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4 Convexity

Parts marked with (⋆) are comments or more difficult questions. They are not discussed in the course and are
not necessary for the evaluation.

Convexity is at the heart of optimization. This is notably due to the unicity of projections onto
convex sets and the direct link between critical points and minimums for convex functions.

In this chapter, we will first study convex sets, then convex functions.

4.1 Convex sets

4.1.1 Motivation: Projecting onto a closed set

Similarly to orthogonal projections onto affine subspaces, we can define projection on nonempty closed sets.1
Thus, let us consider a non-empty closed set C and investigate the problem

inf
x∈C

Fy(x) :=
1

2
∥y − x∥2 (1)

which intuitively amounts to projecting y onto C.
First, take u ∈ C, and define S := {x ∈ Rn : ∥y − x∥2 ≤ ∥y − u∥2}. Then, the problem (1) is equivalent to

inf
x∈C∩S

Fy(x) :=
1

2
∥y − x∥2 (2)

where C ∩S is a closed compact set. Projecting thus amounts to minimizing a continuous function over a closed
compact set, which always admits a solution, as per the following lemma.
Lemma 1. Let F : Rn → R be a proper lower semi-continuous function (or in particular, a continuous function)
and let S be a closed compact set. Then, there is some x⋆ ∈ S such that F (x⋆) = infx∈S F (x).

Proof. (⋆) Since F is proper, it nevers takes the value −∞ thus β̄ := infx∈S F (x) > −∞. For a decreasing
sequence of reals (βn) with βn → β̄, let us define the sequence of the Sβn

= {x : F (x) ≤ βn}. For any n, Sβn
is

nonempty, closed, and included in Sβn−1
. Thus, the limit Sβ̄ = {x : F (x) = infu∈S F (u)} is also nonempty and

closed which gives the result.

This grants the existence of a minimizer of (2), and thus of (1), ie. a projection on C. In particular, the inf
above are actually min. However, the projection may not be unique, that is where convexity comes into play.2

4.1.2 Convexity for sets

Let us now introduce the definition of a convex set.

Definition 2. A subset C of Rn is convex if and only if for any x, u ∈ C, (1−α)x+αu ∈ C for any α ∈ (0, 1).

The crucial property here is that any (weighted) average of points of a convex set belongs stay in the set.
Equivalently, the set C is convex if and only if for any (x1, .., xN ) ∈ CN ,

N∑
i=1

αixi ∈ C for any (α1, .., αN ) ∈ RN
+ with

N∑
i=1

αi = 1,

where
∑N

i=1 αixi is called a convex combination of (x1, .., xN ).

Examples of convex sets:
1Nonempty: otherwise there is nothing to project onto. Closed: otherwise “the” closest point in a set from another point is not

well-defined.
2The above enables us to show the existence of projections onto nonempty closed sets, but the projection may not be unique.
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• Affine spaces {x : ⟨s, x⟩ = r}
• Balls {x : ∥x− s∥ ≤ r}
• Half spaces {x : ⟨s, x⟩ ≤ r} and open half spaces {x : ⟨s, x⟩ < r}
• Simplices {x :

∑n
i=1 xi = 1 and xi ≥ 0 for all i = 1, .., n}

• Intersections of convex sets ∩N
i=1Ci

Examples of non-convex sets:
• Discrete sets (eg. {0} ∪ {1}) or disjoint sets
• Spheres {x : ∥x− s∥ = r}
• Sets with “holes”

4.1.3 Projection on convex sets

Getting back to the projection problem (1)

min
x∈C

Fy(x) :=
1

2
∥y − x∥2 (3)

where S := {x ∈ Rn : ∥y − x∥2 ≤ ∥y − u∥2}. Now, let us assume that C is additionally convex.
Suppose that x1

⋆ ̸= x2
⋆ are two distinct solutions of (3). Define x0

⋆ = (x1
⋆ + x2

⋆)/2, then

Fy(x0
⋆) =

1

2
∥y − x0

⋆∥2 =
1

2
∥(y − x1

⋆)/2 + (y − x2
⋆)/2∥2

=
1

4
∥y − x1

⋆∥2 + 1

4
∥y − x2

⋆∥2 − 1

8
∥x1

⋆ − x2
⋆∥2

=
1

2
(Fy(x1

⋆) + Fy(x2
⋆))− 1

8
∥x1

⋆ − x2
⋆∥2

thus Fy(x0
⋆) < Fy(x1

⋆) = Fy(x2
⋆) which contradicts x1

⋆ ̸= x2
⋆ being two distinct solutions. Hence, the

projection on a convex set is unique. We have shown the following lemma.
Lemma 3. Let C be a closed nonempty convex set. Then, for any y ∈ Rn, there is a unique projection projC(y),
solution of (3).

