A Geometric Theory of Barriers in Conic Optimization

Roland Hildebrand

Laboratoire Jean Kuntzmann
Université Grenoble 1 / CNRS

May 18, 2011

Outline

Affine Differential Geometry

- Affine connections and affine metrics
- Riemannian metrics
- Hessian and Codazzi structures

Self-concordant barriers

- Barriers on convex sets - Hessian structures
- Conic barriers as centro-affine hypersurface immersions
- Barriers on convex cones - Codazzi structures

Cross-ratio manifold

- Conic barriers as Lagrangian submanifolds of the CRM
- Local approximations
- Distance function
- Minimal submanifolds and affine spheres

Affine connections

M - n-dimensional manifold, X, Y - vector fields on M
∇_{X} — operator of covariant differentiation along vector field X

$$
\left(\nabla_{X} Y\right)^{i}=\left(\frac{\partial Y^{i}}{\partial x^{k}}+\Gamma_{j k}^{i} Y^{j}\right) X^{k}
$$

Einstein summation convention: summation over repeating indices
$\Gamma_{j k}^{i}$ - Christoffel symbols of ∇
$R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}$ - curvature of ∇

Flat connections

Definition A connection ∇ is called flat if its curvature is zero.
∇ flat \Leftrightarrow locally there exists a coordinate system s.t. $\Gamma_{j k}^{i}=0$
Definition A connection ∇ is called projectively flat if there exists a flat connection ∇^{\prime} such that the geodesics of ∇ and ∇^{\prime} coincide as sets.

Connections on hypersurfaces

$M^{n-1} \subset M^{n}$ - hypersurface, D - affine connection on M^{n}
How D can induce a connection ∇ on M^{n-1} ?
ξ - transversal vector field

$$
D_{X} Y=\nabla_{X} Y+h(X, Y) \xi, \quad X, Y \in T M^{n-1}
$$

- affine connection ∇ : projection of D along ξ
- affine metric h : transversal component of D
- cubic form $C=\nabla h-3$-tensor
K. Nomizu, T. Sasaki. Affine differential geometry: geometry of affine immersions. Vol. 111 of Cambridge Tracts in Math.
Cambridge University Press, 1994.

Affine connection and affine metric

Centro-affine immersions

$M \subset \mathbb{R}^{n}$ centro-affine hypersurface, D flat connection on \mathbb{R}^{n} $\xi(x)=-x, x \in M$
\Rightarrow affine connection ∇ projectively flat, cubic form C symmetric
∇ centro-affine connection, h centro-affine metric invariance under homothety

(Pseudo)-Riemannian metrics

$g: T_{x} M \times T_{x} M \rightarrow \mathbb{R}$ (positive definite) nondegenerate quadratic form

$$
g(X, Y)=g_{i j} X^{i} Y^{j}
$$

gives rise to Levi-Civita connection $\hat{\nabla}$

$$
g_{i l} \Gamma_{j k}^{\prime}=\frac{1}{2}\left(\frac{\partial g_{i j}}{\partial x^{k}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{i}}\right)
$$

metric parallel w.r. to its Levi-Civita connection

$$
\hat{\nabla} g=0
$$

Hessian and Codazzi structures

Definition Let ∇ be an affine connection and g a pseudo-metric. If ∇g is totally symmetric, then (∇, g) is called Codazzi structure.

$$
\left(\nabla_{X} g\right)(Y, Z)=\left(\nabla_{Y} g\right)(Z, X)=\left(\nabla_{Z} g\right)(X, Y)
$$

$\bar{\nabla}=2 \hat{\nabla}-\nabla$ - dual connection
$(\bar{\nabla}, g)$ - dual Codazzi structure
Definition A Codazzi structure (∇, g) with ∇ flat is called Hessian structure.
locally $g=f^{\prime \prime}, \nabla g=f^{\prime \prime \prime}$ for some scalar function $f: M \rightarrow \mathbb{R}$
H. Shima. The geometry of Hessian structures. World Scientific, 2007.

