Conic optimization: affine geometry of self-concordant barriers

Roland Hildebrand

Laboratoire Jean Kuntzmann / CNRS

Seminar Nonlinear Analysis and Optimization

Laboratoire de Mathématiques d'Avignon April 12, 2018

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry
- canonical barrier
- self-scaled barriers

Regular convex cones

Definition

A regular convex cone $K \subset \mathbb{R}^{n}$ is a closed convex cone having nonempty interior and containing no lines.

The dual cone

$$
K^{*}=\left\{s \in \mathbb{R}_{n} \mid\langle x, s\rangle \geq 0 \quad \forall x \in K\right\}
$$

of a regular convex cone K is also regular.

Conic programs

Definition

A conic program over a regular convex cone $K \subset \mathbb{R}^{n}$ is an optimization problem of the form

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

to every conic program we can associate a dual program over the dual cone K^{*}
examples

- linear programs (LP)
- second-order cone programs (SOCP)
- semi-definite programs (SDP)
- geometric programs (GP)

Geometric interpretation

History of conic programming

LP: Simplex method [Dantzig 1951], exp. compl.

Ellipsoid method
[Yudin, Nemirovski 1976] polynomial-time

LP: Interior-point projective scaling [Karmarkar 1984] polynomial-time

LP: Interior-point affine scaling [Dikin 1967] rediscovery 1986

LP: Primal-dual IP
 [Kojima, Mizuno, Yoshise 1989] [Monteiro, Adler 1989] [Todd, Ye 1990]

CP: primal, primal-dual IP
[Nesterov, Nemirovski 1994]
systematic approach
Universal barrier

Symmetric cones IP [Nesterov, Todd 1994] self-scaled barriers

Symmetric cones IP Euclidean Jordan algebras [Faybusovich 1995]

Classification of self-scaled barriers
[Hauser 1999, 2000]
[Hauser, Güler 2002]
[Hauser, Lim 2002]
[Schmieta 2000]

Logarithmically homogeneous barriers

Definition (Nesterov, Nemirovski 1994)

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. A (self-concordant logarithmically homogeneous) barrier on K is a smooth function $F: K^{\circ} \rightarrow \mathbb{R}$ on the interior of K such that

- $F(\alpha x)=-\nu \log \alpha+F(x)$ (logarithmic homogeneity)
- $F^{\prime \prime}(x) \succ 0$ (convexity)
- $\lim _{x \rightarrow \partial K} F(x)=+\infty$ (boundary behaviour)
- $\left|F^{\prime \prime \prime}(x)[h, h, h]\right| \leq 2\left(F^{\prime \prime}(x)[h, h]\right)^{3 / 2}$ (self-concordance)
for all tangent vectors h at x.
The homogeneity parameter ν is called the barrier parameter.
Theorem (Nesterov, Nemirovski 1994)
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a barrier on K with parameter ν. Then the Legendre transform F^{*} is a barrier on $-K^{*}$ with parameter ν.

Barriers as penalty functions

let $K \subset \mathbb{R}^{n}$ be a regular convex cone
let $F: K^{\circ} \rightarrow \mathbb{R}$ be a barrier on K
consider the conic program

$$
\min _{x \in K}\langle c, x\rangle: \quad A x=b
$$

for $\tau>0$, solve instead the unconstrained problem

$$
\min _{x \in \mathbb{R}^{n}} \tau\langle c, x\rangle+F(x): \quad A x=b
$$

- unique minimizer $x^{*}(\tau) \in K^{\circ}$ for every $\tau>0$
- solution depends continuously on τ (central path)
- $x^{*}(\tau) \rightarrow x^{*}$ as $\tau \rightarrow \infty$

Path-following methods

alternate Newton steps and increments of τ
the smaller the barrier parameter ν, the faster we can increase τ safely
(in short-step methods) the iterates have to stay in a tube around the central path in order for the Newton method to make a controllable iteration
the larger ν, the smaller the diameter of the tube

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry
- canonical barrier
- self-scaled barriers

