Central extensions in closed-loop optimal experiment design

Roland Hildebrand¹ Michel Gevers² Gabriel Solari³

¹WIAS Berlin

²Université Catholique de Louvain

³Tenaris Dalmine SpA

52nd CDC, Florence, December 12, 2013

< ロ > < 同 > < 回 > < 回 > < 回 >

Outline

1

- Setup
- Problem formulation

Problem solution

- Partial correlation approach
- Central extensions
- Main result

3 Example

- Closed-loop identification of an ARX model
- Simulation

< ロ > < 同 > < 回 > < 回 >

Outline

Experiment design in closed loop

- Setup
- Problem formulation

2 Problem solution

- Partial correlation approach
- Central extensions
- Main result

3 Example

- Closed-loop identification of an ARX model
- Simulation

< 回 > < 回 > < 回 >

Outline

Experiment design in closed loop

- Setup
- Problem formulation

2 Problem solution

- Partial correlation approach
- Central extensions
- Main result

3 Example

- Closed-loop identification of an ARX model
- Simulation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Experiment design in closed loop Problem solution Example Problem formulation

identify a MIMO LTI system with a PE method in closed loop

$$y = G_0(q)u + H_0(q)e, \quad u = -K(q)y + r$$

r external input signal, *K* controller, *u* input, *y* output both external input *r* and controller *K* are design variables.

Assumptions

u, r are of dimension l_1 , and e, y are of dimension l_2

- G₀, H₀ stable and H₀ inversely stable, e with power spectrum λ₀I
- r quasi-stationary with power spectrum Φ_r
- $G_0(z), H_0(z)$ embedded in a model structure $G(z; \theta), H(z; \theta)$ with true parameter value θ_0 , $G_0(z) = G(z; \theta_0), H_0(z) = H(z; \theta_0)$
- asymptotic in the number of data parameter covariance formulas are assumed
- constraints and cost function depend on frequency weighted input and/or output with real-rational weightings

information matrix \overline{M} is of this form

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Setup Problem formulation

Model uncertainty

• parametric PE identification provides a parameter estimate $\hat{\theta}$ together with an ellipsoidal uncertainty region

$$\boldsymbol{E} = \{\boldsymbol{\theta} \mid (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}})^T \boldsymbol{P}^{-1} (\boldsymbol{\theta} - \hat{\boldsymbol{\theta}}) \leq \gamma\},\$$

P covariance matrix

- estimate $\hat{\theta}$ is applied as if it were the true parameter value θ_0
- $\hat{\theta}$ is distributed around θ_0 , but covariance depends on experimental conditions
- distribution of the performance of the intended application depends on *P* and hence on *r*, *K*

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Setup Problem formulation

Problem

How to optimally choose the design variables r, K in order to minimize a given criterion measuring the (expected) performance of the model in the application, while satisfying given constraints on the input and output?

Partial correlation approach Central extensions Main result

Change of design variables

replace design variables r, K by the equivalent joint signal spectrum

$$\Phi_{\chi_0} = \left(\begin{array}{cc} \Phi_u & \Phi_{ue} \\ \Phi_{ue}^* & \lambda_0 I \end{array}\right)$$

 Φ_u , Φ_{ue} are related to the design variables r, K by

$$\begin{split} \Phi_{u}(\omega) &= \lambda_{0}(I + KG_{0})^{-1}KH_{0}H_{0}^{*}K^{*}(I + KG_{0})^{-*} \\ &+ (I + KG_{0})^{-1}\Phi_{I}(\omega)(I + KG_{0})^{-*}, \\ \Phi_{ue}(\omega) &= -\lambda_{0}(I + KG_{0})^{-1}KH_{0}, \end{split}$$

advantage: constraints and cost function usually become convex or even linear in Φ_{χ_0}

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Moments

partial correlation approach: replace infinite-dimensional design variables Φ_u , Φ_{ue} by finite-dimensional projection to the generalized (matrix-valued) moments

$$m_{k} = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{|d(e^{j\omega})|^{2}} \Phi_{\chi_{0}}(\omega) e^{jk\omega} d\omega = m_{-k}^{T}, \ k = 0, \dots, n$$

n and d chosen such that

- both cost function and constraints can be written as convex functions in the finite number of moments m_0, \ldots, m_n
- the polynomial $d(z) = \sum_{l=0}^{m} d_l z^l$ has all roots outside of the closed unit disk

•
$$d_l$$
 real and $d_0 \neq 0$, $d_m \neq 0$, $n \ge m$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Partial correlation approach Central extensions Main result

Solution strategy

- **()** solve the optimization problem on the moments m_0, \ldots, m_n
- 2 recover power spectrum Φ_{χ_0} producing these moments
- Solution construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1} \Phi_{ue} \Phi_{ue}^*)(I + KG_0)^*, K = -\Phi_{ue}(\lambda_0 H_0 + G_0 \Phi_{ue})^{-1}.$$

