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Monge-Ampère equation

De�nition
A regular convex cone K ⊂ Rn is a closed convex cone with
nonempty interior and containing no lines.

Theorem
Let K ⊂ Rn be a regular convex cone. Then the PDE

detF ′′ = e2nF , F |∂K = +∞

has a unique convex solution on the interior of K .

The level surfaces of F are a�ne spheres which are asymptotic to

∂K and form a homothetic family.

the solution F is invariant under unimodular automorphisms of K ,
and logarithmically homogeneous

F (tx) = F (x)− log t, t > 0, x ∈ K o



Metric splitting

interior K o is di�eomorphic to a direct product of a level surface
and a radial ray

Theorem (Loftin 2002)

Under the above di�eomorphism the Riemannian metric de�ned on

K o by the Hessian F ′′ splits into a direct product g = h ⊕ s, where
h is the Blaschke metric of the level surface and s the trivial

1-dimensional metric on the ray.



Blaschke metric and cubic form

the Blaschke metric h, i.e. the restriction of F ′′ to a level surface,
is a complete Riemannian metric

it is projectively invariant if we identify the surface with a proper
convex domain in RPn−1

the restriction of F ′′′ to the surface is the cubic form C

given h and C the level surfaces of F and the cone K can be
recovered up to an unimodular linear isomorphism in SL(n,R)

not every pair (h,C ) corresponds to an a�ne sphere
a necessary condition is that C is trace-less with respect to h,

hijCijk = 0



Riemann surfaces

for 3-dimensional cones K the level surfaces M of F are
2-dimensional
hence M is a non-compact simply connected Riemann surface

Uniformization theorem: Every simply connected Riemann
surface is conformally equivalent to either the unit disc D, or the
complex plane C, or the Riemann sphere S , equipped with either
the hyperbolic metric, or the �at (parabolic) metric, or the
spherical (elliptic) metric, respectively.

due to Klein, Riemann, Schwarz, Koebe, Poincaré, Hilbert, Weyl,
Radó ... 1880�1920

only D and C are non-compact



Riemann surfaces

global chart with values in D or C exists and is unique up to
automorphisms such that h = eu|dz |2
here z = x + iy , |dz |2 = dx2 + dy2

u de�nes the conformal factor eu

may use other simply connected domains which are conformally
isomorphic (in case of D)

if there is a symmetry group acting on the domain, we may use the
(not simply connected) factor domain



Cubic di�erential

consider a conformal chart on M such that h = eu(dx2 + dy2)

the trace-less cubic form

C = 2

[(
U1 −U2

−U2 −U1

)
,

(
−U2 −U1

−U1 U2

)]
has two independent components and can be represented by a
cubic di�erential U = U1 + iU2: C = 2Re(U(z)dz3)

under bi-holomorphic coordinate changes u,U transform like

U(w) = U(z)

(
dz

dw

)3

, u(w) = u(z) + 2 log

∣∣∣∣ dzdw
∣∣∣∣



Wang's equation

compatibility requirements on u,U [C.-P. Wang 1991]:

∂U

∂z̄
= 0,

|U|2 = 1

2
e3u − 1

4
e2u∆u =

1

2
e3u(1+ K)

here ∂
∂z = 1

2

(
∂
∂x − i ∂

∂y

)
, ∂
∂z̄ = 1

2

(
∂
∂x + i ∂

∂y

)
, ∆ = 4 ∂2

∂z∂z̄ ,

K ∈ [−1, 0] is the Gaussian curvature

the function U is hence holomorphic

it is called holomorphic cubic di�erential

▶ for given U, the equation is an elliptic PDE on u

▶ if (u,U) is a solution, then (u, e iφU) is also a solution for all
constant φ



Relation between cones and solutions (u,U)

Theorem: (follows from [Simon, Wang 1993])

▶ Let K ⊂ R3 be a regular convex cone. Then the solution F of
the Monge-Ampère PDE on K o de�nes a solution (u,U) on a
simply-connected domain M ⊂ C with complete Riemannian
metric h = eu|dz |2 up to bi-holomorphic isomorphisms of the
domain.