Affine connections

an affine connection ∇ on a differentiable manifold defines the parallel transport of tangent vectors u along curves $\sigma(t)$ by

$$
\dot{u}^{\gamma}+\nabla_{\alpha \beta}^{\gamma} u^{\alpha} \dot{\sigma}^{\beta}=\left(\frac{\partial u^{\gamma}}{\partial x^{\beta}}+\nabla_{\alpha \beta}^{\gamma} u^{\alpha}\right) \dot{\sigma}^{\beta}=0
$$

the covariant derivative of the vector field u is given by

$$
\nabla_{\beta} u^{\gamma}=\frac{\partial u^{\gamma}}{\partial x^{\beta}}+\nabla_{\alpha \beta}^{\gamma} u^{\alpha}
$$

we may also define the covariant derivative of general tensors law of transformation under coordinate changes $x \mapsto y$

$$
\nabla_{\alpha \beta}^{\gamma} \mapsto \frac{\partial x^{p}}{\partial y^{\alpha}} \frac{\partial x^{q}}{\partial y^{\beta}} \nabla_{p q}^{r} \frac{\partial y^{\gamma}}{\partial x^{r}}+\frac{\partial y^{\gamma}}{\partial x^{m}} \frac{\partial^{2} x^{m}}{\partial y^{\alpha} \partial y^{\beta}}
$$

example: the flat affine connection on \mathbb{R}^{n} is given by $\nabla_{\alpha \beta}^{\gamma}=0$ in affine coordinates

Affine differential geometry

let $M \hookrightarrow \mathbb{R}^{n+1}$ be a hypersurface immersion and ξ a transversal vector field on M

which objects can be defined on M by the connection on \mathbb{R}^{n+1} ?

Affine metric, affine connection, cubic form

let y^{0}, \ldots, y^{n} be affine coordinates on \mathbb{R}^{n+1} and x^{1}, \ldots, x^{n} coordinates on M
extend these to a neighbourhood of M and complement with a coordinate x^{0} such that

- M is a level surface of x^{0}
- $\xi=\frac{\partial}{\partial x^{0}}$ on M
in x coordinates the flat affine connection of \mathbb{R}^{n+1} becomes

$$
\nabla_{i j}^{r}=\frac{\partial x^{r}}{\partial y^{s}} \frac{\partial^{2} y^{s}}{\partial x^{i} \partial x^{j}}, \quad \nabla_{i j}^{0}=\frac{\partial x^{0}}{\partial y^{s}} \frac{\partial^{2} y^{s}}{\partial x^{i} \partial x^{j}}
$$

$i, j, r=1, \ldots, n$
$\nabla_{i j}^{r}$ is called the affine connection, $\nabla_{i j}^{0}=h_{i j}$ the affine metric, and $C=\nabla h$ the cubic form on M

Centro-affine immersions

in centro-affine immersions the transversal vector field ξ equals the position vector field x

the cubic form $C=\nabla h$ is totally symmetric

Conormal map

let $M \hookrightarrow \mathbb{R}^{n+1}$ be a hypersurface immersion
to each $x \in M$ we associate a vector $p \in \mathbb{R}_{n+1}$ such that

- p is tangent to M at x
- $\langle p, \xi\rangle=1$ at x
this hypersurface immersion $M \hookrightarrow \mathbb{R}_{n+1}$ is the conormal map

the conormal map defines a duality on the class of centro-affine hypersurface immersions

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry
- canonical barrier
- self-scaled barriers

Centro-affine geometry of barriers

let $K \subset \mathbb{R}^{n}$ a regular convex cone, and $F: K^{\circ} \rightarrow \mathbb{R}$ a logarithmically homogeneous function of degree $-\nu$

Theorem
Let M be a level surface of F. Then the centro-affine metric h and the cubic form C of M on a tangent vector u to M are given by

$$
\begin{aligned}
h[u, u] & =\nu^{-1} F^{\prime \prime}[u, u], \\
C[u, u, u] & =\nu^{-1} F^{\prime \prime \prime}[u, u, u] .
\end{aligned}
$$

The immersion defined by the conormal map is a level surface of the dual barrier F^{*}.
h, C are the projective counterparts of the derivatives $F^{\prime \prime}, F^{\prime \prime \prime}$ indeed, Karmarkar used a metric proportional to h on the simplex in his algorithm

Self-concordance and boundedness of cubic form

Theorem
Let $K \subset \mathbb{R}^{n}, n \geq 2$, be a regular convex cone and $F: K^{o} \rightarrow \mathbb{R}$ a logarithmically homogeneous locally strongly convex function with homogeneity parameter ν. Let M be a level surface of F.
Then F is self-concordant if and only if

$$
|C[u, u, u]| \leq 2 \gamma(h[u, u])^{3 / 2}
$$

for all vectors u which are tangent to M. Here $\gamma=\frac{\nu-2}{\sqrt{\nu-1}}$.
Corollary
On cones $K \subset \mathbb{R}^{n}, n \geq 2$, there exist no barriers with parameter $\nu<2$.

