be the rows of A. Let I = {i ∈ {1, . . . ,m} | aix = bi} be the index set of the active inequality
constraints. In particular, we have aix < bi for all i ̸∈ I. Then among the row vectors ai, i ∈ I, there are n
linearly independent vectors. Indeed, suppose there exists a non-zero vector v ∈ Rn such that aiv = 0 for all
i ∈ I. Then there exists ε > 0 such that x± εv ∈ X. This contradicts the extremality of x.

Thus there exist n linearly independent row vectors ai1 , . . . , ain of A such that aijx = bij for all j = 1, . . . , n.
On the other hand, for any linearly independent set of n row vectors ai1 , . . . , ain of A the system aijx = bij ,
j = 1, . . . , n, uniquely determines a solution x. If this point x is in X, then it is an extremal point of X.

Since there exists only a finite number of sets of n linearly independent row vectors of A, the number of
extremal points of X must also be finite.

In principle one can therefore compute all extremal points of a polyhedral set by checking for each set of n
linearly independent row vectors ai1 , . . . , ain of A whether the solution of the system aijx = bij , j = 1, . . . , n is
feasible.

Finally, we consider extremal points of intersections of convex sets with affine subspaces.

Lemma 4.32. Let X ⊂ Rn be a closed convex set and let A be an affine subspace of dimension m. Then every
extreme point of C = X ∩A is located in a face of X of dimension at most n−m.

23



Efficient Methods in Optimization Fall 2022

Proof. Let x∗ ∈ C be an extreme point, let F ⊂ X be the minimal face of X containing x∗, and let k = dim F .
Then x∗ ∈ ri F . We have dimF ∩ A ≥ m + k − n. Since x∗ ∈ ri (F ∩ A) ⊂ C and x∗ is extremal in C we get
dimF ∩A = 0, and therefore k ≤ n−m.

By a similar reasoning, if the minimal face of x∗ in C has dimension m′, then dimF ∩A = m′ and dim F =
k ≤ n+m′ −m.

4.7 Polar

Definition 4.33. Let X ⊂ Rn be a closed convex set containing the origin. The polar X◦ of X is defined as
the set

{p ∈ (Rn)∗ | ⟨x, p⟩ ≤ 1 ∀ x ∈ X}.

It follows that (X◦)◦.
Clearly if X ⊂ X ′ are closed convex sets containing the origin, then (X ′)◦ ⊂ X◦.

Lemma 4.34. Let X ⊂ Rn be a closed convex set containing the origin. Then X◦ is bounded if and only if the
origin is an interior point of X.

Proof. We have 0 ∈ intX if and only if there exists r > 0 such that the ball of radius r around the origin is
contained in X. But this is equivalent to the condition that X◦ is contained in the ball of radius r−1 around
the origin.

Definition 4.35. Let X be a closed convex set containing the origin, and let F be a face of X. The comple-
mentary face F ∗ ⊂ X◦ is defined to be the set of points

{p ∈ X◦ | ⟨x, p⟩ = 1 ∀ x ∈ F}.

Let X ⊂ Rn be a compact convex set containing the origin in its interior. Then the sets ∂X, ∂X◦, {(x, p) ∈
X ×X◦ | ⟨x, p⟩ = 1} are homeomorphic to the sphere Sn−1. While this is evident for the first two sets due to
their compactness, the last one is in a continuous bijection with the 1-level set of the distance function to X.

4.8 Cones

In this section we consider properties of convex cones and present the most important cones for conic optimiza-
tion.

4.8.1 Basic properties

Definition 4.36. A subset C ⊂ V of a real vector space is called conic set if for every x ∈ C and every λ ≥ 0
we have λx ∈ C. A convex conic set is called a cone.

A cone is called regular (also proper) if it is closed, has non-empty interior, and contains no lines.

Clearly intersections of conic sets are again conic sets. Therefore intersections of cones are again cones.

Examples:

� the full space V ,

� linear subspaces of V ,

� closed linear half-spaces,

� polyhedral cones (finite intersections of closed linear half-spaces),

� simplicial cones (linear bijective images of an orthant).

Here closed linear half-spaces are sets of the form {x ∈ V | a(x) ≤ 0}, where a is a non-constant linear functional
on V .
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Definition 4.37. Let x1, . . . , xk be points in a vector space V . Then
∑k

i=1 λixi is called a conic combination
of the points x1, . . . , xk if λi ≥ 0, i = 1, . . . , k.

The convex conic hull of a set X is the set of all conic combinations of elements of X.
The convex conic hull of X is the smallest convex cone which contains X, namely the intersection of all

convex cones which contain X.

