Conic optimization: affine geometry of self-concordant barriers

Roland Hildebrand

Laboratoire Jean Kuntzmann / CNRS

Seminar Nonlinear Analysis and Optimization

Laboratoire de Mathématiques d'Avignon April 12, 2018

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- canonical barrier
- self-scaled barriers

Definition

A regular convex cone $K \subset \mathbb{R}^n$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$K^* = \{ s \in \mathbb{R}_n \, | \, \langle x, s \rangle \ge 0 \quad \forall \ x \in K \}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

of a regular convex cone K is also regular.

Conic programs

Definition A conic program over a regular convex cone $K \subset \mathbb{R}^n$ is an optimization problem of the form

$$\min_{x\in \mathbf{K}} \langle c, x \rangle : \quad Ax = b.$$

to every conic program we can associate a dual program over the dual cone ${\cal K}^*$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

examples

- linear programs (LP)
- second-order cone programs (SOCP)
- semi-definite programs (SDP)
- geometric programs (GP)

Geometric interpretation

the feasible set is the intersection of K with an affine subspace

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

History of conic programming

LP: Simplex method [Dantzig 1951], exp. compl.				LP: Interior-point affine scaling [Dikin 1967] rediscovery 1986	
Ellipsoid method [Yudin, Nemirovski 1976]	LP: Interior-point projective scaling [Karmarkar 1984] polynomial-time				I
polynomial-time		General cones: IP [Nesterov, Nemirovski self-concordant barrier	1988] rs	LP: Primal-dual IP [Kojima, Mizuno, Yoshise 1989] [Monteiro, Adler 1989] [Todd, Ye 1990]	
		CP: primal, primal-dual IP [Nesterov, Nemirovski 1994] systematic approach Universal barrier		Symmetric cones [Nesterov, Todd 199 self-scaled barriers	IP 4]
	Syr Euc [Far	Symmetric cones IP Euclidean Jordan algebras [Faybusovich 1995] [I [5] [5] [5] [5]		ication of self-scaled 1999, 2000] , Güler 2002] , Lim 2002] ta 2000]	l barriers

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^n$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is a smooth function $F : K^o \to \mathbb{R}$ on the interior of K such that

• $F(\alpha x) = -\nu \log \alpha + F(x)$ (logarithmic homogeneity)

•
$$F''(x) \succ 0$$
 (convexity)

►
$$\lim_{x\to\partial K} F(x) = +\infty$$
 (boundary behaviour)

• $|F'''(x)[h, h, h]| \le 2(F''(x)[h, h])^{3/2}$ (self-concordance)

for all tangent vectors h at x.

The homogeneity parameter ν is called the barrier parameter.

Theorem (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^n$ be a regular convex cone and $F : K^o \to \mathbb{R}$ a barrier on K with parameter ν . Then the Legendre transform F^* is a barrier on $-K^*$ with parameter ν .

Barriers as penalty functions

let $K \subset \mathbb{R}^n$ be a regular convex cone let $F : K^o \to \mathbb{R}$ be a barrier on Kconsider the conic program

$$\min_{x \in \mathbf{K}} \langle c, x \rangle : \quad Ax = b$$

for $\tau > 0$, solve instead the unconstrained problem

$$\min_{x\in\mathbb{R}^n} \tau\langle c,x\rangle + F(x): \quad Ax = b$$

- unique minimizer $x^*(au) \in K^o$ for every au > 0
- solution depends continuously on τ (central path)

•
$$x^*(au) o x^*$$
 as $au o \infty$

alternate Newton steps and increments of au

the smaller the barrier parameter u, the faster we can increase au safely

(in short-step methods) the iterates have to stay in a tube around the central path in order for the Newton method to make a controllable iteration

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

the larger ν , the smaller the diameter of the tube

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- canonical barrier
- self-scaled barriers

Affine connections

an affine connection ∇ on a differentiable manifold defines the parallel transport of tangent vectors u along curves $\sigma(t)$ by

$$\dot{u}^{\gamma} + \nabla^{\gamma}_{\alpha\beta} u^{\alpha} \dot{\sigma}^{\beta} = (\frac{\partial u^{\gamma}}{\partial x^{\beta}} + \nabla^{\gamma}_{\alpha\beta} u^{\alpha}) \dot{\sigma}^{\beta} = 0$$

the covariant derivative of the vector field u is given by

$$\nabla_{\beta}u^{\gamma} = \frac{\partial u^{\gamma}}{\partial x^{\beta}} + \nabla^{\gamma}_{\alpha\beta}u^{\alpha}$$

we may also define the covariant derivative of general tensors law of transformation under coordinate changes $x \mapsto y$

$$\nabla^{\gamma}_{\alpha\beta} \mapsto \frac{\partial x^{p}}{\partial y^{\alpha}} \frac{\partial x^{q}}{\partial y^{\beta}} \nabla^{r}_{pq} \frac{\partial y^{\gamma}}{\partial x^{r}} + \frac{\partial y^{\gamma}}{\partial x^{m}} \frac{\partial^{2} x^{m}}{\partial y^{\alpha} \partial y^{\beta}}$$

example: the flat affine connection on \mathbb{R}^n is given by $\nabla^{\gamma}_{\alpha\beta} = 0$ in affine coordinates

