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8 Symmetric cones

In this section we shall introduce a class of cones which is very important for convex programming, the symmetric
cones. These cones generalize the positive orthant Rn

+, and the programs associated to the symmetric cones
accordingly generalize the class of linear programs, while retaining most of their favorable properties. The class
of symmetric cones is defined as the intersection of two classes of cones characterized by geometric properties,
the homogeneous cones and the self-dual cones.

Definition 8.1. A closed convex cone K is called symmetric if it is both homogeneous and self-dual.

8.1 Homogeneous cones

Definition 8.2. Let K ⊂ V be a closed convex cone in some vector space. An automorphism of K is an
automorphism A of V such that A[K] = K.

The automorphisms of K form a group, the automorphism group AutK of the cone. The automorphism
group always contains the 1-parametric subgroup of homotheties, i.e., maps gλ : v 7→ λv which multiply every
vector by a positive constant λ.

Definition 8.3. A regular convex cone K is called homogeneous if its automorphism group acts transitively on
the interior of K, i.e., if for every x, y ∈ Ko there exists an automorphism A ∈ AutK such that Ax = y.

In a homogeneous cone every interior point is hence equivalent to any other interior point, and every interior
point can be considered as the center of the cone. The homogeneous cones can be put into 1-to-1 correspondence
with algebraic structures, so-called T-algebras [9]. A more explicit classification is also available [7, 4].

An example of a homogeneous cone which is not symmetric is given by the 5-dimensional cone {A ∈
S3
+ |A23 = 0}.

8.2 Self-dual cones

Let the vector space V be equipped with a Euclidean scalar product ⟨·, ·⟩. This allows to identify the dual
vector space V ∗ with V itself. The linear functional p ∈ V ∗ is identified with the element y ∈ V such that
⟨p, x⟩ = ⟨y, x⟩. Here on the left we have the dual pairing, and on the right the scalar product.

Definition 8.4. Let K ⊂ V be a closed convex cone, with the ambient vector space V equipped with a scalar
product. Then K is called self-dual if K∗ = K under the identification of V with V ∗ by the scalar product.

If no scalar product is defined a priori, then K is called self-dual if there exists a scalar product on V such
that K∗ = K under the identification of V with V ∗ generated by this scalar product.

There exists also a wider definition of self-dual cones, namely a cone is called self-dual if it is linearly
isomorphic to its dual.

An example of a self-dual cone which is not symmetric is given by the power cone {(x, y, z) ∈ R3 |x ≥ 0, y ≥
0, |z| ≤ x1/py1/q}, where 1

p + 1
q = 1 and p ∈ (2,+∞).

8.3 Jordan algebras

Symmetric cones possess a rich algebraic structure and are closely linked to a class of non-associative algebras.

Definition 8.5. A real algebra A is a real vector space equipped with a bilinear multiplication • : A×A → A.
It is called commutative if a • b = b • a for all a, b ∈ A, and associative if (a • b) • c = a • (b • c) for all a, b, c ∈ A.

Definition 8.6. A real algebra A is called a Jordan algebra if it is commutative and satisfies the Jordan identity
(x • x) • (x • y) = x • ((x • x) • y) for all x, y ∈ A.

This means it is the same if we multiply y first by x and then by x2 or first by x2 and then by x.

A Jordan algebra is called Euclidean if
∑m

k=1 xk • xk = 0 implies x1 = · · · = xm = 0 for all x1, . . . , xm ∈ A.
Then the symmetric cones are exactly the cones of squares of the Euclidean Jordan algebras.
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Theorem 8.7. Let K ⊂ V be a symmetric cone. Then there exists a Euclidean Jordan algebra structure with
multiplication • on V such that K = {x • x |x ∈ V }.

On the other hand, for every Euclidean Jordan algebra A the set {x • x |x ∈ A} is a symmetric cone, and
non-isomorphic algebras produce non-isomorphic cones.

Euclidean Jordan algebras are equipped with a natural scalar product given by

⟨x, y⟩ = tr Lx•y,

where Lx : A → A is the linear operator of multiplication by x, Lxu := x • u.

Euclidean Jordan algebras always possess an identity element I.

Definition 8.8. An idempotent of an algebra A is an element x ∈ A obeying x2 = x.
Two idempotents x, y are orthogonal if x • y = 0.
A primitive idempotent is an idempotent which can not be written as a non-trivial sum of orthogonal

idempotents.
A Jordan frame if a set of orthogonal primitive idempotents which sum to the identity I.
The number of elements in the Jordan frame is always the same and defines the rank of the Euclidean Jordan

algebra.

