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15 Sums of squares and moment relaxations

In this section we deal with optimization problems whose feasible sets are sets of polynomials satisfying certain
positivity constraints. The decision variables are hence the coefficient vectors of these polynomials. The vector
spaces underlying the optimization problems are thus essentially finite-dimensional function spaces.

References on semi-definite relaxations in polynomial optimization are [1, 3].

15.1 Positive polynomials and sums of squares

A real polynomial in n real variables x1, . . . , xn is a function x = (x1, . . . , xn)
T 7→

∑
α∈Nn cαx

α, where the
sum is over a finite subset of the discrete set Nn of multi-indices α = (α1, . . . , αn), cα are real numbers, and
xα =

∏n
i=1 x

αi
i .

Definition 15.1. The set Pd,n of positive polynomials in n variables of degree d is defined as the set of
homogeneous polynomials p : Rn → R of degree d such that p(x) ≥ 0 for all x ∈ Rn.

Clearly d has to be even in order for Pd,n to contain a non-zero element. The set Pd,n is a closed convex
cone.

In some situations optimization problems contain conic constraints of the form p(x) ∈ Pd,n. Here the decision
variables are the coefficients of the polynomial p. The variable x is just a dummy variable denoting the argument
of the polynomials in question. The constraint is concerning the polynomial p as a whole, without referencing
specific values of x.

The constraint p ∈ Pd,n is in general hard to check. A common relaxation of this constraint in polynomial
optimization is to replace it by the stronger constraint x ∈ Σd,n.

Definition 15.2. The set Σd,n of sum of squares (SOS) polynomials in n variables of degree d is defined as the set
of homogeneous polynomials p : Rn → R of degree d which can be represented as a finite sum p(x) =

∑
k q

2
k(x),

where qk(x) are homogeneous polynomials of degree d/2 in n variables.

Clearly
Σd,n ⊂ Pd,n.

Theorem 15.3. Let n, d be positive integers, d even. The equality Σd,n = Pd,n holds if and only if min(d, n) ≤ 2
or if (d, n) = (4, 3).

We shall prove only the cases d = 2 and n = 2. The case (d, n) = (4, 3) is more involved and has been proven
by Hilbert in 1888.

d = 2. A homogeneous polynomial of degree 2 is a quadratic form, which can be written as p(x) = xTAx
with A a real symmetric matrix. The polynomial p is in P2,n if and only if the corresponding matrix A is positive
semi-definite. This in turn is the case if and only if there exists a matrix B ∈ Rk×n such that A = BTB.

On the other hand, p ∈ Σ2,n if and only if p(x) =
∑k

j=1 q
2
j (x), where each qj is a linear homogeneous function,

i.e., qj(x) = cTj x for some vector cj ∈ Rn. We then get p(x) =
∑k

j=1(c
T
j x)

2 = xT
(∑k

j=1 cjc
T
j

)
x = xTCTCx,

where C ∈ Rk×n is a matrix containing the vectors cj as its rows.
Thus the two conditions are equivalent.

n = 2. A homogeneous polynomial of degree n in two variables x, y can be written as p(x, y) =
∑d

k=0 ckx
kyd−k.

We suppose that the polynomial is not identically zero (in which case it is trivially in both Pd,2 and Σd,2). Then
we may suppose, by making a linear change of coordinates if necessary, that cd ̸= 0. Let z1, . . . , zd be the roots
of the polynomial

∑d
k=0 ckz

k. Then this polynomial factorizes as cd
∏d

k=1(z − zk). Accordingly, we obtain

p(x, y) = cd

d∏
k=1

(x− zky). (1)

Suppose now that p ∈ Pd,2. Then cd = p(1, 0) > 0 and can be written as a square cd = (
√
cd)

2. The multiplicity
of every real root zk must be even, otherwise p becomes negative near the root (x, y) = (zk, 1). The corresponding
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factors in (1) hence group into squares. For every complex root zk = ak + ibk there exists a complex conjugate
root zk′ = z̄k = ak − ibk, and the corresponding product can be written as

(x− zky)(x− zk′y) = x2 − 2akxy + (a2k + b2k)y
2 = (x− aky)

2 + (bky)
2.