In fact, this unique projection can be characterized more precisely.
Theorem 4. Let C be a closed nonempty convex set. Then, for any y ∈ Rn, projC(y) is the projection of y
onto C if and only if

⟨y − projC(y), z − projC(y)⟩ ≤ 0 for all z ∈ C.

Proof. Left as an exercise. See [4, Th. 3.1.1].

4.2 Convex functions
The notion of convexity is as important for functions as for sets. Notably, this is the notion that will enable us
to go from the (sub)gradient inequalities and local minimizers above to global minimizers.

4.2.1 Definition

An extended real valued function3 is convex if and only if its epigraph4 is convex. However, the following
definition is much more direct.
Definition 5. A function F : Rn → R is convex if and only if for any x, u ∈ domF , F ((1 − α)x + αu) ≤
(1− α)F (x) + αF (u) for any α ∈ (0, 1).

3A function that maps to R = R ∪ {+∞}
4This is the set epiF := {(x, t) : F (x) ≤ t}
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More generally convex functions verify Jensen’s inequality. For any convex combination
∑N

i=1 αixi,

F

(
N∑
i=1

αixi

)
≤

N∑
i=1

αiF (xi).

Checking the definition directly may be possible but it is often simpler to rely on convexity-preserving
operations:

• all norms are convex;
• a sum of convex functions is convex;
• affine substitution of the argument (if F is convex, x 7→ F (Ax+ b) is convex for any affine map Ax+ b);
• the (pointwise) maximum of convex functions is convex.
The most striking point of convex functions is that local minimizers are actually global.

Theorem 6. Let F : Rn → R be a proper convex function. Then, every local minimizer of F is a (global)
minimizer.

Proof. Let F : Rn → R be a proper convex function and let x be a local minimizer of F . Then, there is a ball of
radius ρ > 0 such that F (x) ≤ F (u) for all u ∈ B(x, ρ). Take y ∈ Rn \ B(x, ρ) and define α = ρ/∥y − x∥. Since
0 < ρ < ∥y − x∥, we have α ∈ (0, 1).

Now, let z = (1− α)x+ αy, we have ∥z − x∥ = α∥x− y∥ = ρ so z ∈ B(x, ρ).
Since F (x) ≤ F (u) for all u ∈ B(x, ρ), we have F (x) ≤ F (z) = F ((1− α)x+ αy) ≤ (1− α)F (x) + αF (y) by

convexity of F . Thus implies that F (x) ≤ F (y), thus x is a minimizer for F in B(x, ρ) and outside of it, thus a
global minimizer.

4.2.2 Proper lower-semicontinuous functions

Before studying differentiability, we will need to define the notions of domain, optimality, properness, and
lower-semicontinuity.

For a function F : Rn → R, we define its domain as domF := {x ∈ Rn : F (x) < +∞}, and its infimum

inf F := inf
x∈Rn

F (x) = inf
x∈domF

F (x).

Whenever this infimum is attained, ie. there is some x such that F (x) = inf F , then it is called a minimum
and is denoted by minF . We further define

argminF := {x ∈ Rn : F (x) = inf F} .

Additionally, a function F is lower semi-continuous if for any x ∈ Rn,

lim inf
u→x

F (u) := min{t ∈ R : ∃ur → x with F (ur) → t} = F (x).

Finally, a function F is said to be proper is F (x) < +∞ for at least one x ∈ Rn and F (x) > −∞ for all
x ∈ Rn. This means that the domain of a proper function is a nonempty set over which F is finite-valued.

