Central extensions in closed-loop optimal experiment design

Roland Hildebrand1 Michel Gevers2 Gabriel Solari3

1WIAS Berlin
2Université Catholique de Louvain
3Tenaris Dalmine SpA

52nd CDC, Florence, December 12, 2013
Outline

1. Experiment design in closed loop
 - Setup
 - Problem formulation

2. Problem solution
 - Partial correlation approach
 - Central extensions
 - Main result

3. Example
 - Closed-loop identification of an ARX model
 - Simulation
Outline

1. Experiment design in closed loop
 - Setup
 - Problem formulation

2. Problem solution
 - Partial correlation approach
 - Central extensions
 - Main result

3. Example
 - Closed-loop identification of an ARX model
 - Simulation
Outline

1. Experiment design in closed loop
 - Setup
 - Problem formulation

2. Problem solution
 - Partial correlation approach
 - Central extensions
 - Main result

3. Example
 - Closed-loop identification of an ARX model
 - Simulation
identify a MIMO LTI system with a PE method in closed loop

\[y = G_0(q)u + H_0(q)e, \quad u = -K(q)y + r \]

\(r \) external input signal, \(K \) controller, \(u \) input, \(y \) output

both external input \(r \) and controller \(K \) are design variables
Assumptions

\(u, r \) are of dimension \(l_1 \), and \(e, y \) are of dimension \(l_2 \)

- \(G_0, H_0 \) stable and \(H_0 \) inversely stable, \(e \) with power spectrum \(\lambda_0 / \)
- \(r \) quasi-stationary with power spectrum \(\Phi_r \)
- \(G_0(z), H_0(z) \) embedded in a model structure \(G(z; \theta), H(z; \theta) \) with true parameter value \(\theta_0 \), \(G_0(z) = G(z; \theta_0), H_0(z) = H(z; \theta_0) \)
- asymptotic in the number of data parameter covariance formulas are assumed
- constraints and cost function depend on frequency weighted input and/or output with real-rational weightings

information matrix \(\overline{M} \) is of this form
parametric PE identification provides a parameter estimate $\hat{\theta}$ together with an ellipsoidal uncertainty region

$$E = \{ \theta | (\theta - \hat{\theta})^T P^{-1} (\theta - \hat{\theta}) \leq \gamma \},$$

P covariance matrix

- estimate $\hat{\theta}$ is applied as if it were the true parameter value θ_0
- $\hat{\theta}$ is distributed around θ_0, but covariance depends on experimental conditions
- distribution of the performance of the intended application depends on P and hence on r, K
Problem

How to optimally choose the design variables r, K in order to minimize a given criterion measuring the (expected) performance of the model in the application, while satisfying given constraints on the input and output?
replace design variables r, K by the equivalent joint signal spectrum

$$\Phi_{\chi_0} = \begin{pmatrix} \Phi_u & \Phi_{ue} \\ \Phi_{ue}^* & \lambda_0 I \end{pmatrix}$$

Φ_u, Φ_{ue} are related to the design variables r, K by

$$\Phi_u(\omega) = \lambda_0 (I + KG_0)^{-1} K H_0 H_0^* K^* (I + KG_0)^{-*}$$

$$+ (I + KG_0)^{-1} \Phi_r(\omega) (I + KG_0)^{-*},$$

$$\Phi_{ue}(\omega) = -\lambda_0 (I + KG_0)^{-1} K H_0,$$

advantage: constraints and cost function usually become convex or even linear in Φ_{χ_0}
Moments

partial correlation approach:
replace infinite-dimensional design variables Φ_u, Φ_{ue} by finite-dimensional projection to the generalized (matrix-valued) moments

$$m_k = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \frac{1}{|d(e^{j\omega})|^2} \Phi \chi_0(\omega)e^{jk\omega} \, d\omega = m_T^{T-k}, \ k = 0, \ldots, n$$

n and d chosen such that

- both cost function and constraints can be written as convex functions in the finite number of moments m_0, \ldots, m_n
- the polynomial $d(z) = \sum_{l=0}^{m} d_l z^l$ has all roots outside of the closed unit disk
- d_l real and $d_0 \neq 0, \ d_m \neq 0, \ n \geq m$
Solution strategy

