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Regular convex cones

De�nition
A regular convex cone K ⊂ Rn is a closed convex cone having
nonempty interior and containing no lines.

The dual cone

K ∗ = {s ∈ Rn | 〈x , s〉 ≥ 0 ∀ x ∈ K}

of a regular convex cone K is also regular.



Conic programs

De�nition
A conic program over a regular convex cone K ⊂ Rn is an
optimization problem of the form

min
x∈K
〈c , x〉 : Ax = b.

to every conic program we can associate a dual program over the
dual cone K ∗

examples

I linear programs (LP)

I second-order cone programs (SOCP)

I semi-de�nite programs (SDP)

I geometric programs (GP)



Geometric interpretation

the feasible set is the
intersection of K with an
a�ne subspace



History of conic programming



Logarithmically homogeneous barriers

De�nition (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone. A (self-concordant
logarithmically homogeneous) barrier on K is a smooth function
F : K o → R on the interior of K such that

I F (αx) = −ν logα + F (x) (logarithmic homogeneity)

I F ′′(x) � 0 (convexity)

I limx→∂K F (x) = +∞ (boundary behaviour)

I |F ′′′(x)[h, h, h]| ≤ 2(F ′′(x)[h, h])3/2 (self-concordance)

for all tangent vectors h at x .
The homogeneity parameter ν is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)

Let K ⊂ Rn be a regular convex cone and F : K o → R a barrier on

K with parameter ν. Then the Legendre transform F ∗ is a barrier

on −K ∗ with parameter ν.



Barriers as penalty functions

let K ⊂ Rn be a regular convex cone
let F : K o → R be a barrier on K
consider the conic program

min
x∈K
〈c , x〉 : Ax = b

for τ > 0, solve instead the unconstrained problem

min
x∈Rn

τ〈c , x〉+ F (x) : Ax = b

I unique minimizer x∗(τ) ∈ K o for every τ > 0

I solution depends continuously on τ (central path)

I x∗(τ)→ x∗ as τ →∞



Path-following methods

alternate Newton steps and increments of τ

the smaller the barrier parameter ν, the faster we can increase τ
safely

(in short-step methods) the iterates have to stay in a tube around
the central path in order for the Newton method to make a
controllable iteration

the larger ν, the smaller the diameter of the tube
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A�ne connections
an a�ne connection ∇ on a di�erentiable manifold de�nes the
parallel transport of tangent vectors u along curves σ(t) by

u̇γ +∇γαβu
ασ̇β = (

∂uγ

∂xβ
+∇γαβu

α)σ̇β = 0

the covariant derivative of the vector �eld u is given by

∇βuγ =
∂uγ

∂xβ
+∇γαβu

α

we may also de�ne the covariant derivative of general tensors

law of transformation under coordinate changes x 7→ y

∇γαβ 7→
∂xp

∂yα
∂xq

∂yβ
∇r

pq

∂yγ

∂x r
+
∂yγ

∂xm
∂2xm

∂yα∂yβ

example: the �at a�ne connection on Rn is given by ∇γαβ = 0 in
a�ne coordinates



A�ne di�erential geometry

let M ↪→ Rn+1 be a hypersurface immersion and ξ a transversal
vector �eld on M

which objects can be de�ned on M by the connection on Rn+1?



A�ne metric, a�ne connection, cubic form

let y0, . . . , yn be a�ne coordinates on Rn+1 and x1, . . . , xn

coordinates on M
extend these to a neighbourhood of M and complement with a
coordinate x0 such that