The polynomial (1) is then a sum of squares, which shows p ∈ Σd,2.

Example: The Motzkin polynomial p(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2 is in P6,3 by the arithmetic-
geometric inequality, but not in Σ6,3.

That not every nonnegative polynomial can be represented as a sum of squares of polynomials with lower
degree was already known to Hilbert in the 19th century. At the 2nd ICM in 1900 he posed the following
question:

Hilberts 17th problem: Can every nonnegative polynomial be represented as a sum of squares of rational
functions?

The question was positively answered by Artin in the 20s.

Consider a real symmetric n× n matrix A and the quartic polynomial

p(x) =

n∑
i,j=1

Aijx
2
ix

2
j

on Rn. We have p ∈ P4,n if and only if the quadratic polynomial
∑n

i,j=1 Aijxixj = xTAx takes nonnegative
values for all x ∈ Rn

+, i.e., if the matrix A is copositive. This is NP-hard to decide, however.
To detect whether a given polynomial is in the cone P2d,n is therefore in general a difficult problem. In

contrast to this stands the easy algorithmic accessibility of the cone of sums of squares Σ2d,n.

Let us devise an algorithm to check whether a given polynomial p is an element of Σ2d,n. To this end, form
the vector x of monomials

∏n
k=1 x

αk

k of degree d in the variables xk. The exponents αk are hence nonnegative
integers which sum to d. Let N be the size of the vector x.

Suppose there exists a positive semi-definite matrix A ∈ SN
+ such that p(x) = xTAx. Factor the matrix A

as A = BTB with B ∈ Rk×N , and let bj be the rows of B. Then we obtain

p(x) = xTBTBx =

k∑
j=1

⟨bj ,x⟩2,

and p has been represented as a sum of squares of k polynomials qj(x) = ⟨bj ,x⟩ of degree d. Thus p ∈ Σ2d,n.
On the other hand, suppose that p ∈ Σ2d,n. Then there exist k homogeneous polynomials q1(x), . . . , qk(x)

of degree d such that p(x) =
∑k

j=1 q
2
j (x). Every polynomial qj(x) can be written as a scalar product ⟨cj ,x⟩ for

some vector cj ∈ RN . Let C ∈ Rk×N be the matrix whose rows are the vectors cj . Then we get

p(x) =

k∑
j=1

⟨cj ,x⟩2 = xTCTCx,

and the polynomial p has been written as xTAx with A positive semi-definite.
We obtain the following result.

Lemma 15.4. A homogeneous polynomial p of degree 2d in n variables x1, . . . , xn is an element of the cone
Σ2d,n if and only if there exists a positive semi-definite real symmetric N ×N matrix A such that p(x) = xTAx.

Apart from the conic constraint A ∈ SN
+ , this imposes a finite number of equality relations on A which are

jointly linear in the coefficients of p and the elements of A. The existence of such a matrix A can hence be
incorporated as a constraint into a semi-definite program involving the coefficients of the polynomial p.

If we want to check whether a single polynomial p is a sum of squares, it may be not necessary to check the
condition in Lemma 15.4 for the full monomial basis vector x. We can often reduce the size of A by using the
following object.
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Definition 15.5. Let p =
∑

α cαx
α be a polynomial in n variables. The Newton polytope Np of p is the convex

hull of all points α ∈ Nn such that cα ̸= 0.
We have the following result.

Lemma 15.6. Let p(x) =
∑

k qk(x)
2 be a sum of squares of polynomials qk. Then Np =

⋃
k(2Nqk). In

particular, Nqk ⊂ 1
2Np for all k.

Proof. For a given polynomial q, we shall first investigate the relation between the Newton polytopes Nq, Nq2 .
We claim that Nq2 = 2Nq = Nq +Nq.