Barriers on convex sets

$C \subset \mathbb{R}^{n}$ closed convex set
barrier: $F: C^{\circ} \rightarrow \mathbb{R}$ smooth function

- $F(x) \rightarrow \infty$ as $x \rightarrow \partial C$
- Hessian $F^{\prime \prime} \succ 0$
- self-concordance: $\left|F^{\prime \prime \prime}(x)[h, h, h]\right| \leq 2\left(F^{\prime \prime}(x)[h, h]\right)^{3 / 2}$ for all $h \in T_{x} C^{0}$
- $F^{\prime \prime}(x)[h, h] \geq \nu^{-1}\left(F^{\prime}(x)[h]\right)^{2}$ for all $h \in T_{x} C^{0}$
ν - self-concordance parameter

Hessian structure

on C^{o}

- D - flat affine connection from \mathbb{R}^{n}
- metric $g=F^{\prime \prime}$
- symmetric 3-tensor $T=F^{\prime \prime \prime}$
- $T=D g$
(D, g) Hessian structure

Dual barrier

$\mathbb{R}_{n}=\left(\mathbb{R}^{n}\right)^{*}$ dual space
Legendre transform $F^{*}: \mathbb{R}_{n} \rightarrow \mathbb{R}, F^{*}(p)=\sup _{x \in C^{\circ}}\langle p, x\rangle-F(x)$
F^{*} is a self-concordant barrier on its domain $\left(C^{*}\right)^{\circ}$ with the same self-concordance parameter as F

Let $\left(D^{*}, g^{*}\right)$ be the Hessian structure induced by F^{*} on $\left(C^{*}\right)^{o}$.

Primal-dual symmetry

$x \mapsto F^{\prime}(x)$ defines a bijection $C^{\circ} \rightarrow\left(C^{*}\right)^{0}$
Under this bijection the Hessian structures (D, g) and $\left(D^{*}, g^{*}\right)$ are dual to each other.

Barriers on convex cones

logarithmically homogeneous barrier

$$
F(\lambda x)=-\nu \log \lambda+F(x) \quad \forall x \in K^{o}, \lambda>0
$$

ν - parameter of logarithmic homogeneity $=$ self-concordance parameter
level surfaces are centro-affine and homothetic
a level surface determines F up to an additive constant if we take the minimal ν

Equivalence with centro-affine objects

by [Loftin, 2001]

- $\left.g\right|_{M}=-\nu h$
- $\left.T\right|_{M}=-\nu C$
h - centro-affine metric, ∇ - centro-affine connection,
$C=\nabla h$ - cubic form

Corollary Under homothety, $\left.g\right|_{M}$ and $\left.T\right|_{M}$ are identical for different level surfaces.

We obtain a natural projectively flat Codazzi structure (∇, h) on the level surfaces of F.

Self-concordance

Theorem [H., 2011] Let $M \subset \mathbb{R}^{n}$ be a concave centro-affine hypersurface which is asymptotic to a regular convex cone $K \subset \mathbb{R}^{n}$. Then M defines a logarithmically homogeneous self-concordant barrier with parameter ν if and only if $|C(u, u, u)| \leq 2 \gamma\|u\|_{h}^{3 / 2}$ for all $u \in T M$, where $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$.
by [Pick,Berwald, 1923]
$\nu=2 \Leftrightarrow \gamma=0 \Leftrightarrow C=0 \Leftrightarrow K=L_{n}$
Corollary Let $K \subset \mathbb{R}^{n}, n \geq 2$, be a regular convex cone. For every self-concordant log-homogeneous barrier on $K, \nu \geq 2$.

The Lorentz cone with its barrier is the simplest cone. interior-point algorithms should be able to solve CQP with a single conic constraint in one step!

Duality

Legendre transform $F \mapsto F^{*}$ corresponds to
duality of centro-affine hypersurface immersions $M \rightarrow \mathbb{R}^{n}$ and $M \rightarrow \mathbb{R}_{n}$
defined by the conormal map.
In the absence of a volume form on \mathbb{R}^{n} the cornormal map is defined up to homothety.

Primal and dual centro-affine immersion

M endowed with a dual pair of projectively flat Codazzi structures consider M as submanifold in a product of projective spaces

Projective space

\mathbb{P}^{n-1} - projective space, $\mathbb{P}_{n-1}-$ dual projective space $\pi: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{P}^{n-1}, \pi_{*}: \mathbb{R}_{n} \backslash\{0\} \rightarrow \mathbb{P}_{n-1}$ — projections
$C=\pi[K]$
$C^{*}=\pi_{*}\left[K^{*}\right]$
$C \subset \mathbb{P}^{n-1}, C^{*} \subset \mathbb{P}_{n-1}$ compact convex sets containing no projective lines

Barriers as submanifolds

Definition We call the 2($n-1$)-dimensional manifold $\mathcal{M}=\{(x, p) \mid x \not \perp p\} \subset \mathbb{P}^{n-1} \times \mathbb{P}_{n-1}$ the Cross-ratio manifold. with $p=F^{\prime}(x): M=\left\{\left(\pi(x), \pi_{*}(p)\right) \mid x \in K^{o}\right\} \subset \mathcal{M}$ s.t.