I M is a level surface of x0

I ξ = ∂
∂x0

on M

in x coordinates the �at a�ne connection of Rn+1 becomes

∇r
ij =

∂x r

∂y s
∂2y s

∂x i∂x j
, ∇0

ij =
∂x0

∂y s
∂2y s

∂x i∂x j

i , j , r = 1, . . . , n

∇r
ij is called the a�ne connection, ∇0

ij = hij the a�ne metric, and
C = ∇h the cubic form on M



Centro-a�ne immersions

in centro-a�ne immersions the transversal vector �eld ξ equals the
position vector �eld x

the cubic form C = ∇h is totally symmetric



Conormal map

let M ↪→ Rn+1 be a hypersurface immersion

to each x ∈ M we associate a vector p ∈ Rn+1 such that

I p is tangent to M at x

I 〈p, ξ〉 = 1 at x

this hypersurface immersion M ↪→ Rn+1 is the conormal map

the conormal map de�nes a duality on the class of centro-a�ne
hypersurface immersions
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Centro-a�ne geometry of barriers

let K ⊂ Rn a regular convex cone, and F : K o → R a
logarithmically homogeneous function of degree −ν

Theorem
Let M be a level surface of F . Then the centro-a�ne metric h and

the cubic form C of M on a tangent vector u to M are given by

h[u, u] = ν−1F ′′[u, u],

C [u, u, u] = ν−1F ′′′[u, u, u].

The immersion de�ned by the conormal map is a level surface of

the dual barrier F ∗.

h,C are the projective counterparts of the derivatives F ′′,F ′′′

indeed, Karmarkar used a metric proportional to h on the simplex in
his algorithm



Self-concordance and boundedness of cubic form

Theorem
Let K ⊂ Rn, n ≥ 2, be a regular convex cone and F : K o → R a

logarithmically homogeneous locally strongly convex function with

homogeneity parameter ν. Let M be a level surface of F .
Then F is self-concordant if and only if

|C [u, u, u]| ≤ 2γ (h[u, u])3/2

for all vectors u which are tangent to M. Here γ = ν−2√
ν−1 .

Corollary

On cones K ⊂ Rn, n ≥ 2, there exist no barriers with parameter

ν < 2.



Dependence between γ and ν



Extreme case ν = 2

Corollary

Let K ⊂ Rn be a regular convex cone, and n ≥ 2. Let F : K o → R
be a self-concordant barrier on K . Then F has parameter ν ≥ 2,
with equality if and only if K is isomorphic to the Lorentz cone and

F to the hyperbolic barrier on K .

the Lorentz cone Ln ⊂ Rn is the cone{
x = (x0, x1, . . . , xn−1)T | x0 ≥

√
x21 + · · ·+ x2n−1

}
its hyperbolic barrier is given by

F (x) = −1

2
log
(
x20 − x21 − · · · − x2n−1

)
the level surfaces are isometric to hyperbolic space
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A�ne normal

non-degenerate convex hypersurface in Rn

the a�ne normal is the tangent to the curve made of the gravity
centers of the sections

a hypersurface immersion with the a�ne normal as transversal
vector �eld is called a Blaschke immersion



A�ne spheres

a hyperbolic proper a�ne sphere is a convex surface such that all
a�ne normals meet at a point outside of the convex hull

a centro-a�ne immersion is a proper a�ne sphere if and only if

I the a�ne normal is proportional to the position vector

I the cubic form is traceless, Cαβγh
βγ = 0

Theorem (Calabi conjecture; Fe�erman 76, Cheng-Yau 86, Li
90, and others)

Let K ⊂ Rn be a regular convex cone. Then there exists a unique

foliation of K o by a homothetic family of a�ne complete and

Euclidean complete hyperbolic a�ne hyperspheres which are

asymptotic to ∂K .

Every a�ne complete, Euclidean complete hyperbolic a�ne

hypersphere is asymptotic to the boundary of a regular convex cone.



the foliating hyperspheres are asymptotic to the boundary of K



Monge-Ampère equation

characterisation of the log-homogeneous functions F : K o → R of
degree n whose level surfaces are a�ne spheres

up to an additive constant, F is the convex solution of the
Monge-Ampère equation

log detF ′′ = 2F

with boundary condition

lim
x→∂K

F (x) = +∞

properties

I exists and is unique

I real analytic

I invariant w.r.t. unimodular linear maps

I respects Legendre duality



Canonical barrier

Theorem (H., 2014; independently D. Fox, 2015)

