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Optimization problems

minimize objective function with respect to constraints

min
x∈X

f (x)

in convex optimization problems, f and X are assumed convex

X ⊂ R
n is called the feasible set
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Linear objective function

f (x) can be assumed
linear

otherwise minimize t
over the epigraph
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Definition of barriers

Definition

Let X ⊂ R
n be a regular convex set. A barrier for X is a smooth

function F : X o → R such that

F ′′(x) � 0 (convexity)

limx→∂X F (x) = +∞ (boundary behaviour)

F ′′ defines a Hessian metric on X o
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Interior-point methods using barriers

min
x∈X

〈c, x〉

constrained convex program

let F (x) = +∞ for all x 6∈ X o

min
x

τ〈c, x〉 + F (x)

unconstrained program, τ > 0 a parameter
by convexity and boundary behaviour of F this program is
convex

the minimizer x∗

τ of the unconstrained program tends to the
minimizer x∗ of the constrained program as τ → +∞
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plots of τ〈c, x〉+ F (x) for

X = {x ∈ R
2 | ||x ||22 ≤ 1}, 〈c, x〉 = x1, F (x) = − log(1 − ||x ||22)
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Conic programs

Definition

A regular convex cone K ⊂ R
n is a closed convex cone having

nonempty interior and containing no lines.

Definition

A conic program over a regular convex cone K ⊂ R
n is an

optimization problem of the form

min
x∈K

〈c, x〉 : Ax = b.
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Geometric interpretation

the feasible set is the
intersection of K with an
affine subspace
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Symmetric cones

example: conic programs over K = R
n
+

feasible set is a convex polyhedron → linear program (LP)

R
n
+ is self-dual: (Rn

+)
∗ = R

n
+

and homogeneous: Aut(Rn
+) acts transitively on R

n
++

Definition

A self-dual, homogeneous convex cone is called symmetric.

theory of IP methods most advanced over symmetric cones
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Classification of symmetric cones

Theorem (Vinberg, 1960; Koecher, 1962)

Every symmetric cone can be represented as a direct product
of a finite number of the following irreducible symmetric cones:

Lorentz (or second order) cone

Ln =
{

(x0, . . . , xn−1) | x0 ≥
√

x2
1 + · · ·+ x2

n−1

}

matrix cones S+(n), H+(n), Q+(n) of real, complex, or
quaternionic hermitian positive semi-definite matrices

Albert cone O+(3) of octonionic hermitian positive
semi-definite 3 × 3 matrices
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Canonical barriers

barriers on irreducible symmetric cones

Lorentz cone Ln: F (x) = − log(x2
0 − x2

1 − · · · − x2
n−1)

matrix cones: F (X ) = − log det X

barriers on reducible symmetric cones
weighted sums of the barriers on the irreducible components

example: K = R
n
+, F (x) = −

∑n
k=1 log xk
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Programs over symmetric cones

conic programs over symmetric cones are efficiently solvable
by interior-point methods [Nesterov, Nemirovski, 1994]

linear programs (LP) over Rn
+ ∼ 106 variables

conic quadratic programs (CQP) over Ln ∼ 104 variables

semi-definite programs (SDP) over S+(n) ∼ 102 variables

structure can greatly increase tractable sizes

free (CLP, LiPS, SDPT3, SeDuMi, ...) and commercial (CPLEX,
MOSEK, ...) solvers available

increasingly used in engineering sciences and industry
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What is so special about symmetric cones?

How to characterize the canonical barriers
on symmetric cones?

Is there a local characterization of these
barriers?
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Jordan algebras

an algebra A is a vector space V (dim V < ∞) equipped with a
bilinear operation • : V × V → V

Definition

An algebra J is a Jordan algebra if

x • y = y • x for all x , y ∈ J (commutativity)

x2 • (x • y) = x • (x2 • y) for all x , y ∈ J (Jordan identity)

where x2 = x • x .

