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Figure 1: Lemma 7.1: The supporting linear functional u can be represented as a combination of the functionals
a1, a2 corresponding to the active constraints with nonnegative coefficients.

7 Linear programs

In this lecture we consider solution methods and applications for linear programs (LP). The solution methods can
be classified into active set methods and interior-point methods. Active set methods find the optimal solution
of the problem in a finite number of steps, but do not have guaranteed polynomial complexity. Interior-point
methods (IPM) generate a sequence of iterates which converges to, but never reaches the optimal solution.

Both classes of methods work very well in practice and complement each other, being suited for different
kinds of applications. While IPM generally are faster on large problem instances, active set methods are suited
for solving multiple linear programs which do not differ much from each other, enabling a warm-start based on
the optimal point of the previous LP.

7.1 Theorem on the alternative

Polyhedral sets are particularly simple convex sets. If a hyperplane is supporting to a polyhedral set P , then
this relation can be certified in the form of a convex combination of the inequalities defining the polyhedral set.

Lemma 7.1. Let P = {x |Ax ≤ b} be a non-empty polyhedral set, and let H = {x |uTx = b0} be a hyperplane
containing a point x∗ ∈ P and such that the open half-space C = {x |uTx > b0} has an empty intersection with
P , i.e., uTx∗ = b0, uTx ≤ b0 for all P . Then there exists a nonnegative vector µ ≥ 0 such that u = ATµ,
b0 = bTµ.

Proof. Let I be the set of indices of rows for which the inequality Ax∗ ≤ b is an equality, i.e., the index set of
active constraints at x∗. Then there exists ϵ > 0 such that for all x ∈ x∗ +Bϵ we have (Ax)j < bj for all j ̸∈ I.
Define another polyhedral set by P ′ = {x | (Ax)i ≤ bi ∀ i ∈ I}. Then P ⊂ P ′. We claim that C has also an
empty intersection with P ′, i.e., uTx ≤ b0 for all x ∈ P ′.

Indeed, suppose there exists z ∈ P ′ such that uT z > uTx∗. Then for all λ ∈ (0, 1] we have zλ = λz + (1 −
λ)x∗ ∈ P ′ and uT zλ > uTx∗. But for λ small enough we have zλ ∈ x∗ +Bϵ, and hence zλ ∈ P , a contradiction.

We now define the polyhedral cone K = {ATµ |µ ≥ 0, µj = 0 ∀ j ̸∈ I}. We claim that u ∈ K.
Indeed, suppose u ̸∈ K. Then u can be separated from K, and there exists δ such that uT δ > 0, vT δ ≤ 0 for

all v ∈ K. In particular, (Aδ)i ≤ 0 for all i ∈ I. Hence x∗ + δ ∈ P ′. But then uT (x∗ + δ) ≤ uTx∗ and uT δ ≤ 0,
a contradiction.

Hence there exists µ ≥ 0, µj = 0 for all j ̸∈ I, such that u = ATµ. It follows that µT (Ax∗ − b) = 0 and
b0 = µTAx∗ = µT b, which yields the desired assertion.

As a consequence, we obtain the following Theorem on the Alternative.
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Theorem 7.2. (Farkas) Let P = {x |Ax ≤ b} be a polyhedral set. Then either P ̸= ∅, or there exists µ ≥ 0
such that µTA = 0, µT b = −1.

Proof. Clearly if P ̸= ∅, then such a µ cannot exist.
Let P = ∅. Then the non-empty polyhedral set

P ′ = {(x, t) |Ax− bt = (A,−b)(xT , t)T ≤ 0}

has an empty intersection with the open half-space C = {(x, t) | t = (0, 1)(xT , t)T > 0}. By the Lemma 7.1 there
exists µ ≥ 0 such that (0, 1) = µT (A,−b).

We provide also a version of the theorem with equalities.

Corollary 7.3. Let P = {x | Ax ≤ b, Cx = d} be a polyhedral set. Then either P ̸= ∅, or there exists µ ≥ 0, ν
such that µTA+ νTC = 0, µT b+ νT d = −1.

Proof. Represent P = {x | Ax ≤ b, Cx ≤ d, −Cx ≤ −d}. By the previous theorem, either P ̸= ∅, or there exist
µ, ν+, ν− ≥ 0 such that µTA+ νT+C − νT−C = 0, µT b+ νT+d− νT−d = −1. In the latter case, set ν = ν+− ν−.

7.2 Standard form

Consider the problem of minimization of a linear objective function under linear equality and inequality con-
straints,

min
x∈Rn

cTx : Ax = b, Cx ≤ d.

Let m be the number of inequalities. We introduce an additional variable y ∈ Rm and reformulate the problem
as

min
x,y
⟨(c,0), (x, y)⟩ :

(
A 0
C I

)(
x
y

)
=

(
b
d

)
, y ∈ Rm

+ .

The slack variable y allowed to turn the inequalities into equalities, at the cost of introducing the conic constraint
y ∈ Rm

+ .
The variable x can now be eliminated using the linear equality constraints. Indeed, if the kernel L of the

matrix

(
A
C

)
is trivial, then there exist n equalities which determine x completely as linear functions of y.

If the kernel of this matrix is non-trivial, then x has degrees of freedom which are not determined by the
equality constraints. For every p ∈ L we have that (x+ p, y) is a feasible point whenever (x, y) is feasible. If the
linear functional c does not vanish on the kernel identically, then the problem is either infeasible or unbounded.
If c vanishes on the kernel, then these degrees of freedom are redundant for the problem.

We can hence assume the linear program (LP) in the following standard form:

min
x≥0

cTx : Ax = b. (1)

Without loss of generality A can be assumed of full row rank, otherwise the problem is infeasible or equality
constraints are redundant. We shall also assume that b ≥ 0, by possibly multiplying some rows of A by −1.