▶ Every simply connected non-compact Riemann surface M with
complete metric h = eu|dz |2 and holomorphic cubic di�erential
U satisfying Wang's equation corresponds to a regular convex
cone K ⊂ R3, up to unimodular linear isomorphisms.

complete solutions (u,U) up to bi-holomorphisms
⇔

regular convex cones up to unimodular isomorphisms



Recovery of the cone K

let (u,U) be a complete solution on M ⊂ C

construct a surface immersion f : M → R3 by integrating

fzz = uz fz − Ue−ufz̄ , fzz̄ =
1

2
euf , fz̄ z̄ = −Ūe−ufz + uz̄ fz̄

with arbitrary non-degenerate initial condition (fx , fy , f )

the surface f [M] will be asymptotic to a cone K ⊂ R3

di�erent initial conditions lead to isomorphic cones



Frame equations

equivalently, integrate

Fx = F

 −e−uRe U
uy
2 + e−uIm U eu/2

−uy
2 + e−uIm U e−uRe U 0

eu/2 0 0


Fy = F

 e−uIm U −ux
2 + e−uRe U 0

ux
2 + e−uRe U −e−uIm U eu/2

0 eu/2 0


with unimodular initial F = (e−u/2fx , e

−u/2fy , f ) ∈ SL(3,R)

the unimodular matrix function F (z) is called moving frame



Associated family and duality

for given u, the form U is determined up to a constant factor e iφ

this yields an associated family of (isomorphism classes of) cones
K ⊂ R3

De�nition
Let K ⊂ Rn be a regular convex cone. The dual cone of K is
de�ned as

K ∗ = {y ∈ (Rn)∗ | ⟨x , y⟩ ≥ 0 ∀ x ∈ K}.

if the moving frame F (z) de�nes a surface asymptotic to ∂K , then
F−T de�nes a surface asymptotic to ∂K ∗

the matrix function F−T satis�es the same moving frame equations
as F but with U replaced by −U

if (u,U) corresponds to K , then (u,−U) corresponds to K ∗



Associated family and duality

the associated family permits to de�ne "fractional" dual cones



Conditions on U

existence and uniqueness results for u given U

▶ Wang 1997; Loftin 2001; Labourie 2007: for a holomorphic
function on a compact Riemann surface of genus g ≥ 2 there
exists a unique solution (extends to universal cover)

▶ Benoist, Hulin 2014: let U be holomorphic on D such that
|U|2/3|dz |2 is bounded with respect to the uniformizing
hyperbolic metric, then there exists a unique complete solution
u such that |u − log 4

(1−|z|2)2 | is bounded
▶ Dumas, Wolf 2015: let U be a polynomial on C, then there

exists a unique complete solution u

▶ Wan, Au 1994; Q. Li 2019: let U be holomorphic on D, then
there exists a unique complete solution u

▶ Q. Li 2019: let U ̸≡ 0 be holomorphic on C, then there exists
a unique complete solution u

there is no solution for U ≡ 0 on C



Structure of the solution

if U ̸= 0, then a solution is given by

eu = 21/3|U|2/3

this corresponds to a �at metric
however, even if U ̸= 0 everywhere, this solution may be incomplete

the Blaschke metric is �at if and only if U ≡ const ̸= 0 and M = C
this case yields the cone R3

+

if U ≡ 0, then K ≡ −1 and eu|dz |2 is the metric of hyperbolic
space, this yields the cone K = L3

generally, eu ∼ |U|2/3 where |U| is large and the metric is close to
hyperbolic where |U| is small



Main problem

holomorphic functions U on domains M ⊂ C (except U ≡ 0 on C)
up to bi-holomorphisms

⇔
regular convex cones K ⊂ R3 up to unimodular isomorphisms

for non-simply-connected Riemann surfaces, pass to the universal
cover

interior points of M correspond one-to-one to interior rays of K
boundary points of M (including the in�nitely far point) correspond
to the boundary rays of K , but not one-to-one

Problem: study this relationship in more detail

in particular: which cones correspond to M = C



Known results

Dumas, Wolf 2015: polynomials U of degree k on C correspond to
polyhedral cones K with k + 3 extreme rays
U = zk corresponds to the cone over the regular (k + 3)-gon

Wang 1997; Loftin 2001; Labourie 2007:
holomorphic functions on a compact Riemann
surface of genus g ≥ 2 correspond to cones K
such that ∂K is C 1, but in general nowhere C 2

Benoist, Hulin 2014: the following are equivalent:

▶ supM K < 0

▶ R3
+ is not in the closure of the orbit of K under SL(3,R)

▶ M is conformally equivalent to D and U is bounded in the
hyperbolic metric

▶ ∂K is C 1 and quasi-symmetric



Quasi-symmetric convex sets

the curve (a(h), b(h)) has to be enclosed in a sector bounded away
form the coordinate axes, for every point x of the boundary



Examples

the || · ||p unit ball is quasi-symmetric convex even if one half is
linearly scaled
combining di�erent p-norms leads to loss of quasi-symmetry