Definition

A Jordan algebra is formally real or Euclidean if
∑m

k=1 x2
k = 0

implies xk = 0 for all k ,m.
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Unital and simple Jordan algebras

Definition

A Jordan algebra is called unital if it possesses a unit element
e, satisfying u • e = u for all u ∈ J.

Definition

A Jordan algebra is called simple if it is not nil and has no
non-trivial ideal.

Definition

A Jordan algebra is called semi-simple if it is a direct product of
simple Jordan algebras.
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Power associativity

let Lu be the operator of multiplication with u

then the Jordan identity is equivalent to [Lu,Lu2 ] = 0

define um+1 = u • um

Theorem (Jordan, von Neumann, Wigner 1934)

Let J be a Jordan algebra. Then for every u ∈ J, ur • us = ur+s

for all r , s ≥ 1.

the subspace spanned by the powers u,u2, . . . is an
associative subalgebra
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Examples of Jordan algebras

let Q be a real symmetric matrix and e ∈ R
n such that

eT Qe = 1

the quadratic factor Jn(Q) is the space R
n equipped with the

multiplication

x • y = eT Qx · y + eT Qy · x − xT Qy · e

let H be an algebra of Hermitian matrices over a real
coordinate algebra (R,C,H,O; for O of size ≤ 3)
then the corresponding Hermitian Jordan algebra is the vector
space underlying H equipped with the multiplication

A • B =
AB + BA

2
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Euclidean Jordan algebras

Theorem (Jordan, von Neumann, Wigner 1934)

Every Euclidean Jordan algebra is a direct product of simple
Jordan algebras of the following types:

quadratic factor with matrix Q of signature +− · · · −

real symmetric matrices

complex Hermitian matrices

quaternionic Hermitian matrices

octonionic Hermitian 3 × 3 matrices
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Trace forms

Definition

Let J be a Jordan algebra. A symmetric bilinear form γ on J is
called trace form if γ(u, v • w) = γ(u • v ,w) for all u, v ,w ∈ J.

Theorem (Köcher)

Let J be a unital Jordan algebra. The symmetric bilinear form

τ(u, v) = tr Lu•v

is a trace form, called the generic bilinear trace form.

Theorem (Köcher)

A Jordan algebra J is semi-simple if and only if its generic
bilinear trace form is non-degenerate.
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Generic minimum polynomial

for every u in a unital Jordan algebra there exists m such that

u0,u1, . . . ,um−1 are linearly independent (u0 := e)

um = σ1um−1 − σ2um−2 + · · · − (−1)mσmu0

pu(λ) = λm − σ1λ
m−1 + · · · + (−1)mσm is the minimum

polynomial of u

Theorem (Jacobson, 1963)

There exists a unique minimal polynomial
p(λ) = λm − σ1(u)λm−1 + · · ·+ (−1)mσm(u), the generic
minimum polynomial, such that pu|p for all u. The coefficient
σk (u) is homogeneous of degree k in u. The coefficient
t(u) = σ1(u) is called generic trace and the coefficient
n(u) = σm(u) the generic norm.
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Symmetric cones and Euclidean Jordan algebras

Theorem (Vinberg, 1960; Koecher, 1962)

The symmetric cones are exactly the cones of squares of
Euclidean Jordan algebras, K = {x2 | x ∈ J}.

by ∂x2

∂x = 2Lx the boundary of K is composed of elements
satisfying det Lx = 0
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Barriers on symmetric cones

on irreducible symmetric cones the canonical barrier is
proportional to

F (x) = − log n(x)

on reducible symmetric cones K = K1 × · · · × Kr the canonical
barriers are given by

F (x) = −
r

∑

k=1

αk log nk (xk )

with xk the components of x and nk the generic norm of the
algebra corresponding to Kk
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Exponential map

define the exponential map

exp(u) =
∞
∑

k=0

uk

k!