- $\operatorname{dim} M=n-1$
- $\pi: M \rightarrow C^{0}$ bijective
- $\pi_{*}: M \rightarrow\left(C^{*}\right)^{\circ}$ bijective
- $\partial M=\Delta$
$\Delta=\left\{\left(\pi(x), \pi_{*}(p)\right) \mid x \in \partial K \backslash\{0\}, p \in \partial K^{*} \backslash\{0\}, x \perp p\right\} \subset$ $\left(\mathbb{P}^{n-1} \times \mathbb{P}_{n-1}\right) \backslash \mathcal{M}=\partial \mathcal{M}$ depends only on K

Which submanifolds M define self-concordant barriers?

Cross-ratio

$x_{1}, x_{2}, x_{3}, x_{4}$ points on the projective line

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=\frac{\left(x_{1}-x_{3}\right)\left(x_{2}-x_{4}\right)}{\left(x_{2}-x_{3}\right)\left(x_{1}-x_{4}\right)}
$$

Two-point function

[Ariyawansa,Davidon,McKennon '99]: instead of 4 collinear points use 2 points and 2 dual points - quadra-bracket

Cross-ratio manifold

for $z \approx z^{\prime}$

$$
\left(z ; z^{\prime}\right)=g\left(z^{\prime}-z, z^{\prime}-z\right)+O\left(\left\|z^{\prime}-z\right\|^{3}\right)
$$

defines a pseudo-Riemannian metric of neutral signature on \mathcal{M} involution of tangent space $J: T \mathcal{M} \rightarrow T \mathcal{M}$
$J: u=\left(u_{x}, u_{p}\right) \mapsto\left(u_{x},-u_{p}\right)$
define $\omega(X, Y)=g(J X, Y)$
Theorem [H., 2011] ω is a symplectic form (closed, skew-symmetric, non-degenerated) which is compatible with g (parallel with respect to the Levi-Civita connection D of g : $D \omega=0$).
\mathcal{M} becomes a homogeneous para-Kähler manifold

Lagrangian submanifolds

Definition $A(n-1)$-dimensional submanifold $M \subset \mathcal{M}$ is called Lagrangian if $\left.\omega\right|_{M}=0$.

Theorem [H., 2011] Up to homothety, there is a 1-to-1 correspondence between the Lagrangian submanifolds of \mathcal{M} and the centro-affine immersions in \mathbb{R}^{n}.

Theorem [H., 2011] The projection of the Levi-Civita connection D of g on a Lagrangian submanifold $M \subset \mathcal{M}$ along $\operatorname{ker}(d \pi)$ and $\operatorname{ker}\left(d \pi_{*}\right)$ defines two projectively flat affine connections $\nabla, \bar{\nabla}$ on $M .\left(\nabla,\left.g\right|_{M}\right)$ and $\left(\bar{\nabla},\left.g\right|_{M}\right)$ are dual Codazzi structures. The cubic form $C=\nabla\left(\left.g\right|_{M}\right)$ can be expressed by the second fundamental form I/ of M by

$$
C(X, Y, Z)=-2 \omega(I I(X, Y), Z)
$$

Two-dimensional case

Geometric characterisation

a self-concordant barrier for K (and K^{*}) is determined by a submanifold M satisfying

- Lagrangian: $\left.\omega\right|_{M}=0$
- $\partial M=\Delta$
- concavity: $\left.g\right|_{M} \prec 0$
- self-concordance: $C=\nabla g=-2 \omega / /$ uniformly bounded

Local approximation

The second fundamental form I/ of a submanifold M of a Riemannian manifold at a point $\hat{x} \in M$ measures the deviation of M from the tangent geodesic submanifold at M.

Theorem [H., 2011] Lagrangian geodesic submanifolds of M are totally geodesic.

At a given point $\hat{x} \in M$ the tangent totally geodesic submanifold defines the barrier of an approximating Lorentz cone to K (and K^{*}).

The projective self-concordance parameter $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$ measures the 2nd order deviation of M from this barrier.

Dikin ellipsoids

pass to coordinate system where approximating Lorentz cone is centered inner and outer approximations of a cone K^{n} are equal to the approximating Lorentz cone scaled by $\sqrt{\nu-1}$

Bounds on the barrier

on the section $x=\left(1, \tilde{x}^{T}\right)^{T}$

$$
F(x) \in[-(\nu-1) \log (\sqrt{\nu-1} \pm\|\tilde{x}\|)-\log (1 \mp \sqrt{\nu-1}\|\tilde{x}\|)]
$$

Distance function

Theorem [H., 2011] $D\left(z, z^{\prime}\right)=\sqrt{-\left(z ; z^{\prime}\right)}$ real, symmetric, nonnegative, compatible with $-\left.g\right|_{M}, D\left(z, z^{\prime}\right)=0 \Leftrightarrow z=z^{\prime}$, $\lim _{z^{\prime} \rightarrow \partial M} D\left(z, z^{\prime}\right)=+\infty$.
can be used to

