
Efficient Methods in Optimization Fall 2022

1 Introduction

1.1 Modeling / formalization

Optimization problems arise in numerous applications. The user is confronted with the task to make some
choice in order to minimize (maximize) some cost (performance) under some conditions. In its original form the
problem can be formulated in various ways, such as

� design a wing shape which minimizes the drag while assuring a certain lift;

� find the path for a robot arm which consumes the minimal time while visiting given points;

� design an identification experiment on a plant which gives maximal information in given time;

� assign resources (workers, servers, ships, ...) to tasks.

Sometimes, the original formulation of the problem has even nothing to do with optimization:

� determine the flow capacity of a network of tubes;

� compute the (p, q)-norm of a matrix.

In general, the user has to choose decision variables in order to minimize an objective function with respect to
some constraints.

The first step to the solution of this problem is to formalize it, i.e., to bring it into a form which is amenable
to a mathematical treatment. A formalized finite-dimensional optimization problem looks as follows:

min
x∈X

f(x). (1)

In order to transform the problem to this form we have to identify

� the decision variable x ∈ Rn

� the objective function f : Rn → R

� the feasible set X ⊂ Rn.

This is often itself a far from nontrivial task. When setting up the mathematical description we must keep
in mind the solvability of the resulting problem. This may necessitate to deviate from the original problem
formulation and to make approximations.

The feasible set X ⊂ Rn can, e.g., be represented by

� scalar equalities gi(x) = 0

� scalar inequalities hj(x) ≤ 0

� matrix inequalities Ak(x) ⪰ 0

� norm inequalities ||Ax|| ≤ c

� binary or integer constraints xi ∈ {0, 1}, xi ∈ Z

� black-box oracles, . . .

The cost function may be given

� analytically

� by a black-box oracle

� with a (sub-)gradient

� with a Hessian, . . .

1

Efficient Methods in Optimization Fall 2022

Some combinations of cost function and constraints lead to standard problem classes:

� Linear program (LP): linear cost function, linear equality and inequality constraints

� Quadratic program (QP): quadratic cost function, linear equality and inequality constraints

� Standard quadratic program (StQP): quadratic cost function, feasible set is the simplex {x ∈ Rn | ⟨1, x⟩ =
1, x ≥ 0}

� Mixed integer linear program (MILP): linear cost function, binary, integer, and linear equality and in-
equality constraints

� Quadratically constrained quadratic program (QCQP): quadratic cost function and constraints

� Semi-definite program (SDP): linear cost function, linear equality constraints, linear matrix inequality
constraints

Standardization of optimization problems has the advantage that solution methods can be used which do
not take into account the specifics of the problem and are designed to solve whole problem classes. This
works primarily for problems that are simple enough, and relatively unspecific information about the problem
is sufficient to solve it in a reasonable time. The more difficult a problem is, the more dedicated should the
solution methods be to take into account any information that is available.

Given an optimization problem, one should first look whether it can be reduced to one of the standard
problem classes. On the other hand, research is under way to extend or design solution algorithms for new
problem classes.

For many problem classes nowadays ready-to-use optimization software is available, both open source and
commercial. The boundary is not well-defined, open source software often requires a license for commercial use,
and commercial software is freely available for academic use.

Some software packages are listed below:

� cvx (LP, SOCP, SDP plus binary / integer constraints), passes the problem to a solver

� SDPT3, SeDuMi, SDPA, MOSEK (LP, SOCP, SDP)

� SCIP, CBC, GLPK (LP, MILP)

� SoPlex (exact solution of LP)

� Gurobi, CPLEX (LP, SOCP, MILP)

� SOStools, GloptiPoly (polynomial problems)

If a problem cannot be transformed to an equivalent problem in one of the easily solvable problem classes,
one may try to approximate it, e.g., by dropping constraints. Such approximations are called relaxations.

1.2 Examples

Uniform Approximation: We want to approximate a (complicated) function g(x) uniformly on a domain
G ⊂ Rm by a linear combination of basis functions fk : G → R, k = 1, . . . , n. In order to make this task feasible,
we approximate the domain G by a discrete set D = {x1, . . . , xN} ⊂ G, e.g., a dense grid. Then we may write
the problem as follows:

min
c∈Rn

max
j=1,...,N

∣∣∣∣∣g(xj)−
n∑

k=1

ckfk(xj)

∣∣∣∣∣ .
This is an unconstrained problem of the desired form (1), with c = (c1, . . . , cn) being the decision variable, and
the maximum of the absolute value being the cost function. Note that this function is considered here as a
function of c. The other components of the function are known from the original formulation of the problem
and constitute the data.