Theorem (Köcher)

Let J be a Euclidean Jordan algebra and K its cone of squares.
Then the exponential map is injective and its image is the
interior of K ,

exp[J] = K o.
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Logarithm

let J be a Euclidean Jordan algebra with cone of squares K

then we can define the logarithm

log : K o → J

as the inverse of the exponential map

for Euclidean Jordan algebras with cone of squares K we have

log n(x) = t(log x) = τ(e, log x)

for all x ∈ K o
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Barriers on reducible cones

let K = K1 × · · · × Kr be a symmetric cone corresponding to an
algebra J

the canonical barriers on K have the form

F (x) = −

r
∑

k=1

αk log nk (xk )

= −

r
∑

k=1

αkτk (ek , log xk )

= τ(z, log x)

with z = −
∑r

k=1 αkek a central element of J
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Central elements and trace forms

Theorem (Köcher)

Let J be a semi-simple Euclidean Jordan algebra. Then every
trace form γ on J has the form

γ(u, v) = τ(z • u, v)

with z some central element of J.
The trace form γ is non-degenerate if and only if z is invertible.

for a Euclidean Jordan algebra J every central element is of the
form z =

∑r
k=1 αkek

z invertible if and only if all αk 6= 0

γ positive definite if and only if all αk < 0
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Barriers and trace forms

Corollary

Let K be a symmetric cone and J the corresponding Euclidean
Jordan algebra. Then every canonical barrier on K can be
expressed as

F (x) = γ(e, log x)

with γ a positive definite trace form.
On the other hand, for every positive definite trace form γ the
function F (x) is a canonical barrier on K .
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Notation for derivatives

let F : U → R be a smooth function on U ⊂ A
n, where A

n is the
n-dimensional affine real space

we note ∂F
∂xα = F,α, ∂2F

∂xα∂xβ = F,αβ etc.

note F ,αβ for the inverse of the Hessian

we adopt the Einstein summation convention over repeating
indices, e.g.,

F ,αβF,βγ :=
n

∑

β=1

F ,αβF,βγ = δαγ

Roland Hildebrand Hessian potentials with parallel derivatives



Conic optimization
Jordan algebras and symmetric cones

Hessian metrics

Parallel transport
Parallel first derivative
Parallel third derivative

Outline

1 Conic optimization
Convex programs
Conic programs

2 Jordan algebras and symmetric cones
Jordan algebras
Symmetric cones

3 Hessian metrics
Parallel transport
Parallel first derivative
Parallel third derivative

Roland Hildebrand Hessian potentials with parallel derivatives



Conic optimization
Jordan algebras and symmetric cones

Hessian metrics

Parallel transport
Parallel first derivative
Parallel third derivative

Hessian metrics

Definition

Let U ⊂ A
n be a domain equipped with a pseudo-metric h.

Then h is called Hessian if there locally exists a smooth function
F such that h = F ′′. The function F is called Hessian potential.

for every x ∈ U, h defines a symmetric bilinear form

hx : TxU×TxU → R, hx : (u, v) 7→ hx(u, v) = ∂u∂vF = F,αβuαvβ
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Geodesics

for every curve σ : [0,T ] → U, the length is given by

L(σ(·)) =

∫ T

0

√

hσ(t)(σ̇(t), σ̇(t)) dt

Definition

A stationary point of the length functional L with respect to
variations vanishing at the endpoints is called geodesic.
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stationary point means

dL(σ(·) + εv(·))
dε

∣

∣

∣

∣

ε=0
= 0

for all vector fields v(t) along the curve σ satisfying
v(0) = v(T ) = 0
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Christoffel symbols

the Euler-Lagrange equation for the length functional is

d2σα

dt2 +
1
2

F ,αδF,βγδ
dσβ

dt
dσγ

dt
= 0

the coefficients at the first derivatives σ̇ are the Christoffel
symbols

Γαβγ =
1
2

F ,αδF,βγδ

the geodesic equation becomes

d2σα

dt2 + Γαβγ
dσβ

dt
dσγ

dt
= 0
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Parallel vector transport