Affine differential geometry

let $M \hookrightarrow \mathbb{R}^{n+1}$ be a hypersurface immersion and ξ a transversal vector field on M

which objects can be defined on M by the connection on \mathbb{R}^{n+1} ?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Affine metric, affine connection, cubic form

let y^0, \ldots, y^n be affine coordinates on \mathbb{R}^{n+1} and x^1, \ldots, x^n coordinates on Mextend these to a neighbourhood of M and complement with a coordinate x^0 such that

► *M* is a level surface of *x*⁰

•
$$\xi = \frac{\partial}{\partial x^0}$$
 on M

in x coordinates the flat affine connection of \mathbb{R}^{n+1} becomes

$$\nabla_{ij}^{r} = \frac{\partial x^{r}}{\partial y^{s}} \frac{\partial^{2} y^{s}}{\partial x^{i} \partial x^{j}}, \quad \nabla_{ij}^{0} = \frac{\partial x^{0}}{\partial y^{s}} \frac{\partial^{2} y^{s}}{\partial x^{i} \partial x^{j}}$$

 $i, j, r = 1, \ldots, n$

 $abla_{ij}^r$ is called the affine connection, $abla_{ij}^0 = h_{ij}$ the affine metric, and C =
abla h the cubic form on M

Centro-affine immersions

in centro-affine immersions the transversal vector field ξ equals the position vector field x

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

the cubic form $C = \nabla h$ is totally symmetric

Conormal map

let $M \hookrightarrow \mathbb{R}^{n+1}$ be a hypersurface immersion

to each $x \in M$ we associate a vector $p \in \mathbb{R}_{n+1}$ such that

- p is tangent to M at x
- $\langle p, \xi \rangle = 1$ at x

this hypersurface immersion $M \hookrightarrow \mathbb{R}_{n+1}$ is the conormal map

the conormal map defines a duality on the class of centro-affine hypersurface immersions

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- canonical barrier
- self-scaled barriers

Centro-affine geometry of barriers

let $K \subset \mathbb{R}^n$ a regular convex cone, and $F : K^o \to \mathbb{R}$ a logarithmically homogeneous function of degree $-\nu$

Theorem

Let M be a level surface of F. Then the centro-affine metric h and the cubic form C of M on a tangent vector u to M are given by

$$h[u, u] = \nu^{-1} F''[u, u],$$

$$C[u, u, u] = \nu^{-1} F'''[u, u, u].$$

The immersion defined by the conormal map is a level surface of the dual barrier F^* .

h, C are the projective counterparts of the derivatives F'', F'''indeed, Karmarkar used a metric proportional to h on the simplex in his algorithm

Self-concordance and boundedness of cubic form

Theorem

Let $K \subset \mathbb{R}^n$, $n \ge 2$, be a regular convex cone and $F : K^o \to \mathbb{R}$ a logarithmically homogeneous locally strongly convex function with homogeneity parameter ν . Let M be a level surface of F. Then F is self-concordant if and only if

$$|C[u, u, u]| \leq 2\gamma \left(h[u, u]\right)^{3/2}$$

for all vectors u which are tangent to M. Here $\gamma = \frac{\nu-2}{\sqrt{\nu-1}}$.

Corollary

On cones $K \subset \mathbb{R}^n$, $n \ge 2$, there exist no barriers with parameter $\nu < 2$.

(日) (伊) (日) (日) (日) (0) (0)

Dependence between γ and ν

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Extreme case $\nu = 2$

Corollary

Let $K \subset \mathbb{R}^n$ be a regular convex cone, and $n \ge 2$. Let $F : K^o \to \mathbb{R}$ be a self-concordant barrier on K. Then F has parameter $\nu \ge 2$, with equality if and only if K is isomorphic to the Lorentz cone and F to the hyperbolic barrier on K.

the Lorentz cone $L_n \subset \mathbb{R}^n$ is the cone

$$\left\{x = (x_0, x_1, \dots, x_{n-1})^T \mid x_0 \ge \sqrt{x_1^2 + \dots + x_{n-1}^2}\right\}$$

its hyperbolic barrier is given by

$$F(x) = -\frac{1}{2}\log \left(x_0^2 - x_1^2 - \dots - x_{n-1}^2\right)$$

the level surfaces are isometric to hyperbolic space

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- canonical barrier
- self-scaled barriers