2

Efficient Methods in Optimization Fall 2022

However, the cost function is a piece-wise linear function of c and is as such too complicated for being
minimized straightforwardly. We shall therefore introduce an auxiliary variable τ ∈ R and add it to the decision
variables, and introduce constraints, as follows:

min
(τ,c)∈R×Rn

τ : −τ ≤ g(xj)−
n∑

k=1

ckfk(xj) ≤ τ.

Now the cost function is linear in the decision variables, and the feasible set is given by linear inequalities. Such
a problem is called a linear program (LP) and can be solved by standard optimization software.

Suppose the function values g(xj) are collected in a row vector g ∈ RN , and the basis function values fk(xj)
in a matrix F ∈ Rn×N . Then we may solve the problem by the cvx program

cvx begin

variable tau

variable c(1,n+1)

minimize(tau)

-tau <= g - c*X

g - c*X <= tau

cvx end

The process of adding additional auxiliary variables to the problem is called lifting. The feasible set of the
new augmented problem then projects to the feasible set of the original problem, i.e., it is a lift of the original
feasible set.

Resource Allocation: Suppose we may fabricate a number of products which we can sell at prices
p1, . . . , pn, respectively. The production of a unit of product l consumes akl units of raw material k, k = 1, . . . ,K,
of which a total quantity of rk units is available. We wish to choose the quantities x1, . . . , xn of each product
to be produced in order to maximize the revenue.

The problem can be formalized as follows:

min
x

−⟨p, x⟩ : Ax ≤ r, x ≥ 0,

where A is the K × n matrix made up of the coefficients akl, and x, r, p are the vectors made up of the
corresponding elements. The constraint x ≥ 0 is necessary to prevent the conversion of products back to raw
materials, which would correspond to a negative quantity xl.

Again the cost function and the constraints are linear in the decision variables, and the problem has been
formalized as an LP. It can be solved by the following cvx program:

cvx begin

variable x(n,1) nonnegative

maximize(p*x)

A*x <= r

cvx end

Max-Cut: We are given a weighted graph G = (V,E) with vertex set V = {v1, . . . , vn} and edge set
E = {e1, . . . , em}, where each edge ek has been attached a nonnegative weight wk. The Max-Cut problem
consists in separating (cutting) the vertex set into a disjoint union S ∪ T of two subsets such that the sum of
the edge weights between the two subsets is maximized.

We shall represent a cut by a vector x ∈ {−1,+1}n, i.e., a vertex of a hyper-cube, where the indices of
elements xj = −1 correspond to the vertices in S and the indices of elements xj = 1 to vertices in T . Note that
−x and x represent the same cut, as the transformation x 7→ −x corresponds to an exchange of the sets S, T .
Consider the real symmetric matrix A(x) = 1

4 (1− xxT), where 1 denotes the all-ones matrix. Then Aij = 0 if
vi, vj are in the same subset S or T , and Aij =

1
2 otherwise.

Construct a real symmetric n × n matrix W such that the element Wij equals the edge weight wk if the
vertices vi, vj are linked by edge ek, and zero if vi, vj are not linked. Then the sum of the edge weights of the

3

Efficient Methods in Optimization Fall 2022

cut is given by the expression ⟨A,W ⟩ =
∑n

i,j=1 AijWij . We thus arrive at the formulation

min
x∈{−1,+1}n

(−⟨A(x),W ⟩) = min
X∈MC

−1

4
⟨1−X,W ⟩,

where MC is the MaxCut polytope, which is defined as the convex hull of the set of matrices

{X = xxT | x ∈ {−1,+1}n} = {X ⪰ 0 | Xij ∈ {−1,+1}},

which yields
MC = {X ⪰ 0 | diag X = 1, rk X = 1}.

In the first formulation the cost function is quadratic, in the second formulation it is linear. In the second
formulation we also have a semi-definite constraint. However, due to the binary constraints on x or X we obtain
a MIQP or mixed integer SDP. It can actually be proven that Max-Cut is an NP-hard problem.

The standard relaxation of the Max-Cut problem is obtained by dropping the rank constraint. This yields
the semi-definite program

min
X⪰0

−1

4
⟨1−X,W ⟩ : diag X = 1.

It can be solved by the cvx program

cvx begin

variable X(n,n) semi definite

maximize(trace((ones(n)-X)*W)/4)

diag(X) == 1

cvx end

An exact solution can be obtained by combining this procedure with a branch-and-bound method.

Min-Cut: Here were are confronted with the same problem as for Max-Cut, but we want to minimize the
weight of the cut. The weights wk are assumed to be nonnegative. The cut is to be chosen to separate two given
vertices s, t. In contrast to Max-Cut this problem can be reduced to a polynomially sized LP. We shall show
below that Min-Cut is equivalent to Max-Flow.