Definition 4.38. Let K be a closed convex cone containing no line. A point x ∈ K is said to lie on an extreme
ray if for every x1, x2 ∈ K such that x1 + x2 = x there exist nonnegative scalars λ1, λ2 such that x1 = λ1x,
x2 = λ2x.

Definition 4.39. Let X be a convex set. The recession cone of X is the set of vectors v such that for all x ∈ X
and all α ≥ 0 we have x+ αv ∈ X.

If the set X is defined in an affine space, then the recession cone is a subset of the underlying vector space.

Lemma 4.40. Let P = {x |Ax ≤ b} be a non-empty polyhedral set. The recession cone of P is the polyhedral
cone K = {v |Av ≤ 0}.

Proof. Let v ∈ K and x ∈ P . Then A(x+ αv) = Ax+ αAv ≤ Ax ≤ b for all α ≥ 0. Hence v is in the recession
cone of P .

Let v be in the recession cone of P , and let x ∈ P . Then A(x+ αv) ≤ b for all α ≥ 0. Hence we must have
Av ≤ 0, and v ∈ K.

Projective transformations: Cones allow us to define another class of transformations which preserve
convexity.

Definition 4.41. Let X ⊂ A be a convex subset of an affine space with underlying vector space V , and let
x0 ∈ A be an arbitrary point. The set {(α, αu) ∈ R × V |α ≥ 0, x0 + u ∈ X} is called the homogenization of
the set X.

The homogenization is a cone, and different choices of the point x0 lead to linearly isomorphic homogeniza-
tions, so we may loosely speak of the homogenization of X.

Definition 4.42. Two convex sets X,X ′ ⊂ A of an affine space A are called projectively isomorphic if their
homogenizations are linearly isomorphic.

One set is then obtained by a projective transformation from the other.

Example: The open unit disc Bo
1 = {(x, y) ∈ R2 |x2 + y2 < 1} is projectively isomorphic to the unbounded

set {(x, y) ∈ R2 | y > x2}. Indeed, choosing x0 as the origin of R2, the homogenizations of these two sets are
given by the cones

K1 = {(0, 0, 0)} ∪ {(x1, x2, x3) |x1 >
√
x2
2 + x2

3}, K2 = {(0, 0, 0)} ∪ {(x1, x2, x3) |x1 > 0, x1x3 > x2
2}.

However, the linear map given by

1 1 0
0 0 1
1 −1 0

 takes K1 to K2.

4.8.2 Dual cones

Definition 4.43. Let K ⊂ V be a cone. The set K∗ = {y ∈ V ∗ | ⟨y, x⟩ ≥ 0 ∀ x ∈ K} is called the dual cone to
K.

Here V ∗ is the vector space dual to V , i.e., the space of linear functionals on V , and ⟨y, x⟩ denotes the value
of the functional y on the vector x.

Alternatively, if ⟨·, ·⟩ is a scalar product on V , then K∗ can be seen as a subset of V , with the same formula
for the definition.

For finite-dimensional vector spaces, we may canonically identify V with the dual (V ∗)∗ to the dual space.
Namely, x ∈ V is identified with the linear functional p 7→ ⟨p, x⟩ on V ∗.

Remark: For infinite-dimensional complete normed vector spaces (Banach spaces), ”linear functional” is
replaced by ”continuous linear functional”, and V is in general only a subset of (V ∗)∗.
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The dual cone hence consists of all linear functionals on V which take on only nonnegative values on K. It
is not hard to see that K∗ is a closed convex cone.

Lemma 4.44. Let K be a closed convex cone. Then (K∗)∗ = K.

Proof. For every x ∈ K and p ∈ K∗ we have ⟨p, x⟩ ≥ 0. Hence K ⊂ (K∗)∗.
Suppose for the sake of contradiction that there exists y ∈ (K∗)∗ such that y ̸∈ K. Then y has a positive

distance from K, since K is closed, and can be strongly separated from K. Therefore there exists a linear
functional p ∈ V ∗ such that ⟨p, y⟩ < 0 and ⟨p, x⟩ ≥ 0 for all x ∈ K. From the second condition it follows that
p ∈ K∗. But this is in contradiction with y ∈ (K∗)∗. Thus (K∗)∗ ⊂ K.

Lemma 4.45. Let K be a closed convex cone. Then K has non-empty interior if and only if K∗ does not
contain a line, and K does not contain a line if and only if K∗ has non-empty interior.

Proof. Let K have empty interior. Then K is contained in a proper linear subspace, and there exists a non-zero
linear functional p ∈ V ∗ such that ⟨p, x⟩ = 0 for all x ∈ K. Then K∗ contains the line {αp |α ∈ R}.