Indeed, if q(x) =
∑

α cαx
α, then

q2(x) =
∑
β,γ

cβcγx
β+γ . (2)

Since cβcγ ̸= 0 if and only if cβ ̸= 0 and cγ ̸= 0, the points generating Nq2 are obtained as sums of pairs of
points generating Nq. This proves that Nq2 ⊂ 2Nq. Let us now show the converse inclusion. It suffices to prove
that the extreme points of 2Nq are in Nq2 . Clearly the extreme points of 2Nq are of the form 2α, where α is
an extreme point of Nq. The point 2α cannot be written as a sum 2α = β + γ for distinct points β, γ ∈ Nq,

otherwise we would have α = β+γ
2 , contradicting the extremality of α in Nq. Thus the coefficient in q2 at c2α

in (2) equals c2α, because only the values β = α, γ = α sum to 2α. It follows that 2α ∈ Nq2 .
Clearly we have that Np ⊂

⋃
k Nq2k

=
⋃

k(2Nqk). Let us show the converse inclusion.

It suffices to show that the extreme points of
⋃

k(2Nqk) are in Np. Any such extreme point α cannot be
non-extreme in 2Nqk for any k, otherwise it can be represented as a non-trivial convex combination of points
from 2Nqk and hence from

⋃
k(2Nqk). Thus α is extreme in every 2Nqk in which it is contained. But then the

coefficient at xα in q2k is zero if α ̸∈ 2Nqk and it is positive if α ∈ 2Nqk . Hence the coefficient at xα in p is also
positive, and α ∈ Np.

This leads to the following result.

Corollary 15.7. Let p be a polynomial and Np its Newton polytope. If p is a sum of squares of polynomials,
then the extreme points of Np must be even. Equivalently, the extreme points of 1

2Np are integer.

Example: We want to check whether p(x, y) =
∑2d

j=0 cjx
jy2d−j ∈ Σ2d,2. Let us form the vector x =

(xd, xd−1y, . . . , yd)T of length N = d + 1. We shall index the elements of x as well as the elements of N × N

matrices from 0 to d for convenience. Then we have xTAx =
∑d

j=0 Aijxixj =
∑n

i,j=0 Aijx
(d−i)+(d−j)yi+j =∑2d

k=0 x
2d−kyk

∑
i,j:i+j=k Aij . The condition p(x) = xTAx can then be written as∑

i,j:i+j=k

Aij = ck, ∀ k = 0, . . . , 2d. (3)

In other words, the sums of the elements of A on the skew-diagonals have to equal the coefficients of the
polynomial p. We get the following result.

Lemma 15.8. A polynomial p(x, y) =
∑2d

j=0 cjx
jy2d−j is nonnegative if and only if there exists a positive

semi-definite matrix A ∈ Sd+1
+ such that (3) holds.

Example: We want to check whether the polynomial

p(x, y, z) = c400x
4 + c310x

3y + · · ·+ c013yz
3 + c004z

4

is in Σ4,3. Let us form the vector x = (x2, y2, z2, yz, xz, xy)T of length N = 6. Then we have

xTAx = A11x
4 +A22y

4 +A33z
4 + (2A12 +A66)x

2y2 + (2A13 +A55)x
2z2 + (2A23 +A44)y

2z2 + (2A14 + 2A56)x
2yz

+ (2A25 + 2A46)xy
2z + (2A36 + 2A45)xyz

2 + 2A15x
3z + 2A16x

3y + 2A24y
3z + 2A26xy

3 + 2A34yz
3 + 2A35xz

3.
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The condition p(x) = xTAx can then be written as

A11 = c400,

A22 = c040,

A33 = c004,

2A12 +A66 = c220,

...

2A34 = c013,

2A35 = c103.

The existence of a positive semi-definite matrix A ∈ S6
+ satisfying these linear equations is then equivalent to

the inclusion p ∈ Σ4,3 and hitherto to the nonnegativity of the polynomial p(x, y, z).

Example: Let us again consider the copositive cone Cn of all quadratic forms A ∈ Sn which are nonnegative
on the nonnegative orthant. We have seen above that A ∈ Cn if and only if pA(x) =

∑n
i,j=1 Aijx

2
ix

2
j ∈ P4,n.

Therefore the set
K0 = {A ∈ Sn | pA ∈ Σ4,n}

is an inner approximation of the cone Cn. Let us compute this approximation.

