# Self-associated three-dimensional cones 

Roland Hildebrand

Laboratory Jean Kuntzmann / CNRS

September 9, 2018 / Differential Geometry in honor of Udo Simon's 80th birthday / Będlewo

## Outline

(1) Simon-Wang theory

- Calabi hypothesis on affine spheres
- Wang's equation
- Associated cones
(2) Self-associated cones
- Analytic condition
- Reduced Wang's equation and Painlevé III
- Description of the cone boundary
- Classification


## Calabi theorem

## Theorem

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then there exists a unique complete hyperbolic affine sphere with mean curvature
-1 which is asymptotic to the boundary $\partial K$ of the cone.
Every complete hyperbolic affine sphere is asymptotic to the boundary of a regular convex cone.

- conjectured by E. Calabi in 1972
- proven by S.Y. Cheng, S.T. Yau, T. Sasaki, A.-M. Li 1977-92
- equips properly convex sets in $\mathbb{R}^{n-1}$ with a complete metric $h$ and a trace-less cubic form $C$
- $K$ can be reconstructed from $h, C$ up to $S L(n, \mathbb{R})$ action


## Three-dimensional cones

$n=3$ : affine sphere is a simply connected Riemann surface introduce a global isothermal coordinate $z=x+i y \in M \subset \mathbb{C}$ conformal class: $M \sim \mathbb{D}$ or $M=\mathbb{C}$

- metric can be written $h=e^{u}|d z|^{2}$ with $u$ a real scalar function
- cubic form equals $C=2 \operatorname{Re}\left(U d z^{3}\right)$ with $U$ a holomorphic function


## Wang's equation

the real scalar $u$ and the holomorphic function $U$ on $M$ satisfy the compatibility condition

$$
e^{u}=\frac{1}{2} \Delta u+2|U|^{2} e^{-2 u}
$$

with $\Delta u=u_{x x}+u_{y y}=4 u_{z \bar{z}}$ and $e^{u}|d z|^{2}$ complete

- $u$ determines $U$ up to a multiplicative unimodular constant
- if $M \sim \mathbb{D}$ and $U d z^{3}$ is bounded in the uniformizing metric [Benoist, Hulin 2014] or $M=\mathbb{C}$ and $U$ is polynomial [Dumas, Wolf 2015], then $U$ determines $u$ uniquely


## Simon-Wang theorem

Theorem (Simon, Wang 1993)
Let $(u, U)$ be a solution of Wang's equation on a simply connected domain $M \subset \mathbb{C}$ such that $h=e^{u}|d z|^{2}$ is complete and $U$ is holomorphic. Then there exists a regular convex cone $K \subset \mathbb{R}^{3}$ such that the affine sphere which is asymptotic to $\partial K$ has metric $h$ and cubic form $C=2 \operatorname{Re}\left(U d z^{3}\right)$. The $S L(3, \mathbb{R})$-orbit of $K$ is uniquely determined.
A regular convex cone $K \subset \mathbb{R}^{3}$ defines a solution of Wang's equation via the affine sphere which is asymptotic to $\partial K$. This solution is determined up to conformal isomorphisms of the domain M.

## Moving frame

to reconstruct the affine sphere $f: M \rightarrow \mathbb{R}^{3}$ and the cone $K$ from a solution $(u, U)$ one integrates the frame equations

$$
\begin{aligned}
& F_{x}=F\left(\begin{array}{ccc}
-e^{-u} R e U & \frac{u_{y}}{2}+e^{-u} \operatorname{lm} U & e^{u / 2} \\
-\frac{u_{y}}{2}+e^{-u} \operatorname{lm} U & e^{-u} \operatorname{Re} U & 0 \\
e^{u / 2} & 0 & 0
\end{array}\right), \\
& F_{y}=F\left(\begin{array}{ccc}
e^{-u} I m U & -\frac{u_{x}}{2}+e^{-u} R e U & 0 \\
\frac{u_{x}}{2}+e^{-u} \operatorname{Re} U & -e^{-u} \operatorname{Im} U & e^{u / 2} \\
0 & e^{u / 2} & 0
\end{array}\right) .
\end{aligned}
$$

here $F=\left(e^{-u / 2} f_{x}, e^{-u / 2} f_{y}, f\right) \in S L(3, \mathbb{R})$ is the moving frame

## Associated cones

let $K$ be a convex cone and $(u, U)$ a corresponding solution of Wang's equation
multiplying $U$ by $e^{i \varphi}$ yields another solution and a corresponding $S L(3, \mathbb{R})$-orbit of convex cones
cones obtained this way are called associated with $K$
the set of $S L(3, \mathbb{R})$-orbits of all associated cones is called associated family

- on an associated family acts the circle group $S^{1}$
- the action of -1 yields the orbit of dual cones
- the associated families of semi-homogeneous cones have been computed in [Z. Lin, E. Wang 2016]


## Orientation-reversing isomorphisms

## Definition

A regular convex cone $K \subset \mathbb{R}^{3}$ is self-associated if all its associated cones are linearly isomorphic to $K$.

## Lemma

A regular convex cone $K \subset \mathbb{R}^{3}$ is self-associated if and only if all cones which are associated to $K$ are in the $S L(3, \mathbb{R})$-orbit of $K$.