1. solve the optimization problem on the moments m_0, \ldots, m_n
2. recover power spectrum Φ_{χ_0} producing these moments
3. construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

\[
\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1}\Phi_{ue}\Phi_{ue}^*)(I + KG_0)^*,
\]

\[
K = -\Phi_{ue}(\lambda_0 H_0 + G_0\Phi_{ue})^{-1}.
\]
Solution strategy

1. solve the optimization problem on the moments m_0, \ldots, m_n
2. recover power spectrum Φ_{χ_0} producing these moments
3. construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1}\Phi_{ue}\Phi_{ue}^*)(I + KG_0)^*,$$

$$K = -\Phi_{ue}(\lambda_0 H_0 + G_0\Phi_{ue})^{-1}.$$
Solution strategy

1. solve the optimization problem on the moments m_0, \ldots, m_n
2. recover power spectrum Φ_{χ_0} producing these moments
3. construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]
Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1}\Phi_{ue}\Phi_{ue}^*)(I + KG_0)^*,$$

$$K = -\Phi_{ue}(\lambda_0 H_0 + G_0\Phi_{ue})^{-1}.$$
Solution strategy

1. solve the optimization problem on the moments m_0, \ldots, m_n
2. recover power spectrum Φ_{χ_0} producing these moments
3. construct external input r and the controller K from Φ_u, Φ_{ue}

set of moments which can be produced by a valid power spectrum Φ_{χ_0} is semi-definite representable [Hildebrand, Gevers, Solari 2010]

Carathéodory theorem not applicable because Φ_{χ_0} is structured (SE corner of Φ_{χ_0} is $\lambda_0 I$; NE corner is stable)

$$\Phi_r = (I + KG_0)(\Phi_u - \lambda_0^{-1}\Phi_{ue}\Phi^*_{ue})(I + KG_0)^*,$$

$$K = -\Phi_{ue}(\lambda_0 H_0 + G_0\Phi_{ue})^{-1}.$$
by the Carathéodory theorem, the block-Toeplitz matrix

\[
T_n = \begin{pmatrix}
 m_0 & m_1^T & \cdots & m_{n-1}^T & m_n^T \\
 m_1 & m_0 & \cdots & m_{n-2}^T & m_{n-1}^T \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 m_n & m_{n-1} & \cdots & m_1 & m_0
\end{pmatrix}
\]

is positive semi-definite

Assumption: \(T_n \) is positive definite
Central extension

set [Delsarte, Genin, Kamp 1978]

\[
U(z) = \begin{pmatrix} z^n & z^{n-1} & I & \cdots & I \end{pmatrix},
\]

\[
A(z) = U_n(z) T_n^{-1} U_n^T (0),
\]

\[
\Phi(\omega) = A(e^{j\omega})^{-1} A(0) A(e^{j\omega})^{-1}
\]

\(\Phi\) is a rational matrix-valued function of order \(n\)

we have

\[
m_k = \frac{1}{2\pi} \int_{-\pi}^{+\pi} \Phi(\omega) e^{jk\omega} d\omega
\]

for every \(k = 0, \ldots, n\)

the moment sequence produced by \(\Phi\) is called **central extension** of the finite sequence \(m_0, \ldots, m_n\)
Theorem

Let \((m_0, \ldots, m_n)\) be a feasible finite moment sequence, and \(\Phi\) be the spectrum generating the central extension of \((m_0, \ldots, m_n)\). Then the spectrum \(\Phi_{\chi_0}(\omega) = \Phi(\omega)|d(e^{i\omega})|^2\) satisfies

- \(\Phi_{\chi_0}\) rational of order \(n\)
- \(\Phi_{\chi_0}(-\omega) = \Phi_{\chi_0}(\omega)^T\)
- \(\Phi_{\chi_0}\) reproduces the moments \(m_0, \ldots, m_n\)
- \(\Phi_{\chi_0} = \begin{pmatrix} \Phi_u & \Phi_{ue} \\ \Phi_{ue}^* & \lambda_0 I \end{pmatrix}\) with \(\Phi_{ue}\) stable

\(\Phi_{\chi_0}\) is explicitly given by the moments \(m_0, \ldots, m_n\)
Problem setup

consider an ARX model structure

\[G = \frac{\theta_1 z^{-1}}{1 + \theta_2 z^{-1}}, \quad H = \frac{1}{1 + \theta_2 z^{-1}} \]

with true parameters \(\theta_{10}, \theta_{20}, |\theta_{20}| < 1 \)