7.3 Duality

Consider the LP in standard form
min
x≥0

cTx : Ax = b (2)

with the matrix A being of full row rank of size m× n. Let now y ∈ Rm such that c ≥ AT y. We claim that the
optimal value of (2) is bounded from below by the quantity yT b.

Indeed, we have for every feasible x that

yT b = yTAx ≤ cTx. (3)
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In this way y provides a certificate that the optimal value of LP (2) is not below a certain value. It is then
natural to ask what the best such certificate is and which value it provides. We may formulate this question as
another optimization problem:

max
y

bT y : AT y ≤ c.

Observe that this problem is also a linear program. It is called the dual LP, in contrast to (2) which is called
the primal.

The dual program is hence a maximization problem, and every feasible point for the dual problem yields a
lower bound on the objective value of the primal problem. Vice versa, from (3) it also follows that every feasible
point for the primal problem yields an upper bound on the objective value of the dual problem.

Introduce the slack variable s ≥ 0 and reformulate the dual problem as

max
s≥0,y

bT y : s+AT y = c. (4)

If (x, s) is a primal-dual feasible pair, then the difference of the respective objective values is given by

cTx− bT y = cTx− xTAT y = cTx− xT (c− s) = ⟨s, x⟩. (5)

Hence the complementarity condition sTx = 0 implies that both x, s are optimal solutions of the respective LP.
This condition can equivalently be written as xisi = 0 for all i = 1, . . . , n or for every i, xi = 0 or si = 0.

The dual points s and the objective functional c can be thought of as elements of the dual space to Rn.
We now come to the main result in the duality theory of linear programs.

Theorem 7.4. (Strong duality for LP) If both problems (2) and (4) are feasible, then their objective values
coincide and are attained at a complementary primal-dual pair of feasible points.

Proof. If the dual problem is feasible, then the optimal value of the primal problem is lower bounded. Since the
primal is also feasible, its optimal value is finite. Likewise, the dual optimal value is finite. Let v∗ be the primal
optimal value.

Let now v ∈ R be arbitrary and suppose that the half-space {x | cTx ≤ v} has an empty intersection with the
non-empty polyhedron C = {x | − x ≤ 0, Ax = b}. By the Theorem on the Alternative there exist λ0, λ ≥ 0,
µ such that λ0c − λT I − µTA = 0, λ0v − µT b = −1. If λ0 = 0, then C = ∅, leading to a contradiction. Hence
λ0 > 0. Set y = µ

λ0
. Then the relations can be rewritten as c − yTA ≥ 0, v + 1

λ0
= yT b. But this means that

(4) has a feasible solution with value v + λ−1
0 > v.

Therefore for every v < v∗ program (4) has a feasible solution with value > v. On the other hand, the
optimal value of (4) is upper bounded by any number strictly greater than v∗. Hence the optimal value of (4)
equals v∗. If LP (2) does not attain its optimal value, then we may set v = v∗ and there exists a dual feasible
point with value > v∗, a contradiction. Hence (2) attains its optimum. In a similar manner, (4) attains its
optimum.

Let x∗, y∗ be the optimal solutions, and set s∗ = c−AT y∗. Then

0 = v∗ − v∗ = cTx∗ − bT y∗ = (x∗)T s∗,

and x∗, s∗ are complementary.

If (4) is unbounded, then (2) must be infeasible, and when (2) is unbounded, then (4) must be infeasible.
The converse is not true, however, as the following example shows.

Example: Consider the LP
min

x=(x1,x2)T≥0
−x2 : x1 = −1.

Clearly this program is infeasible. The dual can be written as

max
y

(−y) : (y, 0) ≤ (0,−1),

which is also infeasible.
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Table 1: Optimality conditions maintained by different methods

Primal simplex Dual simplex Interior-point Infeasible interior-point
x ≥ 0 Yes No Yes Yes
s ≥ 0 No Yes Yes Yes
x ∈ AP Yes Yes Yes No
s ∈ AD Yes Yes Yes No
xisi = 0 Yes Yes No No

7.4 Optimality conditions

Consider the LP
min
x≥0
⟨c, x⟩ : Ax = b, (6)

where A ∈ Rm×n is supposed to be of full row rank, c ∈ Rn, b ∈ Rm, and x ∈ Rn
+ is the decision variable.

We may also assume that b ≥ 0, by possibly multiplying some rows of A by −1. We shall call problem (6) the
primal linear program. The feasible set of this program is given by the intersection of the nonnegative orthant
Rn

+ with the (n−m)-dimensional affine subspace

AP = {x ∈ Rn | Ax = b}.

The dual program can be written in the form

max
y,s≥0

⟨b, y⟩ : s+AT y = c (7)

with decision variables s ∈ Rn
+, y ∈ Rm. Note that since AT has full column rank, the variables y can be

eliminated from the problem by using m of the linear equality relations. Hence we may interpret the linear
equality constraint as an inclusion s ∈ AD of s into an m-dimensional affine subspace

AD = {s ∈ Rn | ∃ y ∈ Rm : s+AT y = c}

of Rn. Note that for every s ∈ AD there exists a unique y = y(s) certifying this inclusion.
As mentioned above, the optimal solutions x∗, s∗ of problems (6),(7), respectively, are characterized by the

complementarity condition ⟨x∗, s∗⟩ = 0, which can be rewritten as

x∗
i s

∗
i = 0 ∀ i = 1, . . . , n.

We obtain the following result.

Lemma 7.5. The pair (x, s) ∈ Rn × Rn is the primal-dual pair of optimal solutions if and only if it satisfies
the conditions

x ∈ AP , s ∈ AD, x ≥ 0, s ≥ 0, xisi = 0 ∀ i = 1, . . . , n.

