Comparison of the PPT cone
 and the separable cone for $2 \otimes n$ systems

Roland Hildebrand, LMC-IMAG

CORE, Louvain-la-Neuve, 16 June 2005

Outline

- Definitions of the separable cone and the PPT cone
- Known results on the relation between PPT and separability
- New results
- Volume radii and homothetic images
- Block-Hankel matrices perturbed by rank 1 matrices
- Special case : approximation of convex functions with CGFs

Definitions

Consider the space of $n m \times n m$ complex hermitian matrices. A matrix A consists of $m \times m$ blocks $A_{k l}$ of size $n \times n$ each.

Let Γ be the operator of partial transposition acting as

$$
\Gamma: A=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 m} \\
A_{21} & A_{22} & \cdots & A_{2 m} \\
\vdots & \vdots & & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m m}
\end{array}\right) \mapsto A^{\Gamma}=\left(\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{m 1} \\
A_{12} & A_{22} & \cdots & A_{m 2} \\
\vdots & \vdots & & \vdots \\
A_{1 m} & A_{2 m} & \cdots & A_{m m}
\end{array}\right)
$$

Define
PSD - the cone of positive semidefinite matrices
PPT - PSD $\cap \Gamma(\mathrm{PSD})$
SEP - the convex hull of all matrices of the type $(x \otimes y)(x \otimes y)^{*}, x \in \mathbf{C}^{m}, y \in \mathbf{C}^{n}$

Inclusion relations and automorphisms

we have the inclusions $\mathrm{SEP} \subset \mathrm{PPT} \subset \mathrm{PSD} \subset \mathrm{PPT}^{*} \subset \mathrm{SEP}^{*}$
Proof: let $A=(x \otimes y)(x \otimes y)^{*} \in \mathrm{SEP}$, then $A \succeq 0$ and $A^{\Gamma}=(\bar{x} \otimes y)(\bar{x} \otimes y)^{*} \succeq 0$ hence $A \in \mathrm{PPT}$

Automorphism group : $A \in \mathrm{SEP} \Leftrightarrow\left(S \otimes I_{n}\right) A\left(S \otimes I_{n}\right)^{*}$,
$\left(I_{m} \otimes T\right) A\left(I_{m} \otimes T\right)^{*} \in \mathrm{SEP}$ for all $S \in G L(m, \mathbf{C}), T \in G L(n, \mathbf{C})$

Interpretations

Interpretation in terms of positive polynomials
$A \in \mathrm{SEP}^{*}$ if $p_{A}(x, y)=(x \otimes y)^{*} A(x \otimes y) \geq 0$ for all $x \in \mathbf{C}^{n}, y \in \mathbf{C}^{m}$
hence SEP* is a cone of positive polynomials
one can show that PPT^{*} is the corresponding cone of sums of squares

PPT is used to approximate SEP
application : sets of mixed states of a composite quantum system consisting of a subsystem with m states and a subsystem with n states

Known results on the relation between PPT and SEP

Block-Hankel matrices

let $m=2$
if we restrict x to be in \mathbf{R}^{2} (instead of $x \in \mathbf{C}^{2}$), then all matrices are in the blockwise symmetric subspace $A_{12}=A_{21}$

SEP is the convex hull of rank 1 block-Hankel matrices
Γ amounts to the identity map, and PPT is the cone of positive semidefinite block-Hankel matrices

Theorem : PPT = SEP, i.e. any positive semidefinite block-Hankel matrix is a sum of rank 1 positive semidefinite block-Hankel matrices.
(spectral factorization theorem for quadratic matrix-valued polynomials in 1 variable)
the same hold for block-Töplitz matrices with $A_{11}=A_{22}$

Exactness in the complex case

Theorem (Woronowicz 1976): Let $m=2, n \leq 3$ or $m \leq 3, m=2$. Then PPT $=S E P$. If $m=2, n=4$ or $m=4, n=2$, then $P P T \neq S E P$.