4.2.3 (Sub)Gradients of convex functions

This class of functions comes with several interesting properties, for instance domF and argminF are convex if
F is convex, furthermore, every local minimum is a global one. This is captured by the notion of subgradients.
Lemma 7 ([6, Prop. 8.12]). Consider a convex proper lsc function F : Rn → R and a point x ∈ domF . Then,

∂F (x) = {v : F (u) ≥ F (x) + ⟨v, u− x⟩ for all u ∈ Rn} ≠ ∅

and 0 ∈ ∂F (x) if and only if x ∈ argminF .

An important point is that u 7→ F (x)+⟨v, u−x⟩ provides a linear under-approximation of the whole function
F .

When F is differentiable, then ∂F (x) = {∇F (x)} and convexity can be seen directly as a property on the
gradient mapping.
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Theorem 8 ([2, Prop. 17.10]). Let f : Rn → R be a proper function with open domain. Suppose that f is
differentiable on dom f . Then the following are equivalent:

i) f is convex;
ii) f(u) ≥ f(x) + ⟨∇f(x), u− x⟩ for all x, u ∈ dom f ;
iii) ⟨∇f(x)−∇f(u), x− u⟩ ≥ 0 for all x, u ∈ dom f , ie. ∇f is monotone.

Furthermore, if f is twice differentiable on dom f , any of the above is equivalent to
iv) ⟨u,∇2f(x)u⟩ ≥ 0 for all x, u ∈ dom f , ie. ∇2f is positive semi-definite.

4.2.4 Optimality conditions for convex functions on convex sets

Let us consider the problem of minimizing a convex function F over a convex set C. The problem consists in
finding x⋆ ∈ C such that F (x⋆) ≤ F (x) for all x ∈ C, we note this problem

x⋆ ∈ argminC F ⇔ x⋆ is a solution of inf
x∈C

F (x)

We directly note that if C is empty, the problem is impossible5 and if C is open it may be impossible to find
a solution. Hence, we will restrict our analysis to closed nonempty convex sets as before.

The constrained variant of Fermat’s rule that links the gradient of the function with local minimas writes as
follows.
Theorem 9 ([6, Th. 6.12, 8.15]). Consider a proper lower-semicontinuous convex function F : Rn → R and a
closed convex set C. Then, x ∈ argminC F if and only if x ∈ C and 0 ∈ ∂F (x) +NC(x) or, equivalently,

⟨y − x, v⟩ ≥ 0

for any v ∈ ∂F (x) and all y ∈ C.
In particular, if F is differentiable, 0 ∈ ∇F (x) +NC(x) means that

⟨y − x,∇F (x)⟩ ≥ 0

for all y ∈ C.

We recall that the normal cone of a convex set C at a point x ∈ C is defined as the set NC(x) := {u :
⟨y − x, u⟩ ≤ 0 for all y ∈ C}. Note that if x belongs to the relative interior of C, then NC(x) = {0}.

C

x1
⋆

interior

NC(x1
⋆) = {0} = ∇F (x1

⋆)

−∇F (x2
⋆)x2

⋆

border NC(x2
⋆)

4.2.5 Strict & strong convexity (⋆)

Strict convexity is simply convexity but when every inequality is replaced with a strict inequality : a function
F : Rn → R is strictly convex if and only if for any x, u ∈ C, F ((1− α)x+ αu) < (1− α)F (x) + αF (u) for any
α ∈ (0, 1). All results above then hold with strict inequalities.

5infeasible in the optimization language.
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Lemma 10. Let F : Rn → R be a strictly convex lower semi-continuous proper function and C a convex set,
then F has at most one minimizer on C. In particular, F has at most one minimizer on Rn.

Strict convexity can be observed mathematically and from that we can ensure the uniqueness of solutions.
However, it is almost impossible to exploit numerically since it only grants us a strict inequality and not an
exploitable knowledge about the function’s local behavior. For this, we need a stronger condition: strong
convexity. While convexity provides affine lower bounds, strongly convex functions have quadratic lower-bounds
enable to get a better control that may have a great impact on the convergence of optimization methods.
Definition 11. For some µ > 0, a function F : Rn → R is µ-strongly convex if and only if F − 1

2µ∥ · ∥2 is
convex.

