On the convexity properties of the barrier parameter in conic programming

Roland Hildebrand

Université Grenoble Alpes / CNRS

RICAM Workshop on Conic optimization, Linz December 9, 2019

ヘロト 人間 ト ヘヨト ヘヨト

æ

Motivation and problem formulation

- Self-concordant barriers
- Logarithmically homogeneous barriers

- Results

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Newton method

iterative method minimizing local quadratic approximation of cost function ${\it F}$

$$x_{k+1} = x_k - (F''(x_k))^{-1}F'(x_k) = \arg\min_x q_k(x),$$

where

$$q_k(x)=F(x_k)+\langle F'(x_k),x-x_k
angle+rac{1}{2}\langle F''(x_k)(x-x_k),x-x_k
angle$$

current iterate characterized by Newton decrement

$$\rho_k = ||F'(x_k)||_k = \sqrt{2(q_k(x_k) - q_k(x_{k+1})))} = ||x_{k+1} - x_k||_k$$

here $|| \cdot ||_k$ is the local metric defined by $F''(x_k)$

ヘロン 人間 とくほ とくほ とう

3

Motivation of self-concordance

Newton method will work well if the quadratic approximation q_k is still reasonably good at the new point x_{k+1}

 q_{k+1} should not be too far away from q_k :

$$\frac{||q_{k+1} - q_k||}{||x_{k+1} - x_k||} \le L$$

•
$$||q_{k+1} - q_k|| \sim$$
 rate of change F'''

• $||x_{k+1} - x_k||$ measured in local metric $|| \cdot ||_k \sim F''$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Self-concordant barriers Logarithmically homogeneous barriers

Self-concordant functions

Definition

Let $D \subset \mathbb{R}^n$ be a convex domain and $F : D \to \mathbb{R}$ a convex C^3 function. The function F is called self-concordant if for all $x \in D$ and all $u \in T_x D$ we have

$$|F'''(x)[u, u, u]| \le 2(F''(x)[u, u])^{3/2},$$

and self-concordant barrier if in addition $\lim_{x\to\partial D} F(x) = +\infty$.

power $\frac{3}{2}$ in order to homogenize inequality with respect to u

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Newton method and self-concordance

let $F : D \to \mathbb{R}$ be a self-concordant barrier apply the Newton method to minimize F on Dself-concordance guarantees that

• if
$$\rho_k < 1$$
, then $x_{k+1} \in L$
• $\rho_{k+1} \le \left(\frac{\rho_k}{1-\rho_k}\right)^2$

quadratic convergence in the vicinity of the minimum

used in interior-point methods for convex programming

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э.

Barrier parameter

let $F: D \to \mathbb{R}$ be a self-concordant barrier

the quantity

$$\nu = \sup_{x \in D} \rho^2 = \sup_{x \in D} ||F'(x)||_{F''(x)}^2$$

is called the barrier parameter of F

the smaller the parameter ν , the larger the steps of the optimization method and the faster the convergence number of iterations scales like $\nu^{1/2}$

ヘロン 人間 とくほ とくほ とう

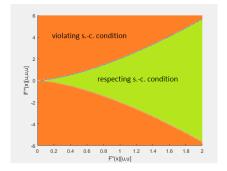
1

Problem

For given $D \subset \mathbb{R}$, find the barrier *F* with the lowest parameter ν on *D*.

we study the convexity properties of this problem

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()



convex combinations of self-concordant functions are not necessarily self-concordant convex hull of possible pairs (F''(x)[u, u], F'''(x)[u, u, u]) is the whole right half-plane

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Example

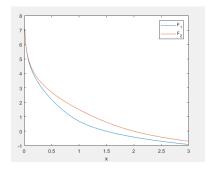
consider the domain $D = \mathbb{R}_{++}$ and the self-concordant functions

$$F_1(x) = \begin{cases} -\log x + \frac{5}{2} - 2x, & x \leq \frac{1}{2}, \\ \log 2 + 2(1-x) + 2(1-x)^2, & \frac{1}{2} < x \leq 1, \\ -\log(x-\frac{1}{2}), & x > 1, \end{cases}$$

$$F_2(x) = \begin{cases} -\log x + \frac{5}{2} - x, & x \le 1, \\ (2 - x) + \frac{(2 - x)^2}{2}, & 1 < x \le 2, \\ -\log(x - 1), & x > 2, \end{cases}$$

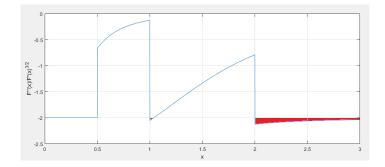
set $F = \frac{2}{3}F_1 + \frac{1}{3}F_2$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで



F_1, F_2 are self-concordant

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで



 $F = \frac{2}{3}F_1 + \frac{1}{3}F_2$ is not self-concordant

Self-concordant barriers Logarithmically homogeneous barriers

Cones and conic programs

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is a closed convex cone having nonempty interior and containing no lines.

Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^n$ is an optimization problem of the form

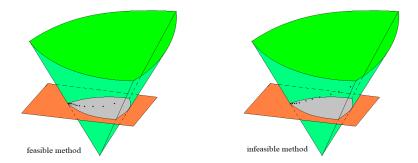
$$\min_{x\in \mathbf{K}} \langle \mathbf{c}, \mathbf{x} \rangle : \quad \mathbf{A}\mathbf{x} = \mathbf{b}.$$

every convex optimization problem can be cast in this form

ヘロト ヘ戸ト ヘヨト ヘヨト

Motivation and problem formulation Solution Self-concordant barriers Logarithmically homogeneous barriers

Interior-point methods



iterative methods generating a sequence of interior points essential ingredient : self-concordant barrier on K

ヘロア 人間 アメヨア 人口 ア

э

Examples

common efficiently solvable classes of conic programs

- linear programs (LP)
- second-order cone programs (SOCP)
- semi-definite programs (SDP)

LP: linear inequality constraints, $K = \mathbb{R}^n_+$

SOCP: convex quadratic constraints, $K = \prod_j L_{m_j}$, $L_m = \{(x_0, \dots, x_{m-1})^T \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{m-1}^2}\}$

SDP : linear matrix inequalities, $K = \{A \in S^{n \times n} | A \succeq 0\}$

for these cones barriers with the smallest possible parameter are available

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^n$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is a smooth function $F : K^o \to \mathbb{R}$ on the interior of K such that

- $F(\alpha x) = -\nu \log \alpha + F(x)$ (logarithmic homogeneity)
- *F*["](x) ≻ 0 (convexity)
- $\lim_{x \to \partial K} F(x) = +\infty$ (boundary behaviour)
- $|F'''(x)[u, u, u]| \le 2(F''(x)[u, u])^{3/2}$ (self-concordance)

for all tangent vectors u at every $x \in K^o$.

$$\frac{\nu}{\nu}$$
 is the parameter: $F''(x)x = -F'(x)$, $\langle F'(x), x \rangle = -\nu$
 $\Rightarrow \langle (F''(x))^{-1}F'(x), F'(x) \rangle = \nu$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Generalized self-concordance

a more natural definition of self-concordance

Definition

Let *K* be a regular convex cone. We call a C^2 function $F: K^o \to \mathbb{R}$ a logarithmically homogeneous self-concordant barrier in the generalized sense on *K* with parameter ν if

•
$$F(\alpha x) = -\nu \log \alpha + F(x)$$

•
$$F''(x) \succ 0$$

•
$$\lim_{x\to\partial K}F(x)=+\infty$$

• $\limsup_{\epsilon \to 0} \frac{|F''(x+\epsilon h)[h,h]-F''(x)[h,h]|}{\epsilon} \le 2(F''(x)[h,h])^{3/2}$ for all tangent vectors h and $x \in K^o$.

・ロト ・ 理 ト ・ ヨ ト ・

1

Compatibility with convexity

- $F(\alpha x) = -\nu \log \alpha + F(x)$ (logarithmic homogeneity)
- *F*["](*x*) ≻ 0 (convexity)
- $\lim_{x \to \partial K} F(x) = +\infty$ (boundary behaviour)
- $|F'''(x)[u, u, u]| \le 2(F''(x)[u, u])^{3/2}$ (self-concordance)

cost function linear but feasible set not convex

but:

- the feasible set is mapped into itself by multiplication by constants \geq 1
- the cost function increases under multiplication by constants \geq 1

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Scaling

by multiplying the function ${\it F}$ by a constant α we achieve the transformation

$$(\nu, F'', F''') \mapsto (\alpha \nu, \alpha F'', \alpha F''')$$

hence we may replace the objective ν by the homogeneous function

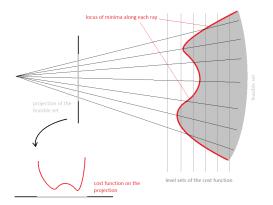
$$\sup_{x \in D, u \in T_x D} \frac{\nu(F''(x)[u, u, u])^2}{4(F''(x)[u, u])^3}$$

and consider only the slice $\nu = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Motivation and problem formulation Solution Self-concordant barriers Logarithmically homogeneous barriers