- measure the distance to the projective central path of a primal-dual feasible pair
- measure the progress of one iteration from a primal-dual feasible pair to the next one
not a real distance - violates triangle inequality

$$
D\left(z_{1}, z_{2}\right) \geq D\left(z_{1}, z_{0}\right) \sqrt{1+D^{2}\left(z_{2}, z_{0}\right)}+D\left(z_{2}, z_{0}\right) \sqrt{1+D^{2}\left(z_{1}, z_{0}\right)}
$$

for z_{1}, z_{0}, z_{2} collinear in primal or dual projection

Universal barrier

[Nesterov and Nemirovski, 1994]

$$
F(x)=\text { const } \cdot \operatorname{Vol}\left(K^{*}(x)\right)
$$

$K^{*}(x)=\left\{p \in\left(\mathbb{R}^{n}\right)^{*} \mid\langle p, y-x\rangle \leq 1 \forall y \in K\right\}$
$F(x)$ self-concordant with parameter $\nu=O(n)$
does not behave well with respect to product operator and duality

Affine spheres

Theorem [Calabi], [An-Li] ≈ 1980 Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then there exists, up to homothety, a unique concave centro-affine hypersurface immersion which is asymptotic to K s.t. $T_{k}=g^{i j} C_{i j k}=0$.

Affine hypersphere, can be computed by solving the Monge-Ampère equation $\operatorname{det} u^{\prime \prime}=(-u)^{-(n+1)}$ on a compact section Ω of K with boundary condition $\left.u\right|_{\partial \Omega}=0$.
corresponds to the minimal Lagrangian submanifold $M \subset \mathcal{M}$ with $\partial M=\Delta$

Affine sphere barrier

properties of the barrier function corresponding to the affine sphere

- self-concordant with $\nu=O\left(n^{2}\right)$ (conservative - from results on PDEs)
- $\nu \log \operatorname{det} F^{\prime \prime}=2 n F+$ const - characterizing equation
- dual barrier also affine sphere barrier
- $F_{K^{n} \times K^{m}}=\left(\frac{n}{\nu_{n}} F_{K^{n}}+\frac{m}{\nu_{m}} F_{K^{m}}\right) \cdot \max \left\{\frac{\nu_{n}}{n}, \frac{\nu_{m}}{m}\right\}$
classical barriers for $L_{n}, \mathbb{R}_{+}^{n}, S_{+}(n), H_{+}(n)$ are affine sphere barriers

Example: power cone

$$
\begin{aligned}
p \in[2, \infty), \frac{1}{p}+\frac{1}{q} & =1 \\
P_{p} & =\left\{(x, y, z)^{T}\left|x^{1 / p} y^{1 / q} \geq|z|\right\} \subset \mathbb{R}^{3}\right.
\end{aligned}
$$

self-dual convex cone
[Nesterov, 2006]

$$
F(x, y, z)=-\log \left(x^{2 / p} y^{2 / q}-z^{2}\right)-\log x-\log y
$$

self-concordant with parameter $\nu=4$
[Chares and Glineur, 2009]

$$
F(x, y, z)=-\log \left(x^{2 / p} y^{2 / q}-z^{2}\right)-\frac{1}{q} \log x-\frac{1}{p} \log y
$$

self-concordant with parameter $\nu=3$

Power cone cont'd

[Chares and Glineur, 2009]

$$
F(x, y, z)=-\log \left(x^{2 / p} y^{2 / q}-z^{2}\right)-\left(1-\frac{2}{p}\right) \log x
$$

conjectured to be self-concordant with parameter $\nu=3-\frac{2}{p}$
Affine hypersphere given by the orbit of the curve $\left\{(x, y, z)^{T} \left\lvert\, p x^{2}-\frac{p+1}{3}=q y^{2}-\frac{q+1}{3}=z^{2}\right.\right\}$ under the action of the group generated by the Lie algebra element $\operatorname{diag}(2 p+q,-p-2 q, q-p)$
self-concordant with parameter $\nu=\frac{3 p}{p+1}$

Power cone cont'd

Outlook

What is done

- projective formulation of conic programming
- reduction to Lagrangian submanifolds of the cross-ratio manifold
- bounds on the divergence of the Lagrangian submanifold from totally geodesic approximation

What is to do

- fully projective interior-point methods
- additional structure when cone is symmetric
R. Hildebrand. Barriers on projective convex sets. To appear in AIMS Proceedings, Sept. 2011.