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Solution strategy

- **(**) solve the optimization problem on the moments m_0, \ldots, m_n
- 2 recover power spectrum Φ_{χ_0} producing these moments
- Solution construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010] Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1} \Phi_{ue} \Phi_{ue}^*)(I + KG_0)^*, K = -\Phi_{ue}(\lambda_0 H_0 + G_0 \Phi_{ue})^{-1}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

э

Partial correlation approach Central extensions Main result

Solution strategy

- **o** solve the optimization problem on the moments m_0, \ldots, m_n
- 2 recover power spectrum Φ_{χ_0} producing these moments
- Solution construct external input *r* and the controller *K* from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\begin{split} \Phi_r &= (I + KG_0)(\Phi_u - \lambda_0^{-1} \Phi_{ue} \Phi_{ue}^*)(I + KG_0)^*, \\ K &= -\Phi_{ue}(\lambda_0 H_0 + G_0 \Phi_{ue})^{-1}. \end{split}$$

Partial correlation approach Central extensions Main result

Solution strategy

- **()** solve the optimization problem on the moments m_0, \ldots, m_n
- **2** recover power spectrum Φ_{χ_0} producing these moments
- Solution construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\begin{split} \Phi_r &= (I + KG_0)(\Phi_u - \lambda_0^{-1} \Phi_{ue} \Phi_{ue}^*)(I + KG_0)^*, \\ K &= -\Phi_{ue} (\lambda_0 H_0 + G_0 \Phi_{ue})^{-1}. \end{split}$$

< 日 > < 同 > < 回 > < 回 > < □ > <

Partial correlation approach Central extensions Main result

Block-Toeplitz moment matrix

by the Carathéodory theorem, the block-Toeplitz matrix

$$T_{n} = \begin{pmatrix} m_{0} & m_{1}^{T} & \ddots & m_{n-1}^{T} & m_{n}^{T} \\ m_{1} & m_{0} & \ddots & m_{n-2}^{T} & m_{n-1}^{T} \\ \ddots & \ddots & \ddots & \ddots & \ddots \\ m_{n} & m_{n-1} & \ddots & m_{1} & m_{0} \end{pmatrix}$$

is positive semi-definite

Assumption: T_n is positive definite

< 回 > < 回 > < 回 >

Central extension

set [Delsarte, Genin, Kamp 1978]

$$U(z) = (z^n I \quad z^{n-1} I \quad \cdots \quad I),$$

$$A(z) = U_n(z) T_n^{-1} U_n^T(0),$$

$$\Phi(\omega) = A(e^{j\omega})^{-*} A(0) A(e^{j\omega})^{-1}$$

 Φ is a rational matrix-valued function of order n

we have

$$m_k = rac{1}{2\pi} \int_{-\pi}^{+\pi} \Phi(\omega) e^{jk\omega} d\omega$$

for every $k = 0, \ldots, n$

the moment sequence produced by Φ is called central extension of the finite sequence m_0, \ldots, m_n

Main result

Theorem

Let $(m_0, ..., m_n)$ be a feasible finite moment sequence, and Φ be the spectrum generating the central extension of $(m_0, ..., m_n)$. Then the spectrum $\Phi_{\chi_0}(\omega) = \Phi(\omega) |d(e^{j\omega})|^2$ satisfies

• Φ_{χ_0} rational of order n

•
$$\Phi_{\chi_0}(-\omega) = \Phi_{\chi_0}(\omega)^7$$

• Φ_{χ_0} reproduces the moments m_0, \ldots, m_n

•
$$\Phi_{\chi_0} = \begin{pmatrix} \Phi_u & \Phi_{ue} \\ \Phi_{ue}^* & \lambda_0 I \end{pmatrix}$$
 with Φ_{ue} stable

 Φ_{χ_0} is explicitly given by the moments m_0, \ldots, m_n

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Closed-loop identification of an ARX model Simulation

< 回 > < 回 > < 回 >

Problem setup

consider an ARX model structure

$$G = rac{ heta_1 z^{-1}}{1 + heta_2 z^{-1}}, \qquad H = rac{1}{1 + heta_2 z^{-1}}$$

with true parameters θ_{10} , θ_{20} , $|\theta_{20}| < 1$

- output power constraint $\overline{E}y^2 \leq c$, $c > \lambda_0$
- maximize determinant of the information matrix M
 (D-optimality)