Transfer of non-convexity



the feasible set becomes convex, the cost function non-convex

イロト 不得 とくほ とくほ とうほ

Self-concordant barriers Logarithmically homogeneous barriers

Problem formulation

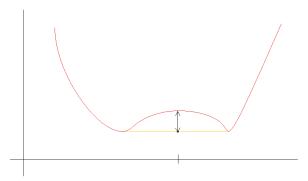
How much do we lose by convexification of the cost function?

in other words:

Given a convex combination *F* of barriers on *K* with parameter ν , what is the minimal value c > 1 such that $c \cdot F$ is guaranteed to be self-concordant?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Motivation and problem formulation Solution Solution Self-concordant barriers Logarithmically homogeneous barriers



How large ist the performance loss when using a minimum of the convexified cost function instead of a minimum of the original non-convex cost?

ヘロト ヘ戸ト ヘヨト ヘヨト

э

Level set

let $K \subset \mathbb{R}^n$ be a regular convex cone let $\nu > 0$ be fixed

let $F: K^o \to \mathbb{R}$ in the sub-level set corresponding to ν

•
$$F(\alpha x) = -\log \alpha + F(x), \alpha > 0, x \in K^{\alpha}$$

•
$$F''(x) \succ 0, x \in K^o$$

•
$$\lim_{x \to \partial K} F(x) = +\infty$$

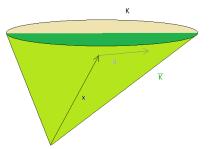
•
$$|F'''(x)[u, u, u]| \le 2\sqrt{\nu}(F''(x)[u, u])^{3/2}$$

setting u = x we get $\nu \ge 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Reduction to dimension 2

let $x \in K^o$ be an interior point let $x \not\parallel u \in T_x K^o$ be a tangent vector let *L* be the span of *x*, *u*



then F''(x)[u, u], F'''(x)[u, u, u] depend only on restriction of F to $\tilde{K}^o = (K \cap L)^o$

Methods Results

Normalization

normalize coordinate system such that $K = L_2 = \{(x_0, x_1) | x_0 \ge |x_1|\}, x = (1, 0), u = (\tau, 1)$, then

$$F'''(x)[\cdot, \cdot, e_0] = -2\begin{pmatrix} 1 & a \\ a & b \end{pmatrix}, \quad F'''(x)[\cdot, \cdot, e_1] = -2\begin{pmatrix} a & b \\ b & c \end{pmatrix}$$
$$F''(x) = \begin{pmatrix} 1 & a \\ a & b \end{pmatrix}, \qquad F'(x) = -\begin{pmatrix} 1 \\ a \end{pmatrix}$$

 $| au^3 + 3a au^2 + 3b au + c| \leq \sqrt{
u}(au^2 + 2a au + b)^{3/2} \qquad orall \ au \in \mathbb{R}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Positivity condition

replace τ by $\tau - a$, then we get

$$(au^3 + 3(b - a^2) au + c - 3ab + 2a^3)^2 \le
u(au^2 + b - a^2)^3 \quad \forall \ au$$

this can be rewritten as

$$|\boldsymbol{c} - 3\boldsymbol{a}\boldsymbol{b} + 2\boldsymbol{a}^3| \leq rac{
u-2}{\sqrt{
u-1}}(\boldsymbol{b} - \boldsymbol{a}^2)^{3/2} \qquad (\Rightarrow \ \nu \geq 2)$$

the expressions $b - a^2$, $c - 3ab + 2a^3$ encode the affine metric and the *cubic form* of the level curve of *F* they are projectively invariant and hence the above inequality is valid for any

$$(a, b, c) = (-F'(x)[u], F''(x)[u, u], -\frac{1}{2}F'''(x)[u, u, u])$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Controlled system

set
$$f(t) = F(1, t), t \in (-1, 1)$$
, then

$$f'' > (f')^2$$
, $\lim_{t \to \pm 1} f(t) = +\infty$

$$\frac{1}{2}f''' - 3f'f'' + 2(f')^3 = \frac{\nu - 2}{\sqrt{\nu - 1}}u(f'' - (f')^2)^{3/2}, \quad u \in [-1, 1]$$

reachability problem: for which initial conditions

$$f'(0) = -a, \ f''(0) = b, \ f'''(0) = -2c$$

the problem has a solution?