Theorem (Terpstra 1938): If $\min (n, m) \geq 3$, then $P P T \neq S E P$.
trivially $\mathrm{PSD}=\mathrm{PPT}=\mathrm{SEP}$ if $\min (n, m)=1$
hence $\mathrm{PPT}=\mathrm{SEP}$ if and only if $\min (n, m)=1$ or $m+n \leq 5$

$2 \otimes n$ case

we consider the case $m=2$
Theorem (Gurvits 2003) : Let

$$
\left(\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \in \mathrm{PPT}
$$

Then

$$
\left(\begin{array}{cc}
2 A_{11} & A_{12} \\
A_{21} & 2 A_{22}
\end{array}\right) \in \mathrm{SEP}
$$

Proof:

$$
\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \succeq 0,\left(\begin{array}{cc}
A_{11} & \pm A_{21} \\
\pm A_{12} & A_{22}
\end{array}\right) \succeq 0
$$

$$
\begin{gathered}
\Rightarrow\left(\begin{array}{cc}
2 A_{11} & A_{12}+A_{21} \\
A_{12}+A_{21} & 2 A_{22}
\end{array}\right) \in \mathrm{SEP},\left(\begin{array}{cc}
2 A_{11} & i\left(A_{12}-A_{21}\right) \\
i\left(A_{12}-A_{21}\right) & 2 A_{22}
\end{array}\right) \in \mathrm{SEP} \\
\Rightarrow\left(\begin{array}{cc}
2 A_{11} & A_{12} \pm A_{21} \\
\pm A_{12}+A_{21} & 2 A_{22}
\end{array}\right) \in \mathrm{SEP} \square
\end{gathered}
$$

$H T_{D i a g}(2) \otimes I d_{n \times n}[\mathrm{PPT}] \subset \mathrm{SEP}$
here $H T_{\text {Diag }}(2)$ is the mapping that contracts the space of 2×2 hermitian matrices by a factor of 2 in the directions orthogonal to the subspace of diagonal matrices
the homothetic image of PPT with respect to some subspace is contained in SEP

New results : homothetic images in the general case

Let m, n be arbitrary and let $A \in \mathrm{SEP}^{*}$. Then for any $x \in \mathbf{C}^{m}$ we have $A_{x}=\left(x \otimes I_{n}\right)^{*} A\left(x \otimes I_{n}\right) \succeq 0$ (because
$y^{*}\left(x \otimes I_{n}\right)^{*} A\left(x \otimes I_{n}\right) y=(x \otimes y)^{*} A(x \otimes y) \geq 0$ for all $\left.y \in \mathbf{C}^{n}\right)$. Therefore

$$
\left(x x^{*}\right) \otimes A_{x} \in \operatorname{SEP}
$$

Let x be normally distributed. Then

$$
\mathbf{E}\left[\left(x x^{*}\right) \otimes A_{x}\right]=\text { const } \cdot H T_{I_{m}}(m+1) \otimes I d_{n \times n}(A) \in \operatorname{SEP}
$$

Theorem : $H T_{I_{m}}(m+1) \otimes I d_{n \times n}\left[\right.$ SEP $\left.^{*}\right] \subset$ SEP.
Let $R_{V}(K)=\left(\operatorname{Vol}(K) / \operatorname{Vol}\left(B_{1}\right)\right)^{1 / \operatorname{dim}(K)}$ denote the volume radius of a convex body K, B_{1} is the unit ball.

Theorem :

$R_{V}(\operatorname{SEP} \cap\{$ trace $=1\}) \geq R_{V}\left(\operatorname{SEP}^{*} \cap\{\right.$ trace $\left.=1\}\right) \cdot(m+1)^{-\left(m^{2}-1\right) n^{2} /\left(m^{2} n^{2}-1\right)}$

Homothetic images for $m=2$

Let $m=2$ and consider

$$
A=\left(\begin{array}{cc}
A_{0}+A_{1} & A_{2}+i A_{3} \\
A_{2}-i A_{3} & A_{0}-A_{1}
\end{array}\right) \in \mathrm{PPT}
$$

Then

$$
\left(\begin{array}{cc}
A_{0}+A_{1} & A_{2} \\
A_{2} & A_{0}-A_{1}
\end{array}\right),\left(\begin{array}{cc}
A_{0}+A_{1} & i A_{3} \\
-i A_{3} & A_{0}-A_{1}
\end{array}\right),\left(\begin{array}{cc}
A_{0} & A_{2}+i A_{3} \\
A_{2}-i A_{3} & A_{0}
\end{array}\right)
$$

are in SEP. Hence

$$
\left(\begin{array}{cc}
\frac{3}{2} A_{0}+A_{1} & A_{2}+i A_{3} \\
A_{2}-i A_{3} & \frac{3}{2} A_{0}-A_{1}
\end{array}\right) \in \mathrm{SEP}
$$

Theorem : $H T_{I_{2}}(3 / 2) \otimes I d_{n \times n}[\mathrm{PPT}] \subset \mathrm{SEP}$.
Theorem : $R_{V}(\mathrm{SEP} \cap\{$ trace $=1\}) \geq R_{V}(\mathrm{PPT} \cap\{$ trace $=1\}) \cdot(2 / 3)^{3 /\left(4-n^{-2}\right)}$ ($\rightarrow \approx 0.738$).