Finding a pair (x, s) satisfying all five conditions is hence as difficult as solving the LP. However, finding
a pair satisfying a subset of the conditions is much simpler. Solution methods start from a pair satisfying a
subset and then try to iteratively come closer to satisfaction of the remaining conditions. Table 1 shows which
methods maintain which conditions during their iterations, aiming at closing the gaps defined by the remaining
conditions.

Thus the simplex method visits points where the some of the inequality constraints are active (hence the
name active set method), while interior point methods generate points where the inequalities are strict. In the
next sections we consider these methods in more detail.

Now we shall, however, provide a primal-dual symmetric formulation of programs (6),(7). The following fact
is easily verified:

The affine subspaces AP ,AD defined by the primal and dual equality constraints are orthogonal to each other.
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Figure 2: The simplex algorithm jumps from vertex to vertex along the edges of the polyhedron.

Indeed, every vector δx which is parallel to AP obeys the relation Aδx = 0, while every vector δs parallel to
AD obeys δs = AT δy for some δy. Thus ⟨δx, δs⟩ = δTx A

T δy = 0, which proves our claim.
From (5) it then follows that for every fixed s ∈ AD, the linear form ⟨s, x⟩ differs by a constant from the

objective function of problem (6) on AP . On the other hand, for every fixed x ∈ AP this form differs by a
constant from the objective of problem (7) on AD.

7.5 Primal simplex method

The feasible set of LP (6) is the intersection of the orthant Rn
+ with an (n − m)-dimensional affine subspace

AP . Hence at any extremal point of this polyhedron at least n −m of the inequality constraints xi ≥ 0 must
be active. Note that each variable xi is associated to a column of the coefficient matrix A. Specifying n −m
indices i ∈ {1, . . . , n} where xi ≥ 0, in general allows to recover the values of the remaining entries of x by using
the equality constraints. This happens if and only if the remaining m columns of A form a basis of Rm. Such
a set of m indices is called basic, the set of the other n −m indices non-basic. The basic set is called primal
feasible if the values of the basic primal variables are nonnegative, and hence the corresponding primal vector
is feasible.

The optimal value of the objective, if it exists, is attained at a vertex of the polyhedron, which corresponds
to one or more basic primal feasible sets. The simplex algorithm goes from such set to the other changing
indices one by one, while decreasing monotonically the value of the objective function at the corresponding
vertex. Changing one index in the basic set by dropping a basic index and including a non-basic one leads to
either staying at the same vertex or moving along an edge of C to a new vertex, under the condition that the
basic primal variables stay nonnegative.

Which index will be added to the basic set is decided by a pivoting rule, which also determines the concrete
variant of the method. This choice determines the edge along which the iterate moves. The basic index which
is dropped is determined by which constraint xi ≥ 0, i ∈ B, becomes active at the opposite side of the edge.
Equivalently, it is the constraint which first becomes active along the ray in the direction of the edge.

The algorithm terminates in a finite number of steps, by either

� finding that a solution cannot be improved and is optimal, or

� finding an edge with decreasing cost function that recedes to infinity, in which case the LP is unbounded.
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The algorithm needs a starting vertex to commence. Such a vertex is found by solving the auxiliary LP

min
x≥0,z≥0

1T z : Ax+ z = b.

Let C ′ be the feasible set of the auxiliary problem. Then the feasible set of the original problem is given by
C = {x | (x, 0) ∈ C ′}. In case C ̸= ∅ the optimal value of the auxiliary problem equals zero, and every optimal
vertex of C ′ corresponds to a vertex of C. In the case C = ∅ the optimal value of the auxiliary problem is
strictly positive. We then launch the simplex algorithm on the auxiliary problem with the set of basic variables
z. This set corresponds to the vertex (0, b) of C ′ (recall that b ≥ 0).

Although the simplex method works very well in practice, its worst-case performance is exponential in the
number of variables in standard form, i.e., in the number of inequality constraints.

We now consider the simplex method in more detail.
We shall denote the basic and the non-basic index sets by B and N , respectively. Define also corresponding

sub-vectors xB ∈ Rm, xN ∈ Rn−m, cB ∈ Rm, cN ∈ Rn−m, and sub-matrices AB ∈ Rm×m, AN ∈ Rm×(n−m).
Then the equality constraints can be written as

ABxB +ANxN = b, xB + (A−1
B AN )xN = A−1

B b. (8)

Thus the basic set B can be associated to the primal vector x = (xB , xN ) = (A−1
B b, 0). This vector by definition

satisfies the equality constraints of problem (6), and it satisfies the inequality constraints if and only if A−1
B b ≥ 0.

The cost function of problem (6) is given by

⟨cB , xB⟩+ ⟨cN , xN ⟩ = ⟨cB , A−1
B b− (A−1

B AN )xN ⟩+ ⟨cN , xN ⟩ = ⟨cN −AT
NA−T

B cB , xN ⟩+ ⟨cB , A−1
B b⟩.

Note that the objects

M = A−1
B AN , µ = A−1

B b, ξ = cN −AT
NA−T

B cB = cN −MT cB , γ = ⟨cB , A−1
B b⟩ = ⟨cB , µ⟩ (9)

contain the complete information of the LP. The quantity γ is the value of the objective function at the vertex
corresponding to the basic set B.

The basic set B is feasible if µ ≥ 0. Moreover, if ξ ≥ 0, then it is optimal, because for every feasible point
x = (xb, xN ) of problem (6) we have

⟨c, x⟩ = ⟨ξ, xN ⟩+ γ ≥ γ.

The primal simplex method evolves the objects M,µ, ξ, γ such that µ stays nonnegative, and γ monotonely
decreases until ξ also becomes nonnegative. The objects are stored in a tableau, which is a matrix of size
(m+ 1)× (n−m+ 1) given by

−γ ξT

µ M

Each row of the tableau except the first one corresponds to a basic index i ∈ B, each column except the first
one to a non-basic index j ∈ N .