Local results

let M be a Riemann surface with a puncture z0, and let the
holomorphic function U on M have a pole of order k at z0
let Π : R3 \ {0} → RP2 be the natural projection

the boundary portion of the universal cover of M at z0 corresponds
in Π[K ] to

▶ a piece with �nite Hilbert volume if k ≤ 2 [Benoist, Hulin
2013]

▶ a piece of either a straight line segment or a corner if k = 3
[Loftin 2004, 2019]

▶ a polyhedral piece with k − 3 vertices if k ≥ 4 [Nie 2018
preprint]



Representation of cones

SL(3,R)-orbits of su�ciently smooth regular convex cones can be
represented by 3-rd order linear ODEs

...
y + 2αẏ + (α̇+ β)y = 0

α(t), β(t) are 2π-periodic functions, y : R → R3

K is obtained as the convex conic hull of the solution curve

di�erent initial values lead to isomorphic cones

reparametrizations of the time parameter:

▶ α(t) ≡ const ≤ 1
2 can be achieved [H. 2020]

▶ β(t) transforms as cubic di�erential [Halphen, Wilczynski, ...]

▶ splitting α/β corresponds to symmetric and skew-symmetric
part of di�erential operator [Ovsienko, Tabachnikov]

ODE can in some cases be obtained from U



can be used also to represent smooth pieces of conic boundaries



Example: constant coe�cients

vector-valued solution y(t) = (ec1t , ec2t , ec3t), c1 > c2 > c3

set p = c1−c3
c2−c3

, q = c1−c3
c1−c2

, 1
p + 1

q = 1, p, q ∈ (1,+∞)

the solution then satis�es y2 = y
1/p
1 y

1/q
3 and lies on the boundary

of the power cone

Kp = {(x , y , z) | |z | ≤ x1/py1/q, x , y ≥ 0}

special case p = 2: ci equidistant, Kp ≃ L3

if c1 > c2 = c3, then with τ = (c1 − c2)t

y = (ec1t , ec2t , (c1 − c2)te
c2t) = ec2t(eτ , 1, τ)

curve lies on the boundary of the exponential cone

Kexp = {(x , y , z) | y/z ≥ ex/z , z > 0}



Semi-homogeneous cones

De�nition
A regular convex cone K ⊂ R3 is called semi-homogeneous if it has
a non-trivial continuous automorphism group.

classi�cation in [H. 2014]
U has to be constant on orbits, hence U ≡ const

M U ≡ const K

D 0 L3
C 1 R3

+

|Re z | < l
2 e iφ asymmetric power cone

Re z > 0 e iφ, |φ| < π
2 half power cone

Re z > 0 ±i exponential cone
Re z > 0 e iφ, |φ| > π

2 dual of half power cone

solution u given by Weierstrass ℘ functions [Z. Lin, E. Wang 2016]

representing ODE
...
y + 2αẏ + βy = 0 has constant coe�cients



Lorentz cone

M = D, U ≡ 0

D with the Klein model is isometric to the circular section



Orthant

M = C, U ≡ 1

the surface xyz = 1 over the triangle is mapped to C by

(x , y , z) 7→ (log x , log y , log z)



only geodesics with angles kπ
3 tend to interior points of the primal

and dual edges

these critical directions divide the plane into sectors with similar
convergence behaviour at ∞ (Stokes' phenomenon)



in RP2 × (RP2)∗ the boundary ∂M is a hexagon

the di�erential U dz3 increases its argument by π per vertex of the
hexagon



Power cone

M = {z | |Re z | < l
2}, U ≡ e iφ

K = {(x , y , z) | −c1x
1/py1/q ≤ z ≤ c2x

1/py1/q, x , y ≥ 0}

▶ U = ±1: p = 2

▶ U = ±i : symmetric power cone (c1 = c2)



Half-power cone

M = {z | Re z > 0}, U ≡ e iφ, Re U > 0
K = {(x , y , z) | −cx1/py1/q ≤ z ≤ 0, x , y ≥ 0}

▶ U = 1: p = 2

▶ U → ±i : p → +∞



Exponential cone

M = {z | Re z > 0}, U ≡ i
φ = π

2 : directions rotate by −π
6 to keep argument of U dz3

constant

the second corner disappeared because the critical direction points
along ∂M



Dual of half-power cone

M = {z | Re z > 0}, U ≡ e iφ, Re U < 0
K = {(x , y , z) | −cx1/py1/q ≤ z , x , y ≥ 0}

▶ U = −1: p = 2

▶ U → ±i : p → +∞



Self-associated cones

De�nition
A regular convex cone K ⊂ R3 is called self-associated if it is
linearly isomorphic to all its associated cones.