Form the vector x = (x2
1, . . . , x

2
n, x1x2, x1x3, . . . , xn−1xn)

T ∈ RN with N = n(n+1)
2 . We then have A ∈ K0 if

and only if there exists a matrix A ∈ SN
+ such that pA(x) = xTAx. Let us subdivide A into 4 blocks, according

to the subdivision of x into a subvector x1 of length n and a subvector x2 of length n(n−1)
2 . Then the coefficients

at the monomials x4
i and x2

ix
2
j in the polynomial xTAx depend only on the elements of the block A11 and the

diagonal elements of the block A22. We can therefore assume that all other elements of the matrix A are zero,
and this matrix is of the form

A = diag(B, c12, c13, . . . , cn−1,n)

for some matrix B ∈ Sn
+ and some nonnegative scalars cij , 1 ≤ i < j ≤ n. We get

xTAx =

n∑
i,j=1

Bijx
2
ix

2
j +

∑
i<j

cijx
2
ix

2
j .

Comparing coefficients with pA(x) =
∑n

i,j=1 Aijx
2
ix

2
j we obtain that the matrix A is in K0 if and only if there

exist B ∈ Sn
+ and cij ≥ 0, 1 ≤ i < j ≤ n, such that diagA = diagB and Aij = Bij + cij for all i < j. Thus

K0 = Sn
+ +Nn, where Nn is the cone of element-wise nonnegative matrices with zero diagonal (it is easily seen

that this last condition can be dropped).
Diananda proved the following result in 1962:

Theorem 15.9. The equality Cn = Sn
+ +Nn holds if and only if n ≤ 4.

We can strengthen the inner approximation K0 by defining the following hierarchy of cones, parameterized
by an integer r ≥ 0.

Kr =

A ∈ Sn |

 n∑
j=1

x2
j

r

· pA(x) ∈ Σ4+2r,n

 .

We have the following result:

Theorem 15.10. Let A ∈ int Cn. Then there exists an r ≥ 0 such that A ∈ Kr′ for all r′ ≥ r.

The approximations of Cn by Kr are increasingly tight, but become also more complex.
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15.2 Sums of squares relaxations for polynomial optimization problems

Let us now consider how the approximation of the cone Pd,n of nonnegative polynomials by the cone Σd,n of
sums of squares polynomials allows to approximate difficult optimization problems with polynomial data by
easily solvable semi-definite programs.

Definition 15.11. A set K ⊂ Rn is called basic semi-algebraic if it is of the form

K = {x | fi(x) = 0, gj(x) ≤ 0} (4)

for some polynomials fi, gj : Rn → R.
A set K ⊂ Rn is called semi-algebraic if it is a union of a finite number of basic semi-algebraic sets.
Our general optimization problem will be to find the minimum of a polynomial on a semi-algebraic set K:

min
x∈K

f0(x).

Minimizing over a union K =
⋃

j Kj of sets is equivalent to minimizing over each set Kj and taking the minimum
of the results. Therefore we may assume without loss of generality that K is already a basic semi-algebraic set
given by (4).

In order to reformulate the problem we introduce the cone Pd,K of polynomials of degree not exceeding d
which are nonnegative on the basic semi-algebraic set K. This is a finite-dimensional closed convex cone. Then
we may write above problem as

max τ : f0(x)− τ ∈ Pd,K ,

where d is not smaller than the degree of f0.
The cone Pd,K is in general difficult to describe. We replace it by the cone Σd,K consisting of all polynomials

p(x) of degree not exceeding d which can be represented as a sum

p(x) = σ0(x) +
∑
i

pi(x)fi(x)−
∑
j

σj(x)gj(x), (5)

where pi(x) are arbitrary polynomials and σ0(x), σj(x) are sums of squares of polynomials. Clearly every
polynomial in Σd,K is nonnegative on K and hence in Pd,K , because every term in the above sum is nonnegative
on K. Moreover, the above decomposition yields equality relations which are jointly linear in the coefficients of
p and the unknown polynomials σ0, pi, σj . Therefore the inclusion p ∈ Σd,K can be expressed by a finite number
of semi-definite conic and linear equality constraints. The cone Σd,K is hence a semi-definite representable inner
approximation of Pd,K , and the approximating problem