イロト 不得 とくほ とくほ とう

E DQC

Feasible set for *a*, *b*, *c*

Theorem

The preceding problem has a solution if and only if

$$egin{aligned} &rac{\sqrt{b-a^2}}{\sqrt{
u-1}} \leq 1-a \leq \sqrt{
u-1}\sqrt{b-a^2}, \ &rac{\sqrt{b-a^2}}{\sqrt{
u-1}} \leq 1+a \leq \sqrt{
u-1}\sqrt{b-a^2}, \ &|c-3ab+2a^3| \leq rac{
u-2}{\sqrt{
u-1}}(b-a^2)^{3/2}. \end{aligned}$$

denote the corresponding non-convex body in \mathbb{R}^3 by C_{ν}

・ロト ・ 理 ト ・ ヨ ト ・

3

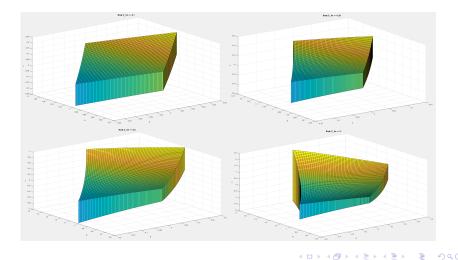
Bodies C_{ν}

properties of C_{ν}

- C_{ν} compact
- $C_{
 u'} \subset C_{
 u}$ for $u' \leq
 u$
- $C_2 = \{(0, 1, 0)\}$
- $\bigcup_{\nu \geq 2} C_{\nu} = \{(a, b, c) | b > 0\}$
- for every ν there exists ν̃ ≥ ν such that C_{ν̃} contains the convex hull of C_ν
- there exists a minimal such $\tilde{\nu}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Bodies C_{ν}



Main result

Theorem

Let $K \subset \mathbb{R}^n$ be a regular convex cone, and let $\nu \geq 2$.

- Let ν̃ ≥ 2 be such that C_{ν̃} contains the convex hull of C_ν. Then every convex combination of barriers with parameter ν on K yields a barrier in the generalized sense with parameter ν̃ on K when multiplied by ^ṽ/_ν.
- Let ν
 ˜ be such that C<sub>ν
 </sub> does not contain the convex hull of C_ν. Then there exists a convex combination of barriers with parameter ν on K which cannot be scaled into a barrier with parameter ν
 ˜ on K.

ヘロト ヘアト ヘビト ヘビト

for fixed *a* the expressions $\pm (b - a^2)^{3/2}$ are convex (concave) in *b*

hence the convex hull of C_{ν} equals the convex hull of the edges, which are rational curve segments

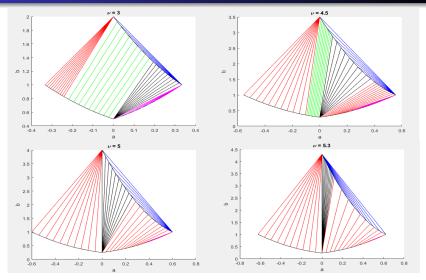
 \Rightarrow convex hull is semi-definite representable

convex hull can be analytically computed qualitatively different for different ν structural changes at $\nu =$ 3.9718553726, 4.8473221018, 5.2360679774, 5.3770889307, 5.4716822838, 5.8892812008, 6.2802453362

ヘロン 人間 とくほ とくほ とう

Motivation and problem formulation Solution Methods Results

Convex hull of C_{ν}

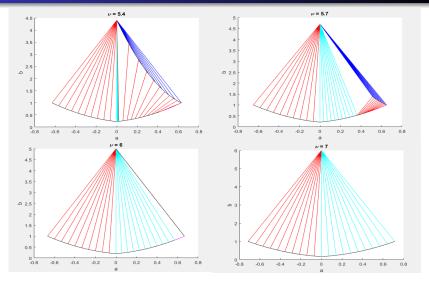


ヘロン 人間 とくほど くほとう

æ

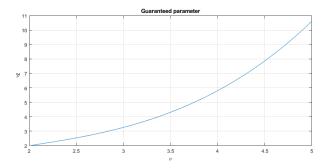
Motivation and problem formulation Solution Methods Results

Convex hull of C_{ν}



<ロト <回 > < 注 > < 注 > 、

æ



$$\tilde{\nu} = \nu + \frac{3}{8}(\nu - 2)^2 + O((\nu - 2)^3)$$

piece-wise algebraic function of ν for large ν we get $\tilde{\nu}\sim\nu^3$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Motivation and problem formulation Solution Methods Results

Thank you

Roland Hildebrand Convexity of barrier parameter

ヘロト 人間 とくほとくほとう