On the other hand, let p ∈ V ∗ be a non-zero functional such that the line {αp |α ∈ R} is contained in K∗.
Then ⟨p, x⟩ ≥ 0 and ⟨−p, x⟩ ≥ 0, and hence ⟨p, x⟩ = 0 for all x ∈ K. Hence K is contained in a proper linear
subspace and has empty interior.

The second assertion is proved in a similar way.

Therefore the dual cone K∗ of a closed convex cone K is regular if and only if K itself is regular.
We now consider how K∗ behaves with respect to linear isomorphisms. We introduce the notion of the

adjoint map. If A : V → W is a linear map between vector spaces, then its adjoint A∗ : W ∗ → V ∗ is the unique
linear map satisfying ⟨y,Ax⟩ = ⟨A∗y, x⟩ for all x ∈ V , y ∈ W ∗. Here ⟨·, ·⟩ is the dual pairing between W ∗ and
W on the left-hand side and between V ∗ and V on the right-hand side of the equation.

Note that if a basis {e1, . . . , en} is given in V , V ∗ is equipped with the dual basis {e1, . . . , en} (i.e., ⟨ei, ej⟩ =
δij with δij = 0 for i ̸= j and δij = 1 for i = j being the Kronecker symbol), and the linear automorphism A is
expressed as a real n× n matrix in this basis, then A∗ expressed in the dual basis will have coordinate matrix
AT .

Lemma 4.46. Let K ⊂ V be a convex cone, and let K ′ = A[K] be its image under a linear isomorphism A of
V . Then (K ′)∗ = (A∗)−1[K∗].

Proof. We have

(K ′)∗ = {y ∈ V ∗ | ⟨x, y⟩ ≥ 0 ∀ x ∈ K ′} = {y ∈ V ∗ | ⟨Ax, y⟩ ≥ 0 ∀ x ∈ K}
= {y ∈ V ∗ | ⟨x,A∗y⟩ ≥ 0 ∀ x ∈ K} = {y ∈ V ∗ |A∗y ∈ K∗} = (A∗)−1[K∗].

Lemma 4.46 allows to compute the dual cone of a cone K if the dual of an isomorphic cone is already known.
The following result is helpful for computing the dual cone if such information is not available.

Lemma 4.47. Let K ⊂ V be a regular convex cone. A non-zero point y ∈ V ∗ lies on the boundary of K∗ if
and only if the kernel H of y is a supporting hyperplane to K at some non-zero boundary point x ∈ ∂K such
that K lies in the closed half-space with respect to H where y assumes nonnegative values.

Proof. First note that y is by definition a linear functional on V . If y ̸= 0, then its kernelH = {x ∈ V | ⟨x, y⟩ = 0}
is indeed a linear subspace of V of codimension 1.

Let y ∈ ∂K∗ \ {0}. The linear functional y is then non-constant on V , and in particular on K. Then
⟨x, y⟩ > 0 for all x in the interior of K, otherwise there would exist x ∈ K such that ⟨x, y⟩ < 0. Hence the
interior of K lies in the open half-space delineated by the hyperplane H where y assumes positive values.

Since y ∈ ∂K∗, there exists a sequence of points yk ∈ V \K∗ which converges to y. To every such yk ̸∈ K∗

we find a point xk ∈ K such that ⟨xk, yk⟩ < 0. Since xk ̸= 0, we may normalize it such that ||xk|| = 1 in some
fixed Euclidean norm on V . Then there exists a subsequence of {xk} which converges to some point x ∈ K of
unit norm, because the intersection of the unit sphere with K is compact. By continuity we have ⟨x, y⟩ ≤ 0 and
hence ⟨x, y⟩ = 0, because x ∈ K and y ∈ K∗. Therefore x ∈ H, and H separates {x} properly from K. This
proves one direction.
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Let now x ∈ ∂K be non-zero, and let H be a hyperplane separating {x} from K properly. Then K lies in
one of the closed half-spaces delineated by H. Let y ∈ V ∗ be non-zero such that H is the kernel of y and such
that y assumes nonnegative values on K. Then y ∈ K∗ by definition. However, ⟨x, y⟩ = 0, because x ∈ H, and
x is not constant as a linear functional on V ∗. Therefore y ̸∈ intK∗, which shows the other direction.

In order to find the boundary of K∗, we hence have to compute all hyperplanes which support K at non-zero
boundary points. If the boundary ∂K \ {0} is smooth, then at every non-zero boundary point of K there exists
exactly one such hyperplane, namely the tangent plane to ∂K. In this case ∂K∗\{0} is comprised of the normals
to all tangent planes to ∂K \ {0}.
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