## Killing vector field

## Theorem

Let $(u, U)$ be a solution of Wang's equation on $M \subset \mathbb{C}$ corresponding to a self-associated cone. Then there exists a Killing vector field on M, given by a holomorphic function $\psi$ on M satisfying

$$
\begin{aligned}
i U(z)+U^{\prime}(z) \psi(z)+3 U(z) \psi^{\prime}(z) & =0 \\
\operatorname{Re}\left(u^{\prime}(z) \psi(z)+\psi^{\prime}(z)\right) & =0
\end{aligned}
$$

On the other hand, if such a vector field exists for some solution $(u, U)$, then the corresponding cone $K$ is self-associated.

## Affine spheres with Killing vectors

## Theorem

Let $K \subset \mathbb{R}^{3}$ be a regular convex cone such that its affine sphere possesses a continuous group of isometries. Then $K$ is self-associated or semi-homogeneous.
only ellipsoidal and simplicial cones in $\mathbb{R}^{3}$ are both self-associated and semi-homogeneous

## Classification of $(\psi, U)$

## Lemma

Let $(u, U)$ be a solution of Wang's equation on $M \subset \mathbb{C}$ corresponding to a self-associated cone and $\psi$ a corresponding Killing vector field. Then by a conformal isomorphism ( $\psi, U$ ) reduces to one of the cases
(0) $U \equiv 0$, corresponds to ellipsoidal cones
(R) $M=B_{R}, U=z^{k}, \psi=-\frac{i z}{k+3},(k, R) \in \mathbb{N} \times(0, \infty]$,
(T) $M=(a, b)+i \mathbb{R}, U=e^{z}, \psi=-i,-\infty \leq a<b \leq+\infty$.

- $\psi$ generates an automorphism subgroup of $M$
- $e^{2 \pi \psi}$ generates an isomorphism $T \in S L(3, \mathbb{R})$ of $K$


## Types of cones

## Lemma

Let $K$ be a self-associated cone and $T$ the linear isomorphism generated by the corresponding isometry $e^{2 \pi \psi}$. Then one of the three following mutually exclusive conditions holds:
(E) There exists an integer $q \geq 3$ such that $T^{q}=I$.
(P) $T$ has the eigenvalue 1 with algebraic multiplicity 3 and geometric multiplicity 1.
(H) The spectrum of $T$ is given by $\left\{1, \lambda, \lambda^{-1}\right\}$ with real $\lambda>1$.
we shall call the corresponding cones of elliptic, parabolic and hyperbolic type

## Reducing Wang's equation

$(R)$ : the radial symmetry of the metric leads to

$$
\frac{d^{2} v}{d r^{2}}=2 e^{v}-\frac{1}{r} \frac{d v}{d r}-4 r^{2 k} e^{-2 v}
$$

with $v$ even on $(-R, R)$ and $e^{v} d r^{2}$ complete
$\mathrm{T})$ : the translational symmetry leads to

$$
\frac{d^{2} v}{d x^{2}}=2 e^{v}-4 e^{2 x} e^{-2 v}
$$

with $e^{v} d x^{2}$ complete on $(a, b)$

## Lemma

For both equations the solution $v$ exists and is unique. Both equations are equivalent to Painlevé III of type $D_{7}$ with $\beta=0$.

## Approximating frames

the boundary is determined by the asymptotics of the affine sphere $f$ as $z \rightarrow \partial M$
to integrate the moving frame $F$ we introduce an explicit approximating frame $V: M \rightarrow S L(3, \mathbb{R})$ such that $G=F V^{-1}$ is finite as $z \rightarrow \partial M$
recall $F=\left(e^{-u / 2} f_{x}, e^{-u / 2} f_{y}, f\right)$
find a scalar $\gamma>0$ such that $\gamma \cdot V e_{3}$ remains finite as $z \rightarrow \partial M$ then $\gamma \cdot f=G \cdot\left(\gamma V e_{3}\right)$ tends to a point $v$ on $\partial K$

## Differential equation

the moving frame equation on $F$ implies a similar eq. on $G$
for $R$ finite in case (R) and $b$ finite in case (T) this gives

$$
v^{\prime \prime \prime}+\alpha \boldsymbol{v}^{\prime}+\beta \cdot \sin t \cdot v=0
$$

this is a linear third-order $2 \pi$-periodic ODE on $v$
the monodromy of the equation is adjoint to the isomorphism $T$

## Polyhedral boundary

for $R=+\infty$ in case (R) and $b=+\infty$ in case (T) the vector function $v(t)$ is piece-wise constant
the values of $v$ alternate between corners and edges $\Rightarrow$ the boundary $\partial K$ is polyhedral


## Classification

| type | symmetry | domain $M$ | parameters |
| :---: | :---: | :---: | :---: |
| (E) | (R) | $B_{R}, R \in(0,+\infty]$ | $q=k+3, R$ |
| (P) | (T) | $(-\infty, b)+i \mathbb{R}, b \in(-\infty,+\infty]$ | $b$ |
| (H) | (T) | $(a, b)+i \mathbb{R},-\infty<a<b \leq \infty$ | $a, b$ |

in addition to the isomorphism $T$ there exists an orientation-reversing reflection $\Sigma$ corresponding to the anti-conformal automorphism $z \mapsto \bar{z}$ of $M$
together these generate the dihedral group $D_{q}$ in case (R) and the infinite dihedral group $D_{\infty}$ in case (T)

Analytic condition

Reduced Wang's equation and Painlevé III Description of the cone boundary
Classification

## Cones of elliptic type



## Cones of parabolic type



## Cones of hyperbolic type



## Thank you