Theorem 8.9. (Spectral decomposition) Every element x ∈ A of a Euclidean Jordan algebra can in a unique
manner be decomposed as a sum x =

∑
i λiei, where λi are distinct real numbers, the eigenvalues of x, and ei

are orthogonal idempotents which sum to the identity element.
The multiplicity of the eigenvalue λi is the number of primitive idempotents which have to be summed to

obtain the idempotent ei.
The rank of x is the number of non-zero eigenvalues of x, counting their multiplicities.
The determinant of x is the product of its eigenvalues, counting their multiplicities.
As a function of x the determinant is a homogeneous polynomial of degree equal to the rank of the algebra.

Definition 8.10. Let x ∈ A be an element of a Jordan algebra with identity I. An element y ∈ A is called
inverse of x, denoted by x−1, if x • y = I and the operators Lx, Ly commute.

If such an element y exists, then x is called invertible.

In a Euclidean Jordan algebra an element x is invertible if and only if its determinant is non-zero. If
x =

∑
i λiei is the spectral decomposition of x, then the inverse is given by x−1 =

∑
i λ

−1
i ei.

An element x is in the symmetric cone of the algebra A if and only if all its eigenvalues are nonnegative.
The symmetric cone can hence also be seen as the cone of ”positive semi-definite” elements of the algebra.

Attention: The same symmetric cone can be produced by different Euclidean Jordan algebras, but all these
algebras will be isomorphic. The identity elements, scalar products, idempotents, inverses etc. will, however,
depend on the chosen algebra. Every element in the interior of the cone may, e.g., take over the role of the
identity element, in accordance with the homogeneity of the cone.

8.4 Classification

The symmetric cones have been fully classified. The classification is obtained via the equivalent classification of
Euclidean Jordan algebras [6].

Theorem 8.11. Every symmetric cone K is a direct product of a finite number of symmetric cones K1, . . . ,Km,
each of which is either a member of one of the following families, indexed by a natural number n ≥ 1:

� Lorentz cone Ln = {x ∈ Rn |x0 ≥
√∑n−1

j=1 x2
j},

� real symmetric positive semi-definite matrix cone Sn
+ = {A = AT |xTAx ≥ 0 ∀ x ∈ Rn},

� complex Hermitian positive semi-definite matrix cone Hn
+ = {A = A∗ |x∗Ax ≥ 0 ∀ x ∈ Cn},
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� quaternionic Hermitian positive semi-definite matrix cone Qn
+ = {A = A∗ |x∗Ax ≥ 0 ∀ x ∈ Hn};

or the exceptional 27-dimensional Albert cone, which is the cone O3
+ of octonionic Hermitian positive semi-

definite 3× 3 matrices.
Every cone except L2 = L2

1 which was listed above is symmetric and cannot be further decomposed in a
non-trivial manner (i.e., it is irreducible).

For n = 1 all families yield the 1-dimensional cone R+, and the matrix cones for n = 2 are all isomorphic to
a Lorentz cone. Apart from these exceptions, the irreducible cones listed above are mutually non-isomorphic.
Note that the orthant Rn

+ is a direct product of n copies of the 1-dimensional cone and is hence also symmetric.

The Jordan multiplication for the Lorentz cone is given by(
a
u

)
•
(
b
v

)
=

(
ab+ uT v
bu+ av

)
.

The Jordan multiplication for the matrix cones is given by

A •B =
AB +BA

2
,

where the product on the right-hand side is the ordinary matrix multiplication.
The Jordan multiplication for a product cone K1 × K2 is given by (x1, x2) • (y1, y2) = (x1 • y1, x2 • y2),

xi, yi ∈ Ki, i = 1, 2.
The Jordan multiplication for the orthant Rn

+ is hence the element-wise multiplication of real vectors in Rn.

If A is a real symmetric (complex Hermitian, quaternionic Hermitian) matrix, we shall write A ⪰ 0 for
A ∈ Sn

+ (A ∈ Hn
+, A ∈ Qn

+) and call A positive semi-definite, and we shall write A ≻ 0 for A ∈ intSn
+

(A ∈ intHn
+, A ∈ intQn

+) and call A positive definite.

8.5 Facial structure

Definition 8.12. A convex subset F of a convex set X is called a face of X if for every line segment l ⊂ X
such that F ∩ ri l ̸= ∅ we have l ⊂ F .