max τ : f0(x)− τ ∈ Σd,K

is a semi-definite program.
We may use more complicated representations of p to define the cone Σd,K by including terms containing

products of polynomials gj defining the inequality constraints. For example, we may define Σd,K by the set of
all polynomials which are representable as a sum

p(x) = σ0(x) +
∑
i

pi(x)fi(x)−
∑
j

σj(x)gj(x) +
∑
i,j

σi,j(x)gi(x)gj(x),

where σi,j are also SOS polynomials. We may include also higher order products of the polynomials gj as basis
functions.

We have the following result.

Theorem 15.12 (Putinar 1993). Let K be compact and let p be strictly positive on K. Then there exists d
such that p ∈ Σd,K .

This result has the following consequence.

Theorem 15.13 (Lasserre 2001). Let K be compact. Then the sequence of SOS relaxations described above is
asymptotically exact, i.e., the optimal value of the relaxations tends to the optimal value of the original problem
as d → +∞.
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Example: We wish to solve the problem

minx+ y : x ≥ 0, x2 + y2 = 1. (6)

The set K = {(x, y) |x ≥ 0, x2 + y2 = 1} is a semi-circle and is already basic semi-algebraic. Choose d = 3.
We approximate the set P3,K of cubic polynomials which are nonnegative on the semi-circle by the set Σ3,K of
polynomials which are expressible in the form

p(x, y) = σ0(x, y) + l(x, y)(x2 + y2 − 1) + σ1(x, y)x,

where σ0, σ1 are sums of squares polynomials of degree 2 and l is a linear polynomial. Let us introduce the
vector of monomials x = (x, y, 1)T of degree not exceeding 1. Then p ∈ Σ3,K if and only if p can be written as

p(x, y) =xTA0x+ lTx · (x2 + y2 − 1) + (xTA1x) · x
=(A1

11 + lx)x
3 + (2A1

12 + ly)x
2y + (A0

11 + 2A1
13 + l1)x

2 + (A1
22 + lx)xy

2 + (2A0
12 + 2A1

23)xy

+ (2A0
13 +A1

33 − lx)x+ lyy
3 + (A0

22 + l1)y
2 + (2A0

23 − ly)y +A0
33 − l1,

where l = (lx, ly, l1)
T ∈ R3 and A0, A1 ∈ S3

+.
Hence the semi-definite program approximating the original problem can be written as

max
A0,A1∈S3

+

τ : A1
11 + lx = 2A1

12 + ly = A0
11 + 2A1

13 + l1 = A1
22 + lx = 2A0

12 + 2A1
23 = ly = A0

22 + l1 = 0,

2A0
13 +A1

33 − lx = 2A0
23 − ly = 1, A0

33 − l1 = −τ.

Using the linear equalities to eliminate variables this leads to the equivalent SDP

max−(A0
33 +A0

11 + 2A1
13) :

A0
11 A0

12 A0
13

A0
12 A0

11 + 2A1
13

1
2

A0
13

1
2 A0

33

 ⪰ 0,

A1
11 0 A1

13

0 A1
11 −A0

12

A1
13 −A0

12 1−A1
11 − 2A0

13

 ⪰ 0.

Its solution yields the optimal value −1.

The size of the monomial bases and hence the matrices appearing in the SDPs relaxing polynomial opti-
mization problems quickly grows with the degree d of the relaxation. Several simplifications have been proposed
which lower the complexity at the cost of a worsening the approximation. The main idea is to replace a
semi-definiteness constraint A ⪰ 0 by stronger, but simpler sufficient conditions.

Diagonally dominant sums of squares (DSOS) use the criterion of diagonal dominance

Aii ≥
∑
j ̸=i

|Aij | ∀ j.