Max-Flow: Let G be a directed graph with vertex set V = {v1 = s, v2, . . . , vn−1, vn = t} and edge set
E = {e1, . . . , em}. The distinguished vertices s, t are called the source and the sink. To each edge ek there are
attached weights w±

k ≥ 0. These are interpreted as flow capacities in and against the direction of the edge. As
in the MaxCut problem we build a matrix W , with Wij = w+

k if edge ek is from vertex vi to vj , Wij = w−
k if

ek is from vj to vi, and Wij = 0 if vi, vj are not linked by an edge. Note that W is not necessarily symmetric,
as w±

k do not need to coincide. The problem consists in finding the maximal flow from the source to the sink
through the network.

We shall represent a flow through the network by a skew-symmetric n × n matrix F . The element Fij

designates the actual flow from vertex vi to vertex vj . If there is no flow between vi and vj , then Fij = 0, if the
flow is from vj to vi, then Fij = −Fji < 0.

The Max-Flow problem can then be formalized as follows:

min
F=−FT

n∑
i=2

Fi1 : F ≤ W,

n∑
i=1

Fij = 0 ∀ j = 2, . . . , n− 1.

Here the decision variable is the skew-symmetric matrix F of flows. The flow from s to t is given by the sum of
outflows from the source minus the sum of inflows in the source, which is equal to −

∑n−1
i=1 Fi1. The inequality

F ≤ W has to be interpreted element-wise and ensures that the flows remain bounded by the corresponding
capacities, max(0, Fij) ≤ Wij for all i, j. The equalities are balance equations that ensure the sum of inflows
into an intermediate vertex equals the sum of outflows.

The cost function and the constraints are linear in the n(n−1)
2 decision variables Fij , i < j, and the problem

reduces to an LP. It can be solved with the cvx program

4

Efficient Methods in Optimization Fall 2022

cvx begin

variable F(n,n) skew symmetric

minimize(ones(1,n)*F(:,1))

F <= W

for j = 2:n-1

ones(1,n)*F(:,j) == 0

end

cvx end

Equivalence with Min-Cut: To the Min-Cut problem we associate a Max-Flow problem as follows. The
vertex set in the Max-Flow problem is the same as in the Min-Cut problem, and to any undirected edge ek in
the Min-Cut problem there corresponds a directed edge in the Max-Flow problem, with weights w±

k = wk. An
undirected edge in the Min-Cut problem is hence interpreted as a tube allowing a flow in both directions and
bounded by the edge weight in absolute value. The resulting matrix W will be symmetric.

Clearly every flow from s to t is bounded from above by the minimum cut. We shall now show that the
maximal flow is actually equal to the minimum cut. To this end it suffices to construct a cut from the maximal
flow with value equal to the flow.

Let F ∗ be the flow matrix corresponding to the maximal flow. We then define the residual network as the
network allowing flows F bounded by the inequalities F ≤ W − F ∗, i.e., flows F such that F + F ∗ is a valid
flow through the original network. Note that W − F ∗ ≥ 0, because F ∗ represents a feasible flow. Since F ∗ is
the maximal flow, the residual network does not allow any positive flow from s to t. We then define S as the
set of vertices which can be reached from s through the residual network (i.e., vertices v such that there exists
a positive flow from s to v), and T as the set of remaining nodes. The maximal flow F ∗ then flows through the
cut defined by S and T . Suppose that the value of this cut is strictly larger than the value of F ∗. Then there
exists an edge ek in the cut, linking vi ∈ S and vj ∈ T , such that wk > F ∗

ij . But then vj is reachable from vi
through the residual network, contradicting the definition of S and T . Hence the value of the cut must equal
the value of the flow F ∗.

Since the value of F ∗ is a lower bound to every cut separating s and t, the value of the cut defined by S and
T must be minimal.

Ford-Fulkerson method: For the Max-Flow / Min-Cut problem there exist several algorithms that are
more efficient than solving the LP. The conceptually simplest class are the Ford-Fulkerson methods. They use
the fact that as long as a given flow is not maximal, the residual network will allow to link the source node to
the target node. However, the sub-problem of finding a linking path is solvable in a number of steps which is
proportional to the number of edges e. Having found a path connecting s to t in the residual network, we may
add the flow along this path to the current flow and obtain the next iterate with a strictly larger capacity.

Whether the method terminates in a finite number of steps depends on the specific algorithm looking for
the linking path. The version of Edmonds-Karp finds the shortest linking path by performing a breadth-first
search. It has a O(ne2) overall complexity.

5