A face F of X is called proper if F ̸= ∅ and F ̸= X.
A face F of a convex set X is called exposed if there exists a hyperplane H such that F = X ∩ H and

X ̸⊂ H.
The faces of Rn

+ are indexed by the 2n subsets of indices 1, . . . , n. A subset I ⊂ {1, . . . , n} defines a face by

FI = {x ∈ Rn
+ |xj = 0 ∀ j ̸∈ I}.

So, the whole index set I = {1, . . . , n} corresponds to the cone itself, and the set I = ∅ corresponds to the face

{0}. The dimension of the face FI equals #I (the cardinality of I), and it is isomorphic to the cone R#I
+ .

The face FĪ with Ī = {1, . . . , n} \ I is the complementary face to FI , it is the maximal face such that
FI • FĪ = 0.

The non-zero faces of Sn
+ are of the form

FH = {F ·A · FT |A ∈ Sk
+},

where k ∈ {1, . . . , n}, H is a k-dimensional linear subspace of Rn (a point of the Grassmanian Gr(k,Rn)), and
F is a n× k matrix containing a basis of H as columns. Multiplication of F from the right by a non-degenerate
matrix (an element of GLk(R)) changes the basis, but not its column span, which equals the subspace H, and

hence leads to the same face. The face FH is isomorphic to the cone Sk
+, and its dimension equals k(k+1)

2 . The
zero face can be seen as the face F{0} belonging to the zero subspace.

The face FH⊥ with H⊥ the orthogonal complement to H is the complementary face to FH .

The Lorentz cone Ln has the improper faces {0} and Ln. All proper faces are extreme rays of Ln, and every
extreme ray is a proper face.

The face complementary to the face R+ · (1, uT )T is the face R+ · (1,−uT )T , where ||u|| = 1.
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Figure 1: Identity and primitive idempotents in the algebra of the Lorentz cone
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An extensive treatment of symmetric cones can be found in [5].

8.7 Universality of the real symmetric semi-definite cone

All symmetric cones can be represented as intersections of a cone of positive semi-definite real symmetric matrices
with a linear subspace.

We have (x0, x1, . . . , xn−1)
T ∈ Ln if and only if

x0 + x1 x2 · · · xn−1

x2 x0 − x1 0 0
... 0

. . . 0
xn−1 0 0 x0 − x1

 ⪰ 0.

We have x ∈ Rn
+ if and only if diag(x) ⪰ 0.

For a complex Hermitian matrix A = S + iK, where S is real symmetric and K is real skew-symmetric, we
have A ⪰ 0 if and only if (

S K
−K S

)
⪰ 0.
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For a quaternionic Hermitian matrix A = S + iK + jL + kM , where S is real symmetric and K,L,M are
real skew-symmetric, we have A ⪰ 0 if and only if

S K L M
−K S −M L
−L M S −K
−M −L K S

 ⪰ 0.

Let K = K1 × K2 be a product cone, and suppose A1 ∈ K1 if and only if L1(A1) ⪰ 0, and A2 ∈ K2 if
and only if L2(A2) ⪰ 0, where L1, L2 are linear matrix-valued maps encoding the representations of K1,K2

as intersections of linear subspaces with real symmetric matrix cones. Construct the linear matrix valued map
L on the product A1 × A2 by L(A1, A2) = diag(L1(A1),L2(A2)). Then we have (A1, A2) ∈ K if and only if
L(A1, A2) ⪰ 0, and L represents the product cone K as intersection of a real symmetric matrix cone with a
linear subspace.

Definition 8.13. Intersections of linear subspaces with the cone of positive semi-definite real symmetric matrices
are called spectrahedral cones.

Definition 8.14. A cone which can be represented as a linear image of a spectrahedral cone is called semi-
definite representable.

The above results can be rephrased as: every symmetric cone is a spectrahedral cone. Actually, even every
homogeneous cone is a spectrahedral cone [2].

9 Conic programs

In this section we consider a large class of convex optimization problems, the conic programs. Actually, every
convex optimization problem can be formulated as a conic program. However, this form is more convenient for
certain problems and less convenient for others.

9.1 Formulation

Definition 9.1. A conic program over a regular convex cone K is an optimization problem of the form

inf
x∈K

cTx : Ax = b. (1)

Here x ∈ K is the conic constraint, Ax = b is a linear constraint, and the objective function is linear. The
feasible set of a conic program is hence an intersection of the cone with an affine subspace. As the intersection
of convex sets it is convex. The objective function is convex too, and hence a conic program formally belongs
to the class of convex problems. The complexity of a conic program is encoded in the cone K, and whether the
conic program is efficiently solvable depends on which descriptions of the cone K are available.