Using the fact that F̃ := F − 1
2µ∥ · ∥

2 is convex and verifies ∂F̃ = ∂F − µ·, we get that for any x ∈ Rn and
any v ∈ ∂F (x)

F (u) ≥ F (x) + ⟨v, u− x⟩+ µ

2
∥u− x∥2 for all u ∈ Rn (4)

which directly implies that a strongly convex function has at most one minimizer by taking x such that 0 ∈ ∂F (x).
The following lemma then adds the existence (see [2, Chap. 11.4] for a more general take).
Lemma 12. Let F : Rn → R be a lower semi-continuous proper strongly convex function and C a convex set,
then F has exactly one minimizer on C. In particular, F has exactly one minimizer on Rn.

Proof. (⋆) Let us consider the case where C = Rn, the other cases can be deduced easily. From (4), we get that
for all u ∈ Rn,

F (u) ≥ F (x) +
µ

2
∥x∥2 − ⟨v, x⟩+ ⟨v + µx, u⟩+ µ

2
∥u∥2

≥ F (x) +
µ

2
∥x∥2 − ⟨v, x⟩ − ∥v + µx∥∥u∥+ µ

2
∥u∥2

hence F (u)/∥u∥ → +∞ when ∥u∥ → +∞, ie. F is supercoercive. Thus, this means that for any t, the level
set {x : F (x) ≤ t} is bounded (this is direct by contradiction, see [2, Chap. 11.11]). Since F is proper, we
can take t sufficiently large so that the corresponding level set is non-empty and bounded. Finally, since F is
lower semi-continuous, applying Lemma 1 to this compact set gives us the existence of a minimal value, which
is unique from the quadratic lower bound expressed in (4).

If a differentiable function is strongly convex, we have the following characterizations.
Theorem 13. Let f : Rn → R be a proper function with open domain. Suppose that f is differentiable on
dom f . Then the following are equivalent:

i) f is µ-strongly convex;
ii) f(u) ≥ f(x) + ⟨∇f(x), u− x⟩+ µ

2 ∥u− x∥2 for all x, u ∈ dom f ;
iii) ⟨∇f(x)−∇f(u), x− u⟩ ≥ µ∥u− x∥2 for all x, u ∈ dom f , ie. ∇f is monotone.

Furthermore, if f is twice differentiable on dom f , any of the above is equivalent to
iv) ⟨u,∇2f(x)u⟩ ≥ µ∥u∥2 for all x, u ∈ dom f , ie. ∇2f is positive definite.

4.3 Smoothness and gradient descent

Gradient methods are the most simple optimization algorithm. They are built upon, the idea that dif-
ferentiating the function tells you in which direction to go to minimize the function value. However,

gradient heavily rely on smoothness, and things can go awry in other situations.

The Gradient descent algorithm on a differentiable function function f consists in taking x0 ∈ Rn and
iterating

xk+1 = xk − γ∇f(xk) (Gradient descent)

for some γ > 0.
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4.3.1 Smoothness

There is slight discrepancy in the literature concerning the notion of smoothness for functions. In [6], it is
used for continuously differentiable functions, in Riemannian analysis it often refers to C∞ function, while in
numerical optimization and machine learning (see eg. [3]), it is used for functions with Lipschitz-continuous
gradients. We will adopt the latter viewpoint. The reason for this is that it allows us to have a quadratic upper
approximation of our function, obtained directly from the fundamental theorem of calculus. This is the crucial
point for the use of gradient methods.
Definition 14. We say that a function f : Rn → R is L-smooth if it has a L-Lipschitz continuous gradient, ie.
if

∥∇f(x)−∇f(u)∥ ≤ L∥x− u∥ for all x, u ∈ Rn.

From this property, we can derive this highly important lemma.
Lemma 15. Consider a function f : Rn → R with a L-Lipschitz continuous gradient, then for any x, u ∈ Rn,
one has

|f(u)− f(x)− ⟨∇f(x), u− x⟩| ≤ L

2
∥x− u∥2.