Closed-loop identification of an ARX model Simulation

・ 戸 ト ・ ヨ ト ・ ヨ ト

э

Cost and constraints as function of moments

set
$$n = m = 1$$
, $d(z) = 1 + \theta_{20}z$, then
 $\overline{M}_{11} = \lambda_0^{-1}((1 + \theta_{20}^2)m_{0,11} + 2\theta_{20}m_{1,11})$
 $\overline{M}_{12} = \lambda_0^{-1}(-\theta_{10}m_{1,11} - (1 - \theta_{20}^2)m_{0,12} - \theta_{10}\theta_{20}m_{0,11})$
 $\overline{M}_{22} = \lambda_0^{-1}(-2\theta_{10}\theta_{20}m_{0,12} + \frac{\lambda_0}{1 - \theta_{20}^2} + \theta_{10}^2m_{0,11})$
 $\overline{E}y^2 = -2\theta_{10}\theta_{20}m_{0,12} + \frac{\lambda_0}{1 - \theta_{20}^2} + \theta_{10}^2m_{0,11}$

Closed-loop identification of an ARX model Simulation

Optimal moments

maximize det \overline{M} subject to $\overline{E}y^2 \leq c$

$$\begin{split} m_{0,12} &= \frac{\lambda_0 \theta_{20} (2c - \lambda_0)}{\theta_{10} (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\ m_{0,22} &= \frac{\lambda_0}{1 - \theta_{20}^2}, \quad m_{1,22} = -\frac{\lambda_0 \theta_{20}}{1 - \theta_{20}^2}, \quad m_{1,21} = -\theta_{20} m_{0,12} \\ m_{0,11} &= \frac{(c(1 - \theta_{20}^2) + \lambda_0 \theta_{20}^2) (c\theta_{20}^2 + c - \lambda_0)}{\theta_{10}^2 (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\ m_{1,11} &= -\frac{\lambda_0 \theta_{20} (c\theta_{20}^2 + c - \lambda_0)}{\theta_{10}^2 (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\ m_{1,12} &= -\Delta^{-1} m_{0,12} \theta_{20} (\Delta + (c - \lambda_0) \lambda_0 (1 - \theta_{20}^2)^2) \end{split}$$

with $\Delta = c^2 (1 + \theta_{20}^2)^2 - c \lambda_0 (2\theta_{20}^4 + \theta_{20}^2 + 1) + \lambda_0^2 \theta_{20}^4$

Closed-loop identification of an ARX model Simulation

(日)

э

Explicit solution

the central extension of (m_0, m_1) yields

$$egin{aligned} \mathcal{K} &= -rac{ heta_{20}(2m{c}-\lambda_0)(m{c} heta_{20}^2+m{c}-\lambda_0)(1+ heta_{20}m{z}^{-1})}{ heta_{10}(\Delta+ heta_{20}(2m{c}(m{c}-\lambda_0)(1+ heta_{20}^2)+\lambda_0^2 heta_{20}^2)m{z}^{-1})}, \ \Phi_r &= rac{(m{c}-\lambda_0)(m{c} heta_{20}^2+m{c}-\lambda_0)(m{c}+(m{c}-\lambda_0) heta_{20}^2)\Delta|m{e}^{j\omega}+ heta_{20}|^2}{ heta_{10}^2|\Deltam{e}^{j\omega}+ heta_{20}(2m{c}(m{c}-\lambda_0)(1+ heta_{20}^2)+\lambda_0^2 heta_{20}^2)|^2}. \end{aligned}$$

Roland Hildebrand, Michel Gevers, Gabriel Solari Central extensions in closed-loop experiment design

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comparison with optimal open-loop experiment

- for $c < \lambda_0$ no experiment feasible
- for $\lambda_0 \leq c < \frac{\lambda_0}{(1-\theta_{20}^2)}$ only closed-loop experiments feasible
- for $\frac{\lambda_0}{(1-\theta_{20}^2)} \le c < \frac{\lambda_0}{1-|\theta_{20}|}$ the optimal closed-loop experiment beats the optimal open-loop experiment
- for $rac{\lambda_0}{1-| heta_{20}|} \leq c$ both give the same information matrix

Simulation

set
$$\lambda_0 = 1$$
, $c = 1.4$, $\theta_{10} = 0.5$, $\theta_{20} = 0.4$

- first identify in open-loop with white noise with variance $\sigma^2 = 1$
- from the identified parameters two experimental configurations are computed: the optimal open-loop input, and the optimal closed-loop input-controller pair
- an optimal open-loop and an optimal closed-loop experiment are performed and the parameter vector identified

500 runs, data length in each of the experiments is N = 1000

empirical covariance matrices have determinant: $0.49736N^{-2}$ for open loop $0.38796N^{-2}$ for closed-loop

Closed-loop identification of an ARX model Simulation

< □ > < 同 >

Simulation cont'd

identified parameter vectors for optimal open-loop (left) and closed-loop (right) experiments

Closed-loop identification of an ARX model Simulation

・ロット (雪) (日) (日)

э

Thank you!

Roland Hildebrand, Michel Gevers, Gabriel Solari Central extensions in closed-loop experiment design