Exchanging a basic index i ∈ B with a non-basic index j ∈ N is equivalent to the transformation

i ← j
j ← i
µB̃ ← µB̃ −M−1

ij MB̃jµi

µi ← M−1
ij µi

ξÑ ← ξÑ −M−1
ij ξjM

T
iÑ

ξj ← −M−1
ij ξj

−γ ← −γ −M−1
ij ξjµi

MB̃Ñ ← MB̃Ñ −M−1
ij MB̃jMiÑ

MB̃j ← −M−1
ij MB̃j

MiÑ ← M−1
ij MiÑ

Mij ← M−1
ij



, (10)
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Figure 3: Feasible region, niveau lines of the objective, and visited vertices for LP (11).

where B̃ = B \ {i}, Ñ = N \ {j}.
The method aims at making all elements of ξ nonnegative while decreasing γ and keeping µ nonnegative.

From the transformation law of µi it follows that the pivot element Mij has to be positive. From the transfor-
mation law of ξj it then follows that the simplex step can transform a negative element ξj into a positive one.

On the other hand, for all k ∈ B̃ we have to ensure that µk ← µk −M−1
ij Mkjµi ≥ 0. This is automatically true

for those k such that Mkj ≤ 0, but for those k which satisfy Mkj > 0 we have to ensure M−1
kj µk ≥M−1

ij µi.
Hence the simplex step performs as follows:

� choose j ∈ N such that ξj < 0;

� among those k ∈ B such that Mkj > 0, let i be the index minimizing the ratio M−1
kj µk;

� apply rule (10) to update the tableau.

If in first item no index j can be found, then ξ ≥ 0 and the tableau is already optimal. If in the second item
no index i can be found, then Mkj ≤ 0 for all k ∈ B and the non-basic variable xj can be increased unbounded
while staying in the feasible set of problem (6). This decreases the objective value towards −∞, and the problem
is unbounded. Note that the problem is feasible due to the existence of the tableau.

Example: Consider the LP

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6. (11)

The feasible region and the niveau lines of the objective are depicted in Fig. 3.
In standard form this LP can be written as

min
x∈R4

+

(3x2 − 4x1) :

(
1 −2 1 0
2 1 0 1

)
x =

(
1
6

)
.

Obviously the point x = (0, 0)T is feasible for the original LP (11), which corresponds to the point x = (0, 0, 1, 6)T

for the standard form. This vertex is represented by the basic index set B = (3, 4) and the non-basic index set
(1, 2). The elements of the corresponding tableau are by virtue of (9) given by

M =

(
1 0
0 1

)−1 (
1 −2
2 1

)
=

(
1 −2
2 1

)
, µ =

(
1 0
0 1

)−1 (
1
6

)
=

(
1
6

)
,
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ξ =

(
−4
3

)
−
(
1 −2
2 1

)T (
0
0

)
=

(
−4
3

)
, γ =

(
0
0

)T (
1
6

)
= 0.

This yields the tableau

0 −4 3
1 1 −2
6 2 1

It corresponds to the blue vertex in Fig. 3. The non-basic index to be moved to the basic set is j = 1, because
ξ1 = −4 is the only negative element of ξ. Both coefficients in the corresponding column are positive, but
the ratio µ3

M31
= 1 is smaller than µ4

M41
= 3, and the basic index i = 3 has to be moved to the non-basic set.

Exchanging the two indices by virtue of (10) yields the tableau

4 4 −5
1 1 −2
4 −2 5

We are now located in the point x = (1, 0, 0, 4), corresponding to the green vertex on Fig. 3. Note that the
objective value has decreased to −4. For the next iteration we have to choose the non-basic index j = 2. In
the corresponding column only the element M42 = 5 is positive, and we move i = 4 to the non-basic set. This
yields the tableau

8 2 1
13
5

1
5

2
5

4
5 − 2

5
1
5

This tableau corresponds to the point x = (135 , 4
5 , 0, 0) and the blue vertex on Fig. 3. Now we have ξ ≥ 0, and

hence we have reached the optimal solution, with value −8.

7.6 Dual simplex method

The simplex tableau can also be interpreted in terms of the dual variables s. In order to ensure the complemen-
tarity condition xisi = 0 for all i, we declare the subvector sB of the dual variables to be non-basic, and the
subvector sN to be basic. Then for every i ∈ {1, . . . , n}, exactly one variable in the pair (xi, si) is non-basic,
and the product xisi is always zero at the primal and dual vertices represented by the tableau.

The primal variables obey the relation xB + MxN = (I M)(xB ;xN ) = µ, while the cost is given by
⟨ξ, xN ⟩+ γ = ⟨(0; ξ), (xB ;xN )⟩+ γ. Hence the equality constraint in (7) can be written as(

sB
sN

)
+

(
I

MT

)
y =

(
0
ξ

)
.

Eliminating y, we obtain the relation
sN −MT sB = ξ

on the dual variables s, while the dual cost function is given by

⟨µ, y⟩+ γ = −⟨µ, sB⟩+ γ.

Taking into account, that the dual problem maximizes the cost and we hence have to multiply it by −1 to obtain
a minimization problem, the simplex tableau for the dual problem is given by

γ µT

ξ −MT

Here the rows of the tableau are indexed by the dual basic set N , while the columns are indexed by the dual
non-basic set B. The dual simplex tableau can hence be obtained from the primal one by transposition and
multiplying the diagonal blocks by −1. The tableau is feasible if ξ ≥ 0 and optimal if in addition µ ≥ 0. The
value of γ increases monotonely.