Thus, if we fix a point x, the function ρx : u 7→ f(x) + ⟨∇f(x), u − x⟩ + L
2 ∥u − x∥2 is quadratic in its

argument and majorizes f , that is to say ρx(u) ≥ f(u) for any u. Furthermore, the minimum of ρx is attained
at x⋆ = x− 1

L∇f(x).

x
x − 1

L
∇f(x)

ρx

f

Such a quadratic approximation can be leveraged using gradients steps, ie. taking

u = x− γ∇f(x)

for some γ > 0. Indeed, in that case, Lemma 15 gives us

f(u) ≤ f(x)−
(
1

γ
− L

2

)
∥x− u∥2 = f(x)−

(
γ − Lγ2

2

)
∥∇f(x)∥2.

4.3.2 Gradient algorithm for convex functions

When f is L-smooth and convex, we can guarantee convergence and a O(1/k) rate.
Theorem 16. Let f : Rn → R be a convex L-smooth function. Then, the iterates (xk) generated by
(Gradient descent) with γ = 1/L satisfy:

• (convergence) xk → x⋆ for some minimizer x⋆ of f (i.e., a point such that ∇f(x⋆) = 0);

• (rate) f(xk)− f(x⋆) ≤ 2L∥x0 − x⋆∥2

k
for any minimizer x⋆ of f .

In the above theorem, any γ ∈ (0, 1/L) actually works for the convergence and gets a similar complexity but
γ = 1/L is the optimal value in terms of rate.
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Remark 17 (Lower bound). This is not the fastest way to minimize a convex smooth function. Actually, one
can show that the fastest attainable rate for this class of functions is O(1/k2); see [3, Th. 3.14]. This complexity
is attained by Nesterov’s fast gradient method [5]. This method accelerates gradient descent by adding an
“inertial” step:

yk+1 = xk − γ∇f(xk) (Fast Gradient descent)
xk+1 = yk+1 + αk+1(yk+1 − yk)

where γ ∈ (0, 1/L) and αk+1 = (k + 2)/(k + 3). (Actually, the choice for αk+1 is a bit more complicated but
this variant grants the same rate.) ◀

4.3.3 Gradient algorithm for strongly convex functions (⋆)

Now, if the function is additionally strongly convex, the quadratic lower bounds grants us a better rate.
Theorem 18. Let f : Rn → R be a µ-strongly convex L-smooth function. Then, the iterates (xk) generated by
(Gradient descent) with γ = 2

µ+L satisfy:

• (convergence) xk → x⋆ for the minimizer x⋆ of f (unique by strong convexity);

• (rate) f(xk)− f(x⋆) ≤
(
κ− 1

κ+ 1

)2k

∥x0 − x⋆∥2 where κ = L
µ ≥ 1.

In the above theorem, any γ ∈ (0, 2/(µ+L)] actually works for the convergence and gets a similar complexity
but γ = 2/(µ+ L) is the optimal value in terms of rate.

We note here that the term κ = L
µ ≥ 1 appears in the rate, this number is generally called the conditioning

of the number by analogy with matrices and linear systems.

Finally, the obtained rate is again not optimal for this class of functions, the optimal rate being O
((√

κ−1√
κ+1

)2k)
,

again attained by a modified version of (Fast Gradient descent).

4.3.4 Projected Gradient algorithm (⋆)

Now let us consider the problem of minimizing a smooth convex function f over a nonempty closed convex set
C. Thanks to the ability to project onto C, we can easily define a projected gradient method:

xk+1 = projC (xk − γ∇f(xk)) (Projected gradient descent)

for some initialization x0 ∈ Rn and stepsize γ > 0.
This algorithm has similar guarantees as gradient descent.

Theorem 19. Let f : Rn → R be a convex L-smooth function. Then, the iterates (xk) generated by
(Gradient descent) with γ = 1/L belong to C and satisfy:

• (convergence) xk → x⋆ for some minimizer x⋆ of f on C (that is a point such that −∇f(x⋆) ∈ NC(x
⋆),

ie. ⟨y − x⋆,∇F (x⋆)⟩ ≥ 0 for all y ∈ C);

• (rate) f(xk)− f(x⋆) ≤ 3L∥x0 − x⋆∥2 + f(x0)− f(x⋆)

k + 1
for any minimizer x⋆ of f on C.