let σ : [0,T ] be a curve and v ∈ Tσ(0)U a tangent vector at the
starting point

the parallel transport of the vector v along the curve σ is
defined by the ODE

dvα

dt
+ Γαβγvβ dσγ

dt
= 0

with wα = dσα

dt the geodesic equation becomes

dwα

dt
+ Γαβγwβ dσγ

dt
= 0
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Parallel transport of forms

let Ct : Tσ(t)U × · · · × Tσ(t)U → R be a multilinear form along a
curve σ

the form C is parallel along σ if for all parallel vector fields
ut , . . . , vt along σ the value Ct(ut , . . . , vt) is constant

this leads to the ODE

dCα1...αr

dt
−

r
∑

k=1

Γβαkγ
Cα1...β...αr

dσγ

dt
= 0

where β takes the place of the index αk
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Parallel vector fields and forms

a vector field uα is parallel if it is parallel along every curve

this is equivalent to the PDE

vα
,β + Γαβγvγ = 0

a form Cα1...αr is parallel if it is parallel along every curve

Cα1...αr ,β −

r
∑

k=1

Γγαkβ
Cα1...γ...αr = 0

parallel vector fields may not exist on a given Riemannian
manifold
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Metric tensor

the metric of a pseudo-Riemannian manifold is always parallel

hence the second derivative F ′′ of a Hessian potential is always
parallel

What does parallelism of other derivatives imply?
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PDE

the first derivative of a Hessian potential is parallel if

F,αβ − ΓγαβF,γ = F,αβ −
1
2

F ,γδF,αβδF,γ = 0

equivalently
2F ′′(·, ·) = F ′′′(·, ·, (F ′′)−1F ′)
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Solution

with eγ = −F,δF ,γδ the equation becomes

2F,αβ = −F,αβδeδ

then

eγ
,α = −F,αδF ,γδ − F ,γρF,ρσαeσ = −δγα + 2F ,γρF,ρα = δγα

this integrates to e = x + const with x the position vector field

shift the coordinate system in A
n such that x = e

F,δ + F,γδxγ = (F,γxγ),δ = 0

⇒ F,γxγ = const = ν

⇒ F (αx) = ν logα+ F (x), α > 0

F is logarithmically homogeneous

reverse implication holds too if det F ′′ 6= 0
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Theorem (H., 2012)

Let F : U → R be a C3 function defined on some domain
U ⊂ A

n. Suppose that F has a non-degenerate Hessian.
Then the first derivative F ′ is parallel with respect to the
Hessian metric F ′′ if and only if F is logarithmically
homogeneous with respect to some central point.
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PDE

the third derivative of a Hessian potential is parallel if

F,αβγδ − ΓραδF,ρβγ − ΓρβδF,αργ − ΓργδF,αβρ = 0

equivalently we obtain the 4-th order quasi-linear PDE

F,αβγδ =
1
2

F ,ρσ (F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ)
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Integrability condition

differentiating with respect to xη and substituting the fourth
order derivatives by the right-hand side, we get

F,αβγδη =
1
4

F ,ρσF ,µν (F,βηνF,αρµF,γδσ + F,αηµF,ρβνF,γδσ

+ F,γηνF,αρµF,βδσ + F,αηµF,ργνF,βδσ + F,βηνF,γρµF,αδσ

+ F,γηµF,ρβνF,αδσ + F,βηνF,δρµF,αγσ + F,δηµF,ρβνF,αγσ

+ F,δηνF,αρµF,βγσ + F,αηµF,ρδνF,βγσ + F,δηνF,γρµF,αβσ

+ F,γηµF,ρδνF,αβσ)