Affine normal

non-degenerate convex hypersurface in \mathbb{R}^n

the affine normal is the tangent to the curve made of the gravity centers of the sections

a hypersurface immersion with the affine normal as transversal vector field is called a Blaschke immersion

Affine spheres

a hyperbolic proper affine sphere is a convex surface such that all affine normals meet at a point outside of the convex hull

a centro-affine immersion is a proper affine sphere if and only if

- the affine normal is proportional to the position vector
- \blacktriangleright the cubic form is traceless, $C_{lphaeta\gamma}h^{eta\gamma}=0$

Theorem (Calabi conjecture; Fefferman 76, Cheng-Yau 86, Li 90, and others)

Let $K \subset \mathbb{R}^n$ be a regular convex cone. Then there exists a unique foliation of K^o by a homothetic family of affine complete and Euclidean complete hyperbolic affine hyperspheres which are asymptotic to ∂K .

Every affine complete, Euclidean complete hyperbolic affine hypersphere is asymptotic to the boundary of a regular convex cone.

the foliating hyperspheres are asymptotic to the boundary of K

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

Monge-Ampère equation

characterisation of the log-homogeneous functions $F: K^o \to \mathbb{R}$ of degree n whose level surfaces are affine spheres

up to an additive constant, *F* is the convex solution of the Monge-Ampère equation

$$\log \det F'' = 2F$$

with boundary condition

$$\lim_{x\to\partial K}F(x)=+\infty$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

properties

- exists and is unique
- real analytic
- invariant w.r.t. unimodular linear maps
- respects Legendre duality

Canonical barrier

Theorem (H., 2014; independently D. Fox, 2015)

Let $K \subset \mathbb{R}^n$ be a regular convex cone. Then the convex solution of the Monge-Ampère equation $\log \det F'' = 2F$ with boundary condition $F|_{\partial K} = +\infty$ is a logarithmically homogeneous self-concordant barrier (the canonical barrier) on K with parameter $\nu = n$.

main idea of proof: use non-positivity of the Ricci curvature [Calabi 1972]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

already conjectured by O. Güler

- invariant under the action of $SL(\mathbb{R}, n)$
- ► fixed under unimodular automorphisms of *K*
- additive under the operation of taking products
- respects Legendre duality

Universal constructions: comparison

Property	Universal barrier	Canonical barrier	
$SL(\mathbb{R}, n)$ -invariance	Yes	Yes	
Aut(<i>K</i>)-invariance	Yes	Yes	
product additivity	Yes	Yes	
parameter	<i>O</i> (<i>n</i>)	$\leq n$	
duality	No	Yes	
computability	No	No	

for $K \subset \mathbb{R}^3$ with non-trivial automorphism group, the canonical barrier is given generically by elliptic integrals

for homogeneous cones the two constructions coincide

for compact sets there exists also the entropic barrier with parameter $n + O(\log n\sqrt{n})$

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- canonical barrier
- self-scaled barriers

Self-scaled barriers

Definition

Let $K \subset \mathbb{R}^n$ be a regular convex cone, let K^* be its dual cone, let F be a self-concordant barrier on K with parameter ν , and let F_* be the dual barrier on K^* . Then F is called *self-scaled* if for every $x, w \in K^o$ we have

$$F''(w)x \in \operatorname{int} K^*, \qquad F_*(F''(w)x) = F(x) - 2F(w) - \nu.$$

A cone K admitting a self-scaled barrier is called *self-scaled cone*.

Hauser, Güler, Lim, Schmieta 1998 - 2002:

- ▶ self-scaled cone ⇔ symmetric cone
- self-scaled barriers on products are sums of self-scaled barriers on irreducible components
- self-scaled barriers on irreducible cones are log-determinants

Parallelism conditions

the affine connection ∇ is generated by the primal immersion the dual immersion generates the dual connection $\bar{\nabla}$

the primal-dual symmetric connection $\hat{\nabla} = \frac{1}{2}(\nabla + \bar{\nabla})$ is the Levi-Civita connection of the affine metric

the most simple class of barriers are the hyperbolic barriers, on whose level surfaces ${\cal C}=0$

the next class, ordered by complexity, are the barriers whose level surfaces have constant cubic form

constant means preserved by the geodesic flow of the affine metric

$$\hat{\nabla}C = 0$$

Equivalence between self-scaledness and parallelism

Theorem

Let $K \subset \mathbb{R}^n$ be a regular convex cone and F a self-concordant barrier on it. Then the following are equivalent:

- ► F is a self-scaled barrier (and K a self-scaled cone)
- on the level surfaces of F the condition $\hat{\nabla}C = 0$ holds.