Instead of applying primal simplex operations to the dual simplex tableau, we may apply the equivalent
operations to the primal tableau. This is how the dual simplex algorithm operates. Each of its steps consists of
the following stages:
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� choose i ∈ B such that µi < 0;

� among those k ∈ N such that Mik < 0, let j be the index minimizing the ratio −M−1
ik ξk;

� apply rule (10) to update the tableau.

The algorithm stops if

� all µi are nonnegative (optimality);

� all Mik are nonnegative (unbounded-ness of the dual, or infeasibility of the primal).

Dual feasible simplex tableaux can be created from an optimal simplex tableau for a given LP if new
constraints are added to the LP or existing constraints are modified. In this case new rows are added to the
tableau, possibly creating negative elements in the vector µ, or existing elements of µ are modified, while the
vector ξ remains unchanged and hence nonnegative.

The dual simplex method is hence suitable for the warm-start of the solution process of a slightly modified
LP if an optimal solution of the original LP is available. A prime example of the application of the dual simplex
algorithm will be considered in the next section.

Consider again LP (11) with optimal solution (x1, x2) = ( 135 , 4
5 ). Suppose we add a new constraint x1 ≤ 2.

This constraint diminishes the feasible set of the LP, and the formerly optimal point becomes infeasible. However,
we may use this point to construct a dual feasible simplex tableau, which we can then optimize by the dual
simplex algorithm.

Introduce a new slack variable
x5 = 2− x1

This variable is basic, and we have to add a new row corresponding to it to the tableau. Hence the basic index
set becomes B = (1, 2, 5), while the non-basic set stays the same, N = (3, 4). Let us compute the new row.
We have to determine the slack x5 as a function of the non-basic variables x3, x4. Since it is defined by means
of the basic variable x1, we have to use the expression of x1 as a function of x3, x4, which is encoded in the
corresponding row 1 of the tableau. We have

x5 = 2− (
13

5
− 1

5
x3 −

2

5
x4) = −

3

5
− (−1

5
x3 −

2

5
x4),

which yields the new tableau

8 2 1
13
5

1
5

2
5

4
5 − 2

5
1
5

− 3
5 − 1

5 − 2
5

We now apply a dual simplex step to it. The only negative element of µ is µ5 = − 3
5 , hence we choose the

corresponding row as a pivot. In this row, both coefficients are negative, and we have to look which column k
yields the minimum ratio − ξk

M5k
. Since − ξ4

M54
= 5

2 < 10 = − ξ3
M53

, we choose the pivot column 4. Exchanging

the indices 4 and 5 leads to the basic set B = (1, 2, 4), the non-basic set N = (3, 5), and the tableau

13
2

3
2

5
2

2 0 1
1
2 − 1

2
1
2

3
2

1
2 − 5

2

This tableau is now optimal, it corresponds to the point (x1, x2) = (2, 1
2 ) with value − 13

2 . The evolution of
the vertex during the dual simplex algorithm is depicted in Fig. 4.
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Figure 4: Feasible region, niveau lines of the objective, and visited vertices: originally optimal vertex (red),
newly optimal vertex (orange).

7.7 Application: mixed integer linear programs

A mixed integer linear program (MILP) is an LP with additional integrality constraints on a part of the decision
variables:

min
x≥0
⟨c, x⟩ : Ax = b, xi ∈ Z ∀ i ∈ I,

where I is a subset of indices. Such a problem is non-convex and actually in general NP-hard.
By removing the integrality constraints we obtain the linear relaxation of the program, namely the LP

min
x≥0
⟨c, x⟩ : Ax = b. (12)

Since the feasible set of the LP is larger than that of the original MILP, its optimal value is a lower bound on
the value of the MILP. Let x∗ be the solution of this LP.

If the subvector x∗
I of the solution happens to be integral, then x∗ is feasible for the MILP and hence yields

its optimal solution. However, in general there exists an index i ∈ I such that x∗
i is fractional. Consider the two

linear programs
min
x≥0
⟨c, x⟩ : Ax = b, xi ≤ ⌊x∗

i ⌋, (13)

min
x≥0
⟨c, x⟩ : Ax = b, xi ≥ ⌈x∗

i ⌉. (14)

The feasible sets of LPs (13),(14) are disjoint, but their union contains the feasible set of the original MILP.
On the other hand, neither of the feasible sets of LPs (13),(14) contains the solution x∗ of the original linear
relaxation (12). Hence the minimum of the two values of LPs (13),(14) is a better lower bound on the optimal
value of the MILP than the optimal value of LP (12).

The process of splitting LP (12) into two stronger LPs (13),(14) by constraining one of the integer variables is
called branching. MILP solvers proceed by recursively splitting the feasible set of the MILP into smaller parts by
branching on integer variables whose value happened to be fractional in the solutions of the relaxations. Since the
LP relaxations yield bounds on the value of the original MILP, the whole algorithm is called branch-and-bound.

Modern MILP solvers usually bring forward additional features strengthening the LP relaxations, such as
presolve algorithms tightening the bounds on the integer variables or cuts separating fractional solutions from
the feasible set of the MILP.
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Figure 5: Feasible region and optimal solution for LP (11) (left), LP (15) (center), and LPs (16),(17) (right).

We shall stress one property which makes the dual simplex method a particularly useful method for solving
the LP relaxations appearing in the course of the branch-and-bound algorithm.

Suppose we use the simplex method to solve LP (12) and obtained an optimal simplex table. LPs (13),(14)
differ from (12) by the addition of one constraint. Introducing corresponding slack variables, we see that at the
optimal point x∗ of LP (12) these variables are negative, because x∗ is not feasible for LPs (13),(14). Hence
these slacks enter the basic set of variables. By adding a new row to the table corresponding to the slack, the
table remains dual feasible, but loses primal feasibility at just one entry, which will be contained in the interval
(−1, 0). It will therefore in general take only a few dual simplex iterations to return the table to optimality and
thus to solve LPs (13),(14).