Perturbed block Hankel matrices

Consider again the case $m=2$.
Theorem : Let

$$
A=\left(\begin{array}{cc}
A_{11} & A_{12}+i z z^{*} \\
A_{12}-i z z^{*} & A_{22}
\end{array}\right) \in \mathrm{PPT}
$$

with A_{12} hermitian, $z \in \mathbf{C}^{n}$. Then A is separable.
Idea of proof: Decompose A in two separable matrices

$$
A=\left(\begin{array}{cc}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{12} & \tilde{A}_{22}
\end{array}\right)+B_{2 \times 2} \otimes z z^{*}
$$

such that $B \succeq 0$ and $\operatorname{det} B$ is maximized.

Hence equality between SEP and PPT is maintained if a block-Hankel matrix is perturbed by a separable rank 1 matrix - extension of the spectral factorization theorem (works also for perturbed block-Töplitz matrices).

Approximation of PPT by SEP for $m=2$

Let $m=2$.
Theorem : Let P be PPT. Then there exists $c \geq 1$ and S in $S E P$ such that

$$
S \preceq P \preceq c S
$$

Proof: Let $P_{11}=I_{n}$ without restriction of generality. Let P be of rank r. Factor P as

$$
P=\left(\begin{array}{ll}
I_{n} & 0 \\
W & Z
\end{array}\right)\left(\begin{array}{ll}
I_{n} & 0 \\
W & Z
\end{array}\right)^{*}
$$

Then $S \preceq P \preceq c S$ if and only if

$$
S=\left(\begin{array}{ll}
I_{n} & 0 \\
W & Z
\end{array}\right) M\left(\begin{array}{ll}
I_{n} & 0 \\
W & Z
\end{array}\right)^{*}
$$

with $M \preceq I \preceq c M$.

But

$$
\left(\begin{array}{cc}
I_{n} & 0 \\
W & Z
\end{array}\right) z z^{*}\left(\begin{array}{cc}
I_{n} & 0 \\
W & Z
\end{array}\right)^{*} \in \mathrm{SEP}
$$

if and only if z is an eigenvector of the matrix pencil $(W Z)+\lambda\left(I_{n} 0\right)$ (including $\lambda=\infty$). Complete ($W Z$) to a square diagonalizable matrix and let z_{1}, \ldots, z_{r} be its eigenvectors.
Look for $M=\sum_{k=1}^{r} c_{k} z_{k} z_{k}^{*}, c_{k}>0$ such that $M \preceq I$. Since M is regular, we get $M \preceq I \preceq c M$ for some $c \geq 1$.

Bounded quality of approximation in a special case

Consider the following $(n+1)$-dimensional subspace of the space of $2 n \times 2 n$ matrices :

$$
A_{D}=\left(\begin{array}{cc}
I_{n} & 0_{n \times 1} \\
0_{n \times 1} & I_{n}
\end{array}\right) D_{(n+1) \times(n+1)}\left(\begin{array}{cc}
I_{n} & 0_{n \times 1} \\
0_{n \times 1} & I_{n}
\end{array}\right)^{T}
$$

with D diagonal. A_{D} is PPT if the sequence of its diagonal elements is logarithmically convex. A_{D} is SEP if its diagonal can be extended to a positive semidefinite Hankel matrix.
Theorem : Let $A_{D} \in P P T$. Then there exists $S_{D} \in S E P$ such that

$$
S_{D} \preceq A_{D} \preceq 4 S_{D}
$$

Idea of proof:
For $n \rightarrow \infty$ the sets of logarithms of the corresponding sequences tend to the set of convex functions and the set of cumulant generating functions (CGFs), that is log-sum-exps of linear functions.

Approximation of convex functions by CGFs

Theorem : Let f be a continuous convex function on a real interval. Then there exists a CGF g defined on the same interval and a constant c, not dependent on f, such that $\|f-g\|_{C^{0}} \leq c$. The best of such constants c^{*} is bounded by $\ln 2 / 2 \leq c^{*} \leq \ln 2$.

If we consider convex functions in higher dimensions, the theorem is no more valid.

Conclusions

several new results on the relations between PPT cones and separable cones were obtained

- inclusions of homothetic images and relations between the volume radii of SEP* and SEP in the general case and between PPT and SEP for $m=2$
- extension of the spectral factorization theorem to the case of $2 n \times 2 n$ block-Hankel (block-Töplitz) matrices perturbed by rank 1 matrices
- approximation of convex functions by CGFs

Applications : quantum information, mathematical programming (semidefinite relaxations)