4.4 Nonsmooth (sub)gradient descent
If our function is nonsmooth (which is one of the core topics of the course), things change quite a lot. In this
section, we see what happens when for (sub)gradient-based algorithm when our function is i) non-differentiable;
and ii) differentiable but nonsmooth.
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4.4.1 Non-differentiability & subgradient descent

A direct method to minimize a convex non-differentiable function g is to mimic the gradient method and to do
subgradient descent:

xk+1 = xk − γk vk with vk ∈ ∂g(xk) (Subgradient descent)

Here, a fixed stepsize is not always possible. For instance, take g = | · |, then (xk) will oscillate around 0 for
any γ > 0.

In fact, we have the following result.
Theorem 20. Let g : Rn → R be a proper lower semi-continuous convex function with a minimizer x⋆. Assume
that ∥v∥ ≤ M for any x ∈ dom g and any v ∈ ∂g(x). Then, the Subgradient descent algorithm started with x0

generates iterates that verify:
a) for a constant stepsize γk = γ,

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆) ≤ ∥x0 − x⋆∥2

2kγ
+

γM2

2
.

b) for a stepsize sequence verifying
∑∞

k=0 γk = +∞ and
∑∞

k=0 γ
2
k < +∞,

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆)

k→∞−−−−→ 0.

Proof. We assume here that g has a minimizer, say x⋆. Then, for any k,

∥xk+1 − x⋆∥2 = ∥xk − γkvk − x⋆∥2

= ∥xk − x⋆∥2 − 2γk⟨vk;xk − x⋆⟩+ γ2
k∥vk∥2

Now, since vk ∈ ∂g(xk), Lemma 7 with u = x⋆ tells us that g(x⋆) ≥ g(xk) + ⟨vk, x⋆ − xk⟩ and thus

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆∥2 − 2γk(g(xk)− g(x⋆)) + γ2
k∥vk∥2

≤ ∥x0 − x⋆∥2 − 2

k∑
ℓ=0

γℓ(g(xℓ)− g(x⋆)) +

k∑
ℓ=0

γ2
ℓ ∥vℓ∥2.

This enables us to get that∑k
ℓ=0 γℓ(g(xℓ)− g(x⋆))∑k

ℓ=0 γℓ
≤

∥x0 − x⋆∥2 +
∑k

ℓ=0 γ
2
ℓ ∥vℓ∥2

2
∑k

ℓ=0 γℓ
.

First, we notice that by convexity,

min
ℓ≤k

g(xℓ)− g(x⋆) ≤ g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆) ≤

∑k
ℓ=0 γℓ(g(xℓ)− g(x⋆))∑k

ℓ=0 γℓ
. (5)

As for the right hand size:
a) if γk = γ, then

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆) ≤ ∥x0 − x⋆∥2

2kγ
+

γM2

2
.

b) if
∑∞

k=0 γk = +∞ and
∑∞

k=0 γ
2
k < +∞, then

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆) ≤

∥x0 − x⋆∥2 +M2
∑∞

ℓ=0 γ
2
ℓ

2
∑k

ℓ=0 γℓ

and the RHS’s numerator is finite while the denominator is going to infinity as k → ∞, the whole term thus
goes to 0.
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Note that the result above also holds for minℓ≤k g(xℓ)−g(x⋆) by (5). However, since the stepsize is decreasing,
this limits the rate and the iterates convergence is out of reach. Nevertheless, its rate in O(1/

√
k) is optimal on

this class of functions.

4.4.2 Projected Subgradient algorithm (⋆)

It is also possible to add a projection to a convex set, the proof only changes in the first line where the non-
expansiveness of the projection has to be used. More precisely, the algorithm

xk+1 = projC (xk − γk vk) with vk ∈ ∂g(xk) (Projected Subgradient descent)

verifies the following properties.
Theorem 21. Let g : Rn → R be a proper lower semi-continuous convex function and let C be a closed convex
set. Assume that ∥v∥ ≤ M for any x ∈ C and any v ∈ ∂g(x). Then, g has a minimizer x⋆ in C and the
Projected Subgradient descent algorithm started with x0 ∈ C generates iterates that verify:

a) for a constant stepsize γk = γ,

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆) ≤ ∥x0 − x⋆∥2

2kγ
+

γM2

2
.

b) for a stepsize sequence verifying
∑∞

k=0 γk = +∞ and
∑∞

k=0 γ
2
k < +∞,

g

(∑k
ℓ=0 γℓxℓ∑k
ℓ=0 γℓ

)
− g(x⋆)

k→∞−−−−→ 0.