During a general branching step, the constraint on the integer variable defining the branching will not be
added, but merely tightened. This corresponds to changing the value of one entry in the vector b of the table,
after which again the dual simplex method can be started to return the table to optimality.

Example: Consider the MILP

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x ∈ Z2.

Its first LP relaxation is given by (11) with optimal solution x∗ = ( 135 , 4
5 ) and value −8.

This solution is not integer, and both integer variables have fractional values. We may thus branch on either
variable. Choosing the variable x1, we obtain the infeasible LP

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x1 ≥ 3

and the LP
min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x1 ≤ 2, (15)

whose solution is given by x∗ = (2, 1
2 ) with value − 13

2 . Thus the lower bound on the optimal value of the MILP
has improved from −8 to min(+∞,− 13

2 ) = − 13
2 .

We need to pursue only the branch defined by the second LP (15). Its solution has only one fractional
variable x2, with value 1

2 , branching on which yields the two LPs

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x1 ≤ 2, x2 ≥ 1, (16)

min
x∈R2

+

(3x2 − 4x1) : x1 − 2x2 ≤ 1, 2x1 + x2 ≤ 6, x1 ≤ 2, x2 ≤ 0. (17)

Both LPs yields integer solutions, namely (2, 1) and (1, 0), with values −5 and −4, respectively.
Thus the optimal value of the MILP is the lower of these values, namely −5, and the corresponding solution

is (2, 1).
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Figure 6: Approximations of the complementarity condition xisi = 0.

7.8 Interior-point methods

As mentioned above, interior-point methods for LPs maintain the inequality constraints x ≥ 0, s ≥ 0, and
possibly the equality constraints x ∈ AP , s ∈ AD, while trying to get increasingly closer to satisfaction of the
complementarity condition xisi = 0, i = 1, . . . , n.

In the two-dimensional space of the variables xi, si, the complementarity condition defines a non-convex,
non-smooth set, namely the union of the positive axes. We approximate this set by a family of hyperbolas
xisi = µ. As µ→ 0, these hyperbolas tend to the union of the axes (see Fig. 6).

The method aims at decreasing µ = ⟨x,s⟩
n in a way such that the individual products xisi tend to zero

uniformly. More precisely, the iterates should not leave the set

Nγ = {(x, s) ∈ Rn
+ × Rn

+ | xisi ≥ γµ ∀ i = 1, . . . , n},

where γ < 1 is a positive constant, typically of the order 103. An interior-point iteration consists of a Newton
step towards the solution of the non-linear system of equations

x ∈ AP , s ∈ AD, xisi = µk ∀ i = 1, . . . , n,

where µk measures the accuracy achieved at the current iteration and µk+1 = σµk for some suitable σ ∈ (0, 1).

Feasible methods generate iterates in the affine subspace (x, s) ∈ AP ×AD. The innovations δx, δs are hence
located in the linear subspaces underlying AP ,AD. For convenience, we consider also the innovation δy of the
auxiliary variable y ∈ Rm which parameterizes the affine subspace AD. For given values (x, s, y) at the current
iterate, satisfying the relations Ax = b, s+AT y = c, and given µ > 0 we wish to solve the system of equations

A(x+ δx) = b, s+ δs +AT (y + δy) = c, (xi + δx,i)(si + δs,i) = µ. (18)

Linearizing the system around (δx, δs, δy) = 0 and solving for the innovations, we obtain the linear system A 0 0
0 I AT

diag(s) diag(x) 0

δx
δs
δy

 =

 0
0

µ · 1− x • s

 ,

where 1 is the all-ones vector and • stands for element-wise multiplication.
The solution of this system cannot always be used to determine the innovations. We have also to ensure that

the next iterate stays in the set Nγ . To this end, we introduce a damping coefficient α ∈ (0, 1] and make a step

(x, s, y)← (x, s, y) + α(δx, δs, δy). (19)
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Inclusion into Nγ then can be written as

(xi + αδx,i)(si + αδs,i) ≥ γµ ∀ i = 1, . . . , n.

The actual step-size α is then chosen as the minimum of the value 1 and the largest positive value α which
satisfies these n scalar quadratic inequalities.

The algorithm can be designed with an adaptive step-size: if the values of α become smaller, the quantity µ
can be updated less aggressively, and if the algorithm makes full steps, then we may decrease the factor σ which
is used to drive µ towards zero.

Since the scalar product ⟨x, s⟩ equals the duality gap between the primal and dual objective values at the
current iterates x, s, the progress of the algorithm can be monitored by tracking the evolution of µ.

Clearly for a feasible method to work, we have to require existence of a strictly feasible primal-dual pair
(x, s). In this case we can parameterize the set of all such pairs by the positive orthant Rn

++. Namely, we have
the following result.

Lemma 7.6. Suppose problems (6),(7) are both strictly feasible. Then for every z ∈ Rn
++, there exists a unique

strictly primal-dual feasible pair (x, s) such that z = x • s.

Proof. Let z > 0 be arbitrary. Consider the optimization problem

min
x≥0

(⟨c, x⟩ − ⟨z, log x⟩) : Ax = b. (20)

The feasible set of this problem is the same as in the primal LP, while the objective function is strictly convex.
Since (6) is strictly feasible, problem (20) is strictly feasible too.

Note that on any compact subset of the feasible set the objective in problem (20) is bounded from below,
and the objective tends to +∞ as x tends to the boundary of the feasible set. We now show that there exists a
solution to this problem. Let ϕ be its optimal value, including −∞.