- output power constraint \(\bar{E} y^2 \leq c, \ c > \lambda_0 \)
- maximize determinant of the information matrix \(\bar{M} \)
 (\(D \)-optimality)
set $n = m = 1$, $d(z) = 1 + \theta_{20}z$, then

\[
\begin{align*}
\overline{M}_{11} &= \lambda_0^{-1}((1 + \theta_{20}^2)m_{0,11} + 2\theta_{20}m_{1,11}) \\
\overline{M}_{12} &= \lambda_0^{-1}(-\theta_{10}m_{1,11} - (1 - \theta_{20}^2)m_{0,12} - \theta_{10}\theta_{20}m_{0,11}) \\
\overline{M}_{22} &= \lambda_0^{-1}(-2\theta_{10}\theta_{20}m_{0,12} + \frac{\lambda_0}{1 - \theta_{20}^2} + \theta_{10}^2m_{0,11}) \\
\overline{Ey}^2 &= -2\theta_{10}\theta_{20}m_{0,12} + \frac{\lambda_0}{1 - \theta_{20}^2} + \theta_{10}^2m_{0,11}
\end{align*}
\]
Optimal moments

maximize $\det \overline{M}$ subject to $\overline{E} y^2 \leq c$

\begin{align*}
 m_{0,12} &= \frac{\lambda_0 \theta_{20} (2c - \lambda_0)}{\theta_{10} (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\
 m_{0,22} &= \frac{\lambda_0}{1 - \theta_{20}^2}, \quad m_{1,22} = -\frac{\lambda_0 \theta_{20}}{1 - \theta_{20}^2}, \quad m_{1,21} = -\theta_{20} m_{0,12} \\
 m_{0,11} &= \frac{(c (1 - \theta_{20}^2) + \lambda_0 \theta_{20}^2) (c \theta_{20}^2 + c - \lambda_0)}{\theta_{10}^2 (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\
 m_{1,11} &= -\frac{\lambda_0 \theta_{20} (c \theta_{20}^2 + c - \lambda_0)}{\theta_{10}^2 (1 - \theta_{20}^2) (c + (c - \lambda_0) \theta_{20}^2)} \\
 m_{1,12} &= -\Delta^{-1} m_{0,12} \theta_{20} (\Delta + (c - \lambda_0) \lambda_0 (1 - \theta_{20}^2)^2) \\

\text{with } \Delta &= c^2 (1 + \theta_{20}^2)^2 - c \lambda_0 (2 \theta_{20}^4 + \theta_{20}^2 + 1) + \lambda_0^2 \theta_{20}^4
\end{align*}
the central extension of \((m_0, m_1)\) yields

\[
K = -\frac{\theta_{20}(2c - \lambda_0)(c\theta_{20}^2 + c - \lambda_0)(1 + \theta_{20}z^{-1})}{\theta_{10}(\Delta + \theta_{20}(2c(c - \lambda_0)(1 + \theta_{20}^2) + \lambda_0^2\theta_{20}^2)z^{-1})},
\]

\[
\Phi_r = \frac{(c - \lambda_0)(c\theta_{20}^2 + c - \lambda_0)(c + (c - \lambda_0)\theta_{20}^2)\Delta|e^{j\omega} + \theta_{20}|^2}{\theta_{10}^2|\Delta e^{j\omega} + \theta_{20}(2c(c - \lambda_0)(1 + \theta_{20}^2) + \lambda_0^2\theta_{20}^2)|^2}.
\]
Comparison with optimal open-loop experiment

- for $c < \lambda_0$ no experiment feasible
- for $\lambda_0 \leq c < \frac{\lambda_0}{(1-\theta_{20}^2)}$ only closed-loop experiments feasible
- for $\frac{\lambda_0}{(1-\theta_{20}^2)} \leq c < \frac{\lambda_0}{1-|\theta_{20}|}$ the optimal closed-loop experiment beats the optimal open-loop experiment
- for $\frac{\lambda_0}{1-|\theta_{20}|} \leq c$ both give the same information matrix
Simulation

set $\lambda_0 = 1, \ c = 1.4, \ \theta_{10} = 0.5, \ \theta_{20} = 0.4$

- first identify in open-loop with white noise with variance $\sigma^2 = 1$
- from the identified parameters two experimental configurations are computed: the optimal open-loop input, and the optimal closed-loop input-controller pair
- an optimal open-loop and an optimal closed-loop experiment are performed and the parameter vector identified

500 runs, data length in each of the experiments is $N = 1000$

empirical covariance matrices have determinant:
$0.49736N^{-2}$ for open loop
$0.38796N^{-2}$ for closed-loop
identified parameter vectors for optimal open-loop (left) and closed-loop (right) experiments
Thank you!