4.4.3 Nonsmoothness & gradient descent

When you function is differentiable, you still have that

g(x+ t∇g(x)) = g(x)− t∥∇g(x)∥2 + o(t∥∇g(x)∥)

which implies that

g(x+ t∇g(x))− g(x)

t
= −∥∇g(x)∥2 + o(1)

and thus you can still find a small enough step t that will decrease you functional value, for instance using
line-search methods. Unfortunately, to translate this property to some convergence result smoothness is needed.

Thus, we have two paths to overcome this problem:
a) Changing our algorithm. Taking a look at a gradient step, we notice that

y = x− γ∇g(x) ⇔ ∇g(x) +
y − x

γ
= 0

⇔ y = argminu

{
⟨∇g(x);u⟩+ 1

2γ
∥u− x∥2

}
⇔ y = argminu

{
g(x) + ⟨∇g(x);u− x⟩+ 1

2γ
∥u− x∥2

}
and if smoothness is lacking, maybe changing the first order approximation can help. This is what we will
do in the next chapter.

b) Changing our definition of smoothness. The smoothness property:

g(u) ≤ g(x) + ⟨∇g(x), u− x⟩+ L

2
∥x− u∥2
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can be rewritten as (
L
∥u∥2

2
− g(u)

)
−
(
L
∥x∥2

2
− g(x)

)
≤ ⟨Lx−∇g(x), u− x⟩

which is equivalent to saying that x 7→ L∥x∥2

2 − g(x) is convex.
This indicates that smoothness is intricately linked with the squared Euclidean norm. To deal with
functions that are not smooth, a good idea is thus to change how we measure distances.

4.4.4 Non-Euclidean gradient descent (⋆)

The simple yet powerful idea of [1] is then to compare g to a strictly convex function h in order to extend
smoothness beyond the Euclidean case. Such h is usually called a Bregman regularizer or distance-generating
function (DGF).

If there is an L > 0 such that Lh− g is convex, or equivalently

(Lh(u)− g(u))− (Lh(x)− g(x)) ≤ ⟨L∇h(x)−∇g(x), u− x⟩,

then g is said relatively smooth wirh respect to h.
Then, we can define the associated Bregman divergence as

D(u, x) = h(u)− h(x)− ⟨∇h(x), u− x⟩ for all x ∈ Ch, u ∈ C

and use it to measure to distance between points.
The Euclidean gradient descent step can thus be transformed to

y = argminu

{
g(x) + ⟨∇g(x);u− x⟩+ 1

2γ
D(u, x)

}
⇔ ∇h(y) = ∇h(x)− γ∇g(x)

and some guarantees can be obtained in theory.

Exercises
Exercise 1. Let us consider the R → R function

F (x) =
a

2
x2 + |x− 1|

for some a > 0.
1. Show that the function F is convex.
2. Compute the subgradient ∂F of F . Deduce the value of the minimizer of the function as a function of a.

Exercise 2. Let us consider the Rn → R function

G(x) =
1

2
∥x∥2 + ι{x:∥x−e1∥≤ε}(x)

for some ε > 0, and where ιC(x) = 0 if x ∈ C and +∞ elsewhere. The notation ∥ · ∥ stands for the Euclidean
norm and e1 = [1, 0, . . . , 0] ∈ Rn is the first canonical vector.

1. Show that {x : ∥x−e1∥ ≤ ε} is a closed convex set. Deduce that G is a convex proper lower semi-continuous
function.

2. Show that argminx∈Rn G(x) = argminx:∥x−e1∥≤ε ∥x∥2. What is the minimum of G in function of ε?

Exercise 3. Let us consider the R → R function

F (x) =

n∑
i=1

|x− i|

for some positive integer n.
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1. Show that the function F is convex.
2. Compute the subgradient ∂F of F .
3. What are the minimizers of F depending on the value of n?
4. In the case when n is odd, is the function F strongly convex?

Exercise 4. Take a convex proper lower-semi-continuous R → R function F with a unique minimizer at point
1. Suppose that x 7→ F (x) + ε x2 also has a unique minimum at x = 1 for some ε > 0. Is it possible for F to
be smooth?
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