Suppose for the sake of contradiction that no solution exists. Let {xk}k∈N be a sequence such that ⟨c, xk⟩ −
⟨z, log xk⟩ → ϕ as k → ∞. Then we must have xk → ∞ too. Choose a subsequence such that xk

∥xk∥ has a

limit x∗ on the unit sphere as k → ∞. Since the objective values approach the limit ϕ from above, we must
have ⟨c, x∗⟩ ≤ 0, otherwise the linear term dominates the logarithmic one and the values tend to +∞. On the
other hand, x∗ is a recessive direction of the feasible set, i.e., Ax∗ = 0. This yields for every dual feasible vector
s = c−AT y that

0 ≤ ⟨s, x∗⟩ = ⟨c, x∗⟩ − ⟨y,Ax∗⟩ = ⟨c, x∗⟩ ≤ 0.

Thus s lies on the boundary of the nonnegative orthant, and the dual problem (7) is not strictly feasible, a
contradiction.

Let x∗ be the unique solution of problem (20). The constraints x ≥ 0 are not active at this solution. Hence
the optimality conditions at x∗ amount to the existence of a vector y ∈ Rm such that the Lagrangian

⟨c, x⟩ − ⟨z, log x⟩ − ⟨y,Ax− b⟩

has a vanishing derivative with respect to x at x = x∗. This yields

c− z • (x∗)−1 −AT y = 0,

and s∗ = z • (x∗)−1 is strictly dual feasible. Then (x∗, s∗) provide the sought primal-dual strictly feasible pair.
On the other hand, every such pair (x, s) satisfies the optimality condition of problem (20) and must hence

coincide with (x∗, s∗).

Clearly for every strictly primal-dual feasible pair (x, s) we have x • s > 0, and hence the set of such pairs is
in bijection with the open orthant Rn

++ under the quadratic map (x, s) 7→ x • s.
If the point z ∈ Rn

++ tends to the origin, then its pre-image in AP ×AD tends to the solutions of problems
(6),(7). The interior-point method tries to trace the primal-dual strictly feasible curve defined by the pre-image
of the ray generated by the all-ones vector 1 in Rn

++.

Feasible methods have the inconvenience of necessitating a primal-dual feasible point in the interior of the
orthants. This requires a preliminary phase to find such a point. Infeasible methods, on the contrary, try to
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decrease the difference Ax − b and s + AT y − c along with µ. Linearizing equations (18) we obtain the linear
system  A 0 0

0 I AT

diag(s) diag(x) 0

δx
δs
δy

 =

 b−Ax
c− s−AT y
µ · 1− x • s


with a modified right-hand side. When determining the step-size α in the iterate (19), we ensure not only
inclusion of the next point in the set Nγ , but also the condition

||Ax− b||+ ||s+AT y − c|| ≤ β · µ

with β a suitable constant. This ensures that the feasibility gap tends to zero along with the duality gap.
Checking this condition also amounts to a solution of a scalar quadratic equation with respect to the step size
α.

Note that the mismatch Ax− b, s+ AT y − c in the linear equality conditions decreases at each step by the
factor 1− α. Thus as soon as we make a full step with α = 1, the primal-dual pair (x, s) becomes feasible and
stays feasible during all subsequent iterations.

More details on interior-point methods for linear programming can be found, e.g., in [1].

7.9 Liftings

The complexity of an LP depends primarily on the number of linear inequalities. In some situations it may be
beneficial to add additional design variables to decrease the number of inequalities.

Example: Consider the unit ball of the 1-norm in Rn, B1 = {x | ||x||1 =
∑

i |xi| ≤ 1}. This polytope has
2n facets, and hence a direct description will need 2n linear inequalities. Let us, however, add n additional
variables s1, . . . , sn, and consider the set

C =

{
(x, s) | − si ≤ xi ≤ si,

∑
i

si ≤ 1

}
.

Then x ∈ B1 if and only if there exists s such that (x, s) ∈ C. In other words, B1 can be represented as a
projection of C. In any LP involving B1 this polytope can be replaced by C. The latter is described by only
2n+ 1 inequalities at the cost of n additional variables.

A description of a convex set by a projection of another (usually simpler) convex set is called a lifting. For
a given polytope

X = {x |Aeqx = beq, Aineqx ≤ bineq},

one can then ask what the minimal number of inequalities needed to describe X by a lifting is. The answer can
be obtained by considering the slack matrix of X.

Let v1, . . . , vN be the vertices of X, and let m be the number of inequalities in the description of X. The
slack matrix of X is the nonnegative m×N matrix S with elements

Sij = −(Aineqvj − bineq)i.

We have the following result [2].

Theorem 7.7. Let X be a polytope and let S be its slack matrix. Suppose that every inequality is attained with
equality somewhere on X, i.e., the inequalities are tight. Then the minimal number of inequalities required for
a lifted representation of X is equal to the nonnegative rank of S.

Here the nonnegative rank of S is the minimal number k such that there exists a nonnegative factorization
S = S1S2 with S1 ∈ Rm×k, S2 ∈ Rk×N .

Proof. Let X = {x |Cx = d, Ax ≤ b}, and let S = S1S2 be a nonnegative factorization of the slack matrix.
Define the polytope

X ′ = {(x, y) |Cx = d, Ax+ S1y = b, y ≥ 0}.
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The polytope X ′ is described by k inequalities, where k is the number of columns of S1. We claim that X ′ is a
lifting of X.

Indeed, every point (x, y) ∈ X ′ projects to a point of X since S1y ≥ 0. On the other hand, let vi be the
i-th vertex of X and si the i-th column of S2. Then (vi, si) ∈ X ′, because S1si is the i-th column of S and
equals −(Avi − b). Hence the projection of X ′ is contained in X and contains all extreme points of X. Thus
this projection equals X.