Since every closed convex set can be written as an intersection of an affine subspace with a regular convex
cone, and minimizing a convex function is equivalent to minimizing a linear function over the epigraph of the
original function, every convex problem can actually be rewritten as a conic program.

We may write a conic program also in the form

min
x

cTx : Ax+ b ∈ K.

Here the decision variable x directly parameterizes the affine hull of the feasible set.
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9.2 Equivalence of conic programs over different cones

Conic solvers are able to handle problems over a restricted collection of standard cones and their direct products.
Usually these are the nonnegative orthants Rn

+ (for LP solvers), plus the Lorentz cones Ln (for SOCP solvers),
plus the matrix cones Sn

+ (for SDP solvers). Some solvers are able to handle the matrix cones Hn
+ too. In recent

years solvers appear that are able to solve conic programs over a very limited number of nonsymmetric cones,
namely the exponential cone Kexp and the power cones.

It is therefore necessary to convert the optimization problem to solve into a standard form which can be
handled by a solver. Sometimes this is a non-trivial task, and the corresponding representability results employ
advanced mathematics. Here we consider a more common and simple case to convert a conic problem over a
cone K into a conic problem over another cone K ′, where K is a linear section or a linear projection of K ′.

K is a section of K ′: Let V ⊂ V ′ be a linear subspace of a real vector space, K ′ ⊂ V ′ be a regular convex
cone, such that K = K ′ ∩ V . Let a conic program of the form (1) over K be given. Then this problem is
equivalent to the conic program

min
y∈K′

⟨c′, y⟩ : A′y = b, y ∈ V

over the cone K ′. Here c′ is an arbitrary extension of the linear functional c, and A′ is an arbitrary extension of
the linear operator A from V to V ′. This means that c′ and A′ coincide with c and A on V ⊂ V ′, respectively.
Note that the condition y ∈ V is a linear equality constraint, so the problem is indeed a conic program over K ′.

Usually this type of equivalence is already implicitly assumed in the formulation by considering x as an
element of V ′ instead an element of V .

K is a projection of K ′: This type of equivalence is called lifting and is sometimes not so trivial to find. Let
K ⊂ V be a regular convex cone. Let further Π : V ′ → V be a linear map and K ′ ⊂ V ′ be a regular convex
cone such that Π[K ′] = K. Then (1) is equivalent to the program

min
y∈K′

⟨Π†c, y⟩ : AΠ(y) = b,

where c′ = Π†c is the linear functional on V ′ defined by ⟨c′, y⟩ := ⟨c,Π(y)⟩.
Often a lifting is accomplished by adding variables z ∈ V ′′ in the problem formulation such that V ′ = V ⊗V ′′,

where V ′′ is yet another real vector space. Then y := (x, z), Π(y) := x, and the problem takes the form

min
(x,z)∈K′

⟨c, x⟩ : Ax = b.

In Section (8.7) it was demonstrated that all symmetric cone programs can be reduced to SDPs.

9.3 Examples

Linear programs: If the conic constraints involve orthants Rn
+ only, then the resulting conic program is a Linear

Program (LP).

Second order cone programs: If the conic constraints involve only products Ln1 ×· · ·×Lnm of Lorentz cones,
then the resulting conic program is a Second Order Cone Program (SOCP).

An LP is also an SOCP, because Rn
+ = Ln

1 , but not every SOCP can be cast as an LP. An SOCP can,
however, be approximated by LPs with a polynomial increase in complexity [1].

Semi-definite programming: If the conic constraints involve matrix cones only, then the resulting conic
program is a Semi-Definite Program (SDP). Any LP or SOCP, and more generally every symmetric cone
program, can be written as an SDP by the universality property of the semi-definite matrix cone. However, it
is not advisable to treat LPs and SOCPs as SDPs due to their better structure and the availability of dedicated
solution methods. SDPs cannot in general be approximated by LPs with a polynomial increase in complexity
only.

Copositive programs: Let Cn be the cone of real symmetric n× n matrices A such that xTAx ≥ 0 for every
x ∈ Rn

+. This cone is called the copositive cone. Its difference with the positive semi-definite cone is that we
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require A to be nonnegative only on nonnegative vectors. The cone Cn is regular, but to decide whether a given
point is not in Cn is NP-complete [8]. Efficient methods for solving generic programs over the copositive cone
are hence unlikely to exist.