Let K ⊂ Rn be a regular convex cone. Then the convex solution of

the Monge-Ampère equation log detF ′′ = 2F with boundary

condition F |∂K = +∞ is a logarithmically homogeneous

self-concordant barrier (the canonical barrier) on K with parameter

ν = n.

main idea of proof: use non-positivity of the Ricci curvature [Calabi
1972]

already conjectured by O. Güler

I invariant under the action of SL(R, n)

I �xed under unimodular automorphisms of K

I additive under the operation of taking products

I respects Legendre duality



Universal constructions: comparison

Property Universal barrier Canonical barrier

SL(R, n)-invariance Yes Yes
Aut(K )-invariance Yes Yes
product additivity Yes Yes

parameter O(n) ≤ n
duality No Yes

computability No No

for K ⊂ R3 with non-trivial automorphism group, the canonical
barrier is given generically by elliptic integrals

for homogeneous cones the two constructions coincide

for compact sets there exists also the entropic barrier with
parameter n + O(log n

√
n)
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Self-scaled barriers

De�nition
Let K ⊂ Rn be a regular convex cone, let K ∗ be its dual cone, let
F be a self-concordant barrier on K with parameter ν, and let F∗
be the dual barrier on K ∗. Then F is called self-scaled if for every
x ,w ∈ K o we have

F ′′(w)x ∈ intK ∗, F∗(F
′′(w)x) = F (x)− 2F (w)− ν.

A cone K admitting a self-scaled barrier is called self-scaled cone.

Hauser, Güler, Lim, Schmieta 1998 � 2002:

I self-scaled cone ⇔ symmetric cone

I self-scaled barriers on products are sums of self-scaled barriers
on irreducible components

I self-scaled barriers on irreducible cones are log-determinants



Parallelism conditions

the a�ne connection ∇ is generated by the primal immersion
the dual immersion generates the dual connection ∇̄

the primal-dual symmetric connection ∇̂ = 1
2(∇+ ∇̄) is the

Levi-Civita connection of the a�ne metric

the most simple class of barriers are the hyperbolic barriers, on
whose level surfaces C = 0

the next class, ordered by complexity, are the barriers whose level
surfaces have constant cubic form

constant means preserved by the geodesic �ow of the a�ne metric

∇̂C = 0



Equivalence between self-scaledness and parallelism

Theorem
Let K ⊂ Rn be a regular convex cone and F a self-concordant

barrier on it. Then the following are equivalent:

I F is a self-scaled barrier (and K a self-scaled cone)

I on the level surfaces of F the condition ∇̂C = 0 holds.

Every convex hyperbolic centro-a�ne hypersurface immersion

satisfying ∇̂C = 0 can be completed to the level surface of a

self-scaled barrier on some symmetric cone.

this yields a local characterization of self-scaled barriers



Sketch of proof

∇̂C = 0 can be rewritten as the 4-th order quasi-linear PDE

F,αβγδ =
1

2
F ,ρσ(F,αβρF,γδσ + F,αγρF,βδσ + F,αδρF,βγσ)

here F ,ρσ is the inverse Hessian and F,γδσ etc. the partial
derivatives

the integrability condition of this PDE is the Jordan identity for the
algebra de�ned by the structure tensor (u • v = Kγ

αβu
αvβ)

Kγ
αβ = −1

2
F ,γδF,αβδ

the barrier can be recovered from a metrised Euclidean Jordan
algebra by

F (x) =
∞∑
k=2

(−1)k

k
g [x , xk−1]



Non-convex case

most of the proof remains valid if the convexity assumption is
dropped
the appropriate framework is the theory of Koechers ω-domains

convex case general case

symmetric cone ω-domain
Euclidean Jordan algebra semi-simple Jordan algebra
irreducible Euclidean Jordan algebra simple Jordan algebra
canonical barrier logarithmic potential Φ
determinant of Jordan algebra ω-function



A�ne spheres with ∇̂C = 0

the classi�cation of a�ne spheres with parallel cubic form reduces
to the classi�cation of semi-simple Jordan algebras
irreducible spheres / simple factors:



Thank you