Every convex hyperbolic centro-affine hypersurface immersion satisfying $\hat{\nabla} C = 0$ can be completed to the level surface of a self-scaled barrier on some symmetric cone.

this yields a local characterization of self-scaled barriers

Sketch of proof

 $\hat{
abla} \mathcal{C} = \mathsf{0}$ can be rewritten as the 4-th order quasi-linear PDE

$$F_{,\alpha\beta\gamma\delta} = \frac{1}{2} F^{,\rho\sigma} (F_{,\alpha\beta\rho} F_{,\gamma\delta\sigma} + F_{,\alpha\gamma\rho} F_{,\beta\delta\sigma} + F_{,\alpha\delta\rho} F_{,\beta\gamma\sigma})$$

here $F^{,
ho\sigma}$ is the inverse Hessian and $F_{,\gamma\delta\sigma}$ etc. the partial derivatives

the integrability condition of this PDE is the Jordan identity for the algebra defined by the structure tensor $(u \bullet v = K^{\gamma}_{\alpha\beta}u^{\alpha}v^{\beta})$

$${\cal K}^{\gamma}_{lphaeta}=-rac{1}{2}{\cal F}^{,\gamma\delta}{\cal F}_{,lphaeta\delta}$$

the barrier can be recovered from a metrised Euclidean Jordan algebra by

$$F(x) = \sum_{k=2}^{\infty} \frac{(-1)^k}{k} g[x, x^{k-1}]$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Non-convex case

most of the proof remains valid if the convexity assumption is dropped

the appropriate framework is the theory of Koechers ω -domains

convex case	general case		
symmetric cone	ω -domain		
Euclidean Jordan algebra	semi-simple Jordan algebra		
irreducible Euclidean Jordan algebra	simple Jordan algebra		
canonical barrier	logarithmic potential Φ		
determinant of Jordan algebra	ω -function		

Affine spheres with $\hat{\nabla} C = 0$

the classification of affine spheres with parallel cubic form reduces to the classification of semi-simple Jordan algebras irreducible spheres / simple factors:

vector space	real dimension	range	Φ	ω	affine sphere
C	2		$Re(\log x)$	$ x ^2$	x = const
\mathbb{C}^m	2m	$m \ge 3$	$Re(\log x^T x)$	$ x^T x ^m$	$ x^T x = const$
$S_m(\mathbb{C})$	m(m+1)	$m \ge 3$	$Re(\log \det A)$	$ \det A ^{m+1}$	$ \det A = const$
$M_m(\mathbb{C})$	$2m^{2}$	$m \ge 3$	$Re(\log \det A)$	$ \det A ^{2m}$	$ \det A = const$
$A_{2m}(\mathbb{C})$	2m(2m-1)	$m \ge 3$	$Re(\log pf A)$	$ \operatorname{pf} A ^{2(2m-1)}$	$ \operatorname{pf} A = const$
$H_3(O,\mathbb{C})$	54		$Re(\log \det A)$	$ \det A ^{18}$	$ \det A = const$
R	1		$\log x $	x	point
\mathbb{R}^{m}	m	$m \ge 3$	$\log x^T Q x $	$ x^T Q x ^{m/2}$	quadric
$M_m(\mathbb{R})$	m^2	$m \ge 3$	$\log \det A $	$ \det A ^m$	$\det A = const$
$M_m(\mathbb{H})$	$4m^{2}$	$m \ge 2$	$\log \det S$	$(\det S)^{2m}$	$\det S = const$
$S_m(\mathbb{R})$	$\frac{m(m+1)}{2}$	$m \geq 3$	$\log \det A $	$ \det A ^{(m+1)/2}$	$\det A = const$
$H_m(\mathbb{C})$	m^2	$m \ge 3$	$\log \det A $	$ \det A ^m$	$\det A = const$
$H_m(\mathbb{H})$	m(2m-1)	$m \ge 3$	$\log \det S$	$(\det S)^{m-1/2}$	$\det S = const$
$A_{2m}(\mathbb{R})$	m(2m-1)	$m \ge 3$	$\log \operatorname{pf} A $	$ pf A ^{2m-1}$	pf A = const
$SH_m(\mathbb{H})$	m(2m+1)	$m \ge 2$	$\log \det S$	$(\det S)^{m+1/2}$	$\det S = const$
$H_3(\mathbb{O})$	27		$\log \det A $	$ \det A ^9$	$\det A = const$
$H_3(O,\mathbb{R})$	27		$\log \det A $	$ \det A ^9$	$\det A = const$

Thank you

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?