This condition consists of linear inequalities and hence leads to a linear program.
Scaled diagonally dominant sums of squares (SDSOS) use the condition that there exists a positive definite

diagonal matrix such that the scaled matrix DAD is diagonally dominant. It can be shown that this condition
is equivalent to the decomposability of A into a sum of positive semi-definite matrices with non-zero elements
occurring only in a 2 × 2 principal submatrix for each of the summands. Since positive semi-definiteness of a
2× 2 matrix is described by a conic quadratic inequality, this approximation boils down to an SOCP.

15.3 Moment relaxations

Let µ be a nonnegative measure on Rn with support suppµ. The set of nonnegative measures with support
in some set K ⊂ Rn forms a convex cone. If K consists of more than a finite number of points, then this
cone has infinite dimension. The extremal measures in this cone are given by the multiples of the δ-functions
µ(x) = δ(x− x̂), where x̂ ∈ K. The measure δ(x− x̂) has support {x̂} and evaluates on functions as∫

Rn

f(x)δ(x− x̂) dx = f(x̂).

Let Rn be indexed by the coordinates x1, . . . , xn.
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Definition 15.14. Let α = (α1, . . . , αn) be a vector of nonnegative integers. The moment mα of the measure
µ is the value of the integral

mα(µ) =

∫
Rn

xα1
1 · xα2

2 · · · · · xαn
n µ(x) dx =

∫
Rn

xαµ(x) dx.

Here and in the sequel we shall use the notation xα for the product
∏n

i=1 x
αi
i .

A given moment mα is a linear functional on the cone of measures. Not all moments may exist for a given
measure, because the integral may diverge. For the δ-function µ(x) = δ(x− x̂) all moments exist, however, and
are given by mα(µ) = x̂α.

Since we work only with finite-dimensional objects, we shall fix a degree d and consider only moments mα

for which |α| =
∑n

i=1 αi does not exceed d. The set of such index vectors α has finite cardinality N and gives
rise to an N -dimensional moment vector m(µ) = (mα(µ))α:|α|≤d.

The moment cone Md ⊂ RN is then the set of all vectors which can be produced as moment vectors of some
nonnegative measure µ. For subsets K ⊂ Rn, we shall also consider the cones Md,K ⊂ RN consisting of moment
vectors of nonnegative measures µ with support in K. The moment cones can be seen as finite-dimensional
projections of the infinite-dimensional cone of nonnegative measures.

The moment cones of the real line and the unit circle in the complex plane can be represented as linear
sections of the corresponding positive semi-definite matrix cones. This means that they are spectrahedral cones.

Theorem 15.15. A vector m = (m0, . . . ,m2d) is in the moment cone of R if and only if the Hankel matrix

H2d(m) =


m0 m1 · · · md

m1 m2 · · · md+1

...
...

...
...

md · · · m2d−1 m2d


is positive semi-definite.

Theorem 15.16. A vector m = (m−d, . . . ,md) is in the moment cone of T if and only if the Toeplitz matrix

Td(m) =


m0 m1

. . . md

m−1 m0
. . . md−1

. . .
. . .

. . .
. . .

m−d
. . . m−1 m0


is positive semi-definite.

Similar descriptions by block-Hankel and block-Toeplitz matrices hold for matrix-valued positive semi-definite
measures on the line and the circle.

The moment cones Md,K are in general difficult to describe. We shall consider necessary conditions which a
moment vector m(µ) of a nonnegative measure has to satisfy. The set of vectors satisfying these conditions will
then yield an outer approximation of the moment cone.

Let x = (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

[d/2]
n )T be the vector of monomials xα for |α| not exceeding the integer

part of d
2 . Then all entries in the rank 1 matrix xxT will be monomials of degree not exceeding d. Consider the

matrix-valued integral ∫
Rn

xxTµ(x) dx.

This is a positive semi-definite matrix whose entries are elements of the moment vector m(µ). We therefore
obtain a semi-definite conic constraint on the moment vector, namely that the above matrix should be in the
cone of positive semi-definite matrices.

117



Efficient Methods in Optimization Fall 2022

Let now K = {x ∈ Rn | fi(x) = 0, gj(x) ≤ 0} be a basic semi-algebraic set, and let µ be a nonnegative
measure with support in K.