Let now X = {x |Ax ≤ b} be a polytope described by m inequalities and X ′ = {(x, y) |Cx+Dy = c, y ≥ 0}
be an arbitrary lifting of X with k inequalities. Then for every vertex vi, i = 1, . . . , N of X there exists
(vi, si) ∈ X ′ with si ≥ 0. The polytope X ′ has an empty intersection with the half-space {(x, y) | aTj x > bj},
where aj is the j-th row of AT . Since the hyperplane {(x, y) | aTj x = bj} is supporting to X ′, it follows

that the inequality aTj x ≤ bj is a linear combination of the equalities Cx + Dy = c and inequalities y ≥ 0
with arbitrary and nonnegative coefficients, respectively. Therefore there exist vectors µj ≥ 0, λj such that
λT
j C = aTj , λ

T
j D − µT

j = 0, λT
j c = bj . The slack matrix of X is then given by the elements

Sji = −aTj vi + bj = −λT
j Cvi + λT

j c = λT
j Dsi = µT

j si.

Hence S = S1S2 with S2 = (s1, . . . , sN ) and ST
1 = (µ1, . . . , µm) is a nonnegative factorization of S with factors

of sizes m× k and k ×N .

However, finding the nonnegative rank of a given nonnegative matrix is a hard problem.

Example: Lifting of a regular 2n+2-gon.
Let us consider the planar polyhedral set P given by{

x | ∃ u0, . . . , un, v1, . . . , vn : vi =

(
cos π

2i+1 sin π
2i+1

− sin π
2i+1 cos π

2i+1

)
ui−1, ui,1 = vi,1, ui,2 ≥ |vi,2|, i = 1, . . . , n;

|x| ≤ u0,

(
1 0

− tan π
2n+2 1

)
un ≤ (1, 0)T

}
,

where n ≥ 0 is an integer and the inequalities are meant element-wise.
For every point x ∈ P and feasible vectors u0, . . . , un, v1, . . . , vn we have that

∥u0∥ ≥ ∥x∥; ∥vi∥ = ∥ui−1∥, ∥ui∥ ≥ ∥vi∥, i = 1, . . . , n; ∥un∥ ≤
√
1 + tan2

π

2n+2
.

Hence P is contained in the disc with radius
√

1 + tan2 π
2n+2 = 1

cos π

2n+2
. Let φi, ξi be the arguments of ui, vi,

respectively.
If a point x ∈ P has the maximal norm 1

cos π

2n+2
, then all vectors ui, vi must have this length. It follows

that un = (1, tan π
2n+2 ) and the argument of un is φn = π

2n+2 . Depending on whether φi = ξi or φi = −ξi for
i = 1, . . . , n, the angle φ0 of u0 takes values π

2n+2 , . . . ,
π
2 −

π
2n+2 on a regular grid with step length π

2n+1 . But
then the argument of x can take values π

2n+2 , . . . , 2π − π
2n+2 on a regular grid with step length π

2n+1 .
There are hence vertices of the polyhedron P given by

wk =
1

cos π
2n+2

(
cos

(
kπ

2n+1 − π
2n+2

)
sin

(
kπ

2n+1 − π
2n+2

)) , k = 1, . . . , 2n+2.

It is directly checked that there are no vertices with strictly lower norm.
The supporting linear functionals are given by

Ll(x) = 1− cos
lπ

2n+1
x1 − sin

lπ

2n+1
x2, l = 1, . . . , 2n+2.

Hence the slack matrix is of size 2n+2 × 2n+2 and has elements

Skl = 1− 1

cos π
2n+2

(
cos

lπ

2n+1
cos

(
kπ

2n+1
− π

2n+2

)
+ sin

lπ

2n+1
sin

(
kπ

2n+1
− π

2n+2

))
= 1−

cos
(

(l−k)π
2n+1 + π

2n+2

)
cos π

2n+2

.

On the other hand, the polyhedron P is given by a lifting with 2n + 6 inequalities. This corresponds to a
nonnegative factorization of S = FGT into factors F,G of size 2n+2 × (2n+ 6).
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7.10 Application: resource allocation

Suppose we may fabricate a number of products which we can sell at prices p1, . . . , pn, respectively. The
production of a unit of product l consumes akl units of raw material k, k = 1, . . . ,K, of which a total quantity
of rk units is available. We wish to choose the quantities x1, . . . , xn of each product to be produced in order to
maximize the revenue.

The problem can be formalized as the LP

min
x
−⟨p, x⟩ : Ax ≤ r, x ≥ 0,

where A is the K × n matrix made up of the coefficients akl, and x, r, p are the vectors made up of the
corresponding elements. The constraint x ≥ 0 is necessary to prevent the conversion of products back to raw
materials, which would correspond to a negative quantity xl.

If all or some of the products can only be produced in integer numbers, the problem becomes a MILP.

7.11 Application: sparse recovery

Suppose we observe a noisy linear image of a sparse vector x,

y = Ax+ ξ,

where A ∈ Rm×n encodes the linear map, and ξ is a noise term bounded by a constant δ by absolute value.
Here we suppose that m≪ n, i.e., the number of observations is smaller than the dimension of the vector x.

Our goal is to recover the vector x. Obviously, even in the absence of noise, the linear system Ax = y is
underdetermined. We hence cannot just employ linear regression, but we have to use somehow the information
that the vector x is sparse. Ideally, we should hence solve the problem

min
x
∥x∥0 : ∥Ax− y∥∞ ≤ δ,

where ∥x∥0 denotes the number of non-zero components of x.
This is a highly non-convex difficult problem. However, we may relax this problem by replacing the 0-”norm”

by the 1-norm, obtaining the convex problem

min
x
∥x∥1 : ∥Ax− y∥∞ ≤ δ.

This problem in turn can be rewritten as

min
x,t
⟨1, t⟩ : −t ≤ x ≤ t, −δ ≤ Ax− y ≤ δ.

Obviously, this is a linear program.
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