Geometric programs: A geometric program (GP) aims to minimize an objective function f0(x) over the
positive orthant Rn

++ with respect to inequality constraints fi(x) ≤ 1 and equality constraints hj(x) = 1. Here
the fi are posynomials, i.e., of the form

∑
k ck

∏
l x

αkl

l with ck > 0, and the hj are monomials, i.e., of the form
c
∏

l x
αl

l with c > 0. The problem can be formalized as

min
x∈Rn

++

∑
k

c0k
∏
l

xα0kl

l :
∑
k

cik
∏
l

xαikl

l ≤ 1, i = 1, . . . ,m; cj
∏
l

x
αjl

l = 1, j = 1, . . . ,m′.

Introducing the variable change y = log x and b = log c, the problem can be rewritten as

min
y∈Rn

∑
k

eb0k+
∑

l α0klyl :
∑
k

ebik+
∑

l αiklyl ≤ 1, i = 1, . . . ,m; bj +
∑
l

αjlyl = 0, j = 1, . . . ,m′.

Introducing additional variables and defining the 3-dimensional convex cone

Kexp = {(x, y, 0) |x ≤ 0, y ≥ 0} ∪ {(x, y, z) | z > 0, y ≥ zex/z},

the problem can be rewritten as

min
y∈Rn

∑
k

d0k : (bik +
∑
l

αiklyl, dik, 1) ∈ Kexp ∀ k, i = 0, . . . ,m;
∑
k

dik = 1, i = 1, . . . ,m;

bj +
∑
l

αjlyl = 0, j = 1, . . . ,m′.

The problem now has a linear objective function and involves only linear equality constraints and conic con-
straints described by the cone Kexp.

The cone Kexp is the closure of the homogenization of the epigraph of the exponential function. It is self-dual
in the wider sense that it is isomorphic to K∗

exp, but it is not homogeneous.

9.4 Duality

To any conic program over a cone K one can define a dual program over the dual cone K∗. To contrast it with
the dual problem, the original problem is called the primal. In order to obtain the dual program we dualize the
conic constraint by means of a variable λ ∈ K∗, as follows:(

min
x∈K

cTx : Ax = b

)
=

(
min
x

max
λ∈K∗

(cTx− λTx) : Ax = b

)
≥

≥
(
max
λ∈K∗

min
x

(cTx− λTx) : Ax = b

)
=

(
max
λ∈K∗

sT b : c− λ = AT s

)
=

(
max

s
sT b : c−AT s ∈ K∗

)
.

In the third step we used that the minimum minx(c
Tx − λTx) : Ax = b is finite if and only if the linear

functional c − λ is constant on the affine subspace defined by the equations Ax = b. This happens if and only
if c− λ can be expressed as a product AT s for some vector s.

The dual program is hence a maximization problem, and every feasible point for the dual problem yields
a lower bound on the objective value of the primal problem. Vice versa, every feasible point for the primal
problem yields an upper bound on the objective value of the dual problem.

Similarly to the case of LPs we may write the pair of conic programs in the following more symmetric form.
Let L,L⊥ be complementary linear subspaces of the primal and the dual vector space, respectively. Then the
primal-dual pair can be written as

min(cTx+ const) : x ∈ K ∩ (L+ b),
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max(−bT s+ const) : s ∈ K∗ ∩ (L⊥ + c).

The vectors b, c are not necessarily equal to those in the original problem formulation.

Primal-dual optimization methods treat both problems simultaneously and symmetrically, producing a se-
quence of primal-dual pairs of iterates whose objective values approach each other.

The optimal values of the primal and dual programs, even if they both exist, do not need to coincide. In
this case one speaks of a duality gap.

9.5 Second-order cone programs

Linear programs can be used to solve problems with linear constraints and a linear cost function. The descriptive
power of second order cone programs (SOCP) is much higher. Below are examples of constraints which can be
reformulated as second order cone constraints.