anti-commuting δ, η gives the integrability condition

F ,ρσF ,µν (F,βηνF,δρµF,αγσ + F,αηµF,ρδνF,βγσ + F,γηµF,ρδνF,αβσ

−F,βδνF,ηρµF,αγσ − F,αδµF,ρηνF,βγσ − F,γδµF,ρηνF,αβσ) = 0.
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Simplification with Christoffel symbols

multiplying the integrability condition with (F ′′)−1 we get

ΓηαµΓ
µ
δρΓ

ρ
βγ + ΓηβµΓ

µ
δρΓ

ρ
αγ + ΓηγµΓ

µ
δρΓ

ρ
αβ

− ΓµαδΓ
η
ρµΓ

ρ
βγ − ΓµβδΓ

η
ρµΓ

ρ
αγ − ΓµγδΓ

η
ρµΓ

ρ
αβ = 0

this is satisfied if and only if

ΓηαµΓ
µ
δρΓ

ρ
βγuαuβuγvδ = ΓµαδΓ

η
ρµΓ

ρ
βγuαuβuγvδ

for all tangent vectors u, v
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Algebra defined by F

define a multiplication on the tangent space by u • v = Γ(u, v),

(u • v)α = Γαβγuβvγ

this defines a commutative algebra J

the integrability condition becomes

Γ(Γ(Γ(u,u), v),u) = Γ(Γ(u, v), Γ(u,u))

or
(u2 • v) • u = (u • v) • u2

it is equivalent to the Jordan identity
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Hessian metric as trace form

the Hessian metric F ′′ satisfies

F ′′(u • v ,w) = F,βγΓ
β
δρuδvρwγ =

1
2

F,βγF,δρσF ,σβuδvρwγ

=
1
2

F,δργuδvρwγ =
1
2

F,βδuδF,ργσF ,σβvρwγ

= F,δβuδΓβργvρwγ = F ′′(u, v • w).

hence F ′′ is a trace form
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Theorem (H., 2012)

Let F : U → R be a C5 function defined on some domain
U ⊂ A

n. Suppose that F has a non-degenerate Hessian.
If the third derivative of F is parallel with respect to the Hessian
metric, then the Christoffel symbols Γαβγ of the Hessian metric
define the structure tensor of a Jordan algebra, and the metric
F ′′ is a trace form of this algebra.
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Characterization of solutions

every pair (J, γ) of a Jordan algebra J and a non-degenerate
trace form γ on J define

a domain (of quasi-invertibility) U ⊂ J

a closed 1-form ζ on U × R up to a constant additive term

the local potentials Φ of ζ are graphs of Hessian potentials
F with parallel 3rd derivative

every such potential F can be obtained in this way

the transformation F ↔ (J, γ) is invertible

the Hessian metric F ′′ turns U into a symmetric space
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Parallel first and third derivative

Theorem (H., 2012)

Let F : U → R be a Hessian potential with parallel 3rd
derivative.
Then the Jordan algebra J is unital if and only if F is
log-homogeneous, i.e., if the first derivative of F is parallel.

in this case

U is a domain of invertibility

the value of γ = F ′′ on the unit element e is the
log-homogeneity parameter

F is locally a potential of the closed 1-form ξx (·) = γ(·, x−1)

near e we have F (x) = γ(e, log x) + const
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Convexity

if in addition F ′′ � 0 then

J is a Euclidean Jordan algebra

U is a symmetric cone

F = γ(e, log x) + const is globally defined on U
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Characterization of barriers

Theorem (H., 2012)

Let U ⊂ A
n be a domain and F : U → R

n a C5 function.
Then U is a symmetric cone and F a canonical barrier on it if
and only if the following conditions hold simultaneously:

F ′′ is a positive-definite Hessian metric on U

the corresponding Riemannian space is complete

the 1st derivative F ′ is parallel with respect to the metric

the 3rd derivative F ′′′ is parallel with respect to the metric

self-concordance is a trivial consequence of these conditions
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Thank you
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