Let di be the degree of the polynomial fi. Then for every polynomial p of degree not exceeding d − di we
have ∫

Rn

p(x)fi(x)µ(x) dx = 0.

On the other hand, the left-hand side is a linear combination of elements of the moment vector m(µ). This yields
a linear equality relation on the moment vector m(µ). A maximal linearly independent set of such equalities
can be obtained if p(x) runs through all monomials xβ with |β| ≤ d− di.

Let now dj be the degree of the polynomial gj and let q(x) be a polynomial which is nonnegative on K.
Then we obtain ∫

Rn

q(x)gj(x)µ(x) dx ≤ 0.

This leads in a similar way to a linear inequality relation on m(µ).

We may also form the vector x′ of all monomials with degree not exceeding the integer part of
d−dj

2 and
consider the matrix-valued integral

−
∫
Rn

x′(x′)T gj(x)µ(x) dx.

This integral evaluates to a positive semi-definite matrix and every of its entries is a linear combination of
elements of m(µ). This yields a semi-definite conic constraint on m(µ).

Let us now consider the problem
min
x∈K

f0(x), (7)

where f0 =
∑

α cαx
α is a polynomial of degree not exceeding some integer d, and K is a basic semi-algebraic

set as above. We can rewrite this problem equivalently as

min
µ≥0:suppµ⊂K

∫
Rn

f0(x)µ(x) dx :

∫
Rn

µ(x) dx = 1.

Here the minimization is performed over all probability measures with support in K.
The equality condition on µ can, however, be written as m0(µ) = 1, and the integral in the cost function

evaluates to the linear combination
∑

α cαmα(µ) of elements of the moment vector m(µ). The problem thus
becomes

min
m∈Md,K

∑
α

cαmα : m0 = 1.

Replacing the difficult condition m ∈ Md,K by a set of semi-definite and linear constraints like those con-
structed above then yields a semi-definite approximation of the problem.

The moment relaxations are dual to the SOS relaxations considered in the previous section.

Example: Let us again consider problem (6). Set d = 3, then the moment vector is 10-dimensional. We
obtain the SDP

minm10 +m01 :

m00 m10 m01

m10 m20 m11

m01 m11 m02

 ⪰ 0, m20 +m02 −m00 = m30 +m12 −m10 = m21 +m03 −m01 = 0,

m10 m20 m11

m20 m30 m21

m11 m21 m12

 ⪰ 0, m00 = 1.

Its solution also yields the optimal value −1.
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15.4 SOS relaxations yielding upper bounds

The idea to obtain upper bounds for polynomial minimization problems is based on the use of sums of squares
to get sufficient conditions for a measure to be nonnegative [2].

Let again K be a basic semi-algebraic set, and let µ be a fixed nonnegative measure with support equal to
K. If now h ∈ Σd,K is a SOS representable polynomial which is nonnegative on K, then µh(x) = µ(x) · h(x)
also defines a nonnegative measure on K. The moments of this measure are given by linear combinations of the
moments of µ, with the coefficients in these combinations defined by the coefficients of the polynomial h.

We may then approximate the original polynomial minimization problem (7) by the semi-definite program

min
h∈Σd,K

∫
K

h(x) · f0(x) · µ(x) dx :

∫
K

h(x) · µ(x) dx = 1.

Here the inclusion h ∈ Σd,K is described by semi-definite constraints, and the cost function depends linearly on
the coefficients of the design variable h.

Since h ∈ Σd,K is a sufficient condition for the measure µh to be nonnegative, the minimization is essentially
performed over an inner approximation of the cone of nonnegative measures. Hence the relaxation yields upper
bounds on the optimal value of the problem.

The relaxations get increasingly tighter with increasing degree d of the allowed SOS representable polyno-
mials. For compact sets K the relaxation hierarchy is asymptotically exact, i.e., the upper bounds tend to the
optimal value if the degree grows to infinity. However, they are never exact unless the objective function is
constant.

The technique is conditioned on the availability of a nonnegative measure µ with support equal to K such
that the moments of µ are easily computable or explicitly known.
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