� ||x||22 ≤ t, x ∈ Rn is equivalent to ( t+1
2 , t−1

2 , x) ∈ Ln+2;

�

||x||22
s ≤ t, s ≥ 0, x ∈ Rn can be expressed as ( t+s

2 , t−s
2 , x) ∈ Ln+2;

� ts ≥ 1, t, s > 0 is equivalent to ( t+s
2 , t−s

2 , 1) ∈ L3;

� xTAx+ bTx+ c ≤ t for A ⪰ 0 is equivalent to ( t−bT x−c+1
2 , t−bT x−c−1

2 , A1/2x) ∈ Ln+2;

� |t| ≤ √
x1x2 and x1, x2 ≥ 0 is equivalent to (x1+x2

2 , x1−x2

2 , t) ∈ L3;

� t ≤ √
x1x2 and x1, x2 ≥ 0 is equivalent to t ≤ s, s ≥ 0, (x1+x2

2 , x1−x2

2 , s) ∈ L3.

Example: Minimization of a convex quadratic function over an intersection of ellipsoids. Consider the
problem

min
x∈Rn

(xTA0x+ bT0 x+ c0) : xTAix+ bTi x+ ci ≤ 0, i = 1, . . . ,m.

Here A0, . . . , Am are supposed to be positive semi-definite. This problem can be reformulated as the SOCP

min
x,t

t :

(
t− bT0 x− c0 + 1

2
,
t− bT0 x− c0 − 1

2
, A

1/2
0 x

)
∈ Ln+2,

(
1− bTi x− ci

2
,
1 + bTi x+ ci

2
, A

1/2
i x

)
∈ Ln+2, i = 1, . . . ,m.

9.6 Semi-definite programs

The descriptive power of SDPs is even higher than that of SOCPs. Below are examples of constraints which
can be reformulated as semi-definite constraints.

� λmax(X) ≤ t is equivalent to tI −X ⪰ 0;

� ||X||∞ ≤ t is equivalent to −tI ⪯ X ⪯ tI for symmetric matrices;

�

∑k
j=1 λj ≤ t, where λ1, . . . , λn are the ordered eigenvalues of X, is equivalent to t ≥ ks + tr Z, Z ⪰ 0,

Z + sI ⪰ X;

� A ⪰ BC†BT , C ⪰ 0, kerC ⊂ kerB is equivalent to

(
A B
BT C

)
⪰ 0;

� ||A||∞ ≤ t is equivalent to

(
tI A
AT tI

)
⪰ 0 for rectangular matrices;

75



Efficient Methods in Optimization Fall 2022

Figure 2: Separation of S from the numerical range

� (AXB)(AXB)T +CXD + (CXD)T +E ⪯ Y is equivalent to

(
I (AXB)T

AXB Y − E − CXD − (CXD)T

)
⪰ 0

(here X,Y are the design variables and A, . . . , E are the data of the problem);

� xTAx ≥ 0 for all x such that xTBx ≥ 0 and there exists x0 such that xT
0 Bx0 > 0 is equivalent to

A− λB ⪰ 0 and λ ≥ 0 (S-lemma).

In the last case A is the original design variable.
The proof of the S-lemma relies on the following theorem by Dines [3].

Theorem 9.2. Let A,B ∈ Sn be real symmetric matrices. Then the set {(xTAx, xTBx) ∈ R2 |x ∈ Rn} is
convex.

The set {(xTAx, xTBx) ∈ R2 |x ∈ Rn} is called the numerical range of the pair (A,B). The theorem then
says that the numerical range is a convex cone.

Lemma 9.3. Let A,B ∈ Sn such that there exists a vector x̂ ∈ Rn such that x̂TBx̂ > 0. Then the following
assertions are equivalent:

� xTAx ≥ 0 for all x such that xTBx ≥ 0,

� there exists λ ≥ 0 such that A− λB ⪰ 0.

Proof. If A− λB ⪰ 0 for some λ ≥ 0, then xTAx ≥ λxTBx for all x ∈ Rn, and the first assertion is evident.
Let us assume that xTAx ≥ 0 for all x such that xTBx ≥ 0. Then the set S = {(a, b) | a < 0, b ≥ 0} has

an empty intersection with the numerical range of (A,B). By convexity of the numerical range there exists a

1-dimensional linear subspace of R2 which separates it from S. Since there exists a point (â, b̂) in the numerical

range with â ≥ 0, b̂ > 0, this subspace cannot be the abscissa. It is therefore given by the equation a = λb for
some λ ≥ 0. But then a ≥ λb for all points (a, b) in the numerical range, which is equivalent to the condition
A− λB ⪰ 0.

More semi-definite representable constraints can be found in the lectures of A. Ben-Tal and A. Nemirovski
(https://www2.isye.gatech.edu/∼nemirovs/Lect ModConvOpt.pdf)
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