classi�cation in [H. 2022]
|U| has to be constant on orbits, phase changes

type M parameter U

elliptic |z | < R R ∈ (0,+∞] zk

parabolic Re z < b b ∈ (−∞,+∞] ez

hyperbolic a < Re z < b −∞ < a < b ≤ +∞ ez

type de�ned by spectrum of generator of automorphism group of K

solution u given by degenerate Painlevé III (D7) transcendents

representing ODE
...
y + 2αẏ + β · sin t · y = 0, α, β = const



Elliptic type: compact sections

M = {z | |z | < R}, U = zk , polar grid in M
k = 0, 1; R = 1, 2, 4 (R = +∞: polyhedral cones)



Parabolic type: compact sections

M = {z | Re z < b}, U = ez , uniform grid in M
b = −2,−1, 0, 1 (b = +∞ or M = C: ∞-gonal cone)
the whole boundary ∂K corresponds to Re z = b



∞-gonal cone

M = C, U = ez

corresponding cone K is the convex conic hull of the set

{(1, n, n2) | n ∈ Z}

compact section has in�nitely many edges and vertices with a single
accumulation point

▶ non-trivial automorphisms of K are isomorphic to the
automorphisms of Z and form the in�nite dihedral group D∞

▶ K is self-dual

▶ lines 2kπi + R tend to interior points of edges in K

▶ lines (2k + 1)πi + R tend to interior points of edges in K ∗



Hyperbolic type: compact sections

M = {z | a < Re z < b}, U = ez , uniform grid in M
(a, b) = (−3, 2); (−1, 0); (1, 2); (−4,−2); (−2, 0); (0, 2)
∂K consists of two analytic pieces corresponding to Re z = a, b



Hyperbolic type: compact sections

M = {z | a < Re z < b}, U = ez , uniform grid in M
(a, b) = (−6, 2); (−4, 0); (−2, 2); (−12,−4); (−6, 2); (−14, 2)
b = +∞: polyhedral boundary piece



Cantor cone

let M = C \ {−1,+1}, U = cz(z2−9)
(z2−1)3

, c ∈ C

C = 2Re (U dz3) is invariant with respect to the symmetry group
D3 of the domain, generated by

z 7→ −z , z 7→ z − 3

z − 1

|U| is invariant with respect to complex conjugation

at the punctures U has poles of order 3
each puncture corresponds to an edge or a vertex in ∂K
(dependent on the phase of c)

the union of edges and vertices is dense in ∂K
the symmetries determine the cone up to SL(3,R) action and two
parameters (corresponding to the choice of c)

universal cover of M is D



compact a�ne section of Cantor cone: set of extreme rays has
measure zero

▶ the cone can be computed by drawing an arbitrary edge and
then acting by the symmetry group on it

▶ since the union of edges is dense, all other boundary rays
appear in the limit

▶ extreme boundary rays are determined by the homotopy type
of the path leading to the boundary point



compact a�ne section of fat Cantor cone: set of extreme rays has
positive measure



Qualitative behaviour for "small" U

let M = D, and let U be su�ciently regular at T = ∂D

Wang's equation reads

e2u∆u = 2e3u − 4|U|2

let u0 = log 4
(1−|z|2)2 correspond to the hyperbolic metric

set υ = u − u0, υ bounded [Benoist, Hulin 2014]

we propose the following approach:
Wang's equation can be written

−e−u0∆υ + 2υ = 4e−2υ−3u0 |U|2 − 2(eυ − υ − 1) =: f

operator on left-hand side has an explicit Green's function



f = 4e−2υ−3u0 |U|2 − 2(eυ − υ − 1)

υ(z) =

∫
D
f (z0)k(d(z − z0)) |dz0|

for r → 1 we get as the main term

υ(z) =
1

6π

∫ 2π

0

∫ 1

0
f (z0)

4r0(1− r)2

(r20 − 2r0 cos(φ− φ0) + 1)2
dr0dφ0

= c(φ)(1− r)2

υ bounded ⇒ f bounded ⇒ υ ≲ (1− r)2 ⇒
f ≲ (1− r)6|U|2 + (1− r)4



by considering the asymptotics of the frame equations we get that
along T ≃ ∂M

βdt3 = Re(U dz3)

in particular, the smoothness of the cone boundary depends locally
on the smoothness of U on T

the coe�cient α depends non-locally on U



Open problems

▶ characterize those cones which correspond to M = C (this
would yield also a new description of entire functions)

▶ detail the connection between smoothness of U and ∂K

▶ connection to loop group methods

generalization to n > 3?



Thank you!