Dependence between γ and ν

Extreme case $\nu=2$

Corollary

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone, and $n \geq 2$. Let $F: K^{\circ} \rightarrow \mathbb{R}$ be a self-concordant barrier on K. Then F has parameter $\nu \geq 2$, with equality if and only if K is isomorphic to the Lorentz cone and F to the hyperbolic barrier on K.
the Lorentz cone $L_{n} \subset \mathbb{R}^{n}$ is the cone

$$
\left\{x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)^{T} \mid x_{0} \geq \sqrt{x_{1}^{2}+\cdots+x_{n-1}^{2}}\right\}
$$

its hyperbolic barrier is given by

$$
F(x)=-\frac{1}{2} \log \left(x_{0}^{2}-x_{1}^{2}-\cdots-x_{n-1}^{2}\right)
$$

the level surfaces are isometric to hyperbolic space

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry
- canonical barrier
- self-scaled barriers

Affine normal

 non-degenerate convex hypersurface in \mathbb{R}^{n}
the affine normal is the tangent to the curve made of the gravity centers of the sections
a hypersurface immersion with the affine normal as transversal vector field is called a Blaschke immersion

Affine spheres

a hyperbolic proper affine sphere is a convex surface such that all affine normals meet at a point outside of the convex hull
a centro-affine immersion is a proper affine sphere if and only if

- the affine normal is proportional to the position vector
- the cubic form is traceless, $C_{\alpha \beta \gamma} h^{\beta \gamma}=0$

Theorem (Calabi conjecture; Fefferman 76, Cheng-Yau 86, Li 90, and others)
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then there exists a unique foliation of K° by a homothetic family of affine complete and Euclidean complete hyperbolic affine hyperspheres which are asymptotic to ∂K.

Every affine complete, Euclidean complete hyperbolic affine hypersphere is asymptotic to the boundary of a regular convex cone.

the foliating hyperspheres are asymptotic to the boundary of K

Monge-Ampère equation

characterisation of the log-homogeneous functions $F: K^{\circ} \rightarrow \mathbb{R}$ of degree n whose level surfaces are affine spheres
up to an additive constant, F is the convex solution of the Monge-Ampère equation

$$
\log \operatorname{det} F^{\prime \prime}=2 F
$$

with boundary condition

$$
\lim _{x \rightarrow \partial K} F(x)=+\infty
$$

properties

- exists and is unique
- real analytic
- invariant w.r.t. unimodular linear maps
- respects Legendre duality

Canonical barrier

Theorem (H., 2014; independently D. Fox, 2015)
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone. Then the convex solution of the Monge-Ampère equation $\log \operatorname{det} F^{\prime \prime}=2 F$ with boundary condition $\left.F\right|_{\partial K}=+\infty$ is a logarithmically homogeneous self-concordant barrier (the canonical barrier) on K with parameter $\nu=n$.
main idea of proof: use non-positivity of the Ricci curvature [Calabi 1972]
already conjectured by O . Güler

- invariant under the action of $S L(\mathbb{R}, n)$
- fixed under unimodular automorphisms of K
- additive under the operation of taking products
- respects Legendre duality

Universal constructions: comparison

Property	Universal barrier	Canonical barrier
$S L(\mathbb{R}, n)$-invariance	Yes	Yes
Aut (K)-invariance	Yes	Yes
product additivity	Yes	Yes
parameter	$O(n)$	$\leq n$
duality	No	Yes
computability	No	No

for $K \subset \mathbb{R}^{3}$ with non-trivial automorphism group, the canonical barrier is given generically by elliptic integrals
for homogeneous cones the two constructions coincide
for compact sets there exists also the entropic barrier with parameter $n+O(\log n \sqrt{n})$

Outline

Geometry of self-concordant barriers

- self-concordant barriers
- affine differential geometry
- relationship between barriers and geometry
- canonical barrier
- self-scaled barriers

Self-scaled barriers

Definition

Let $K \subset \mathbb{R}^{n}$ be a regular convex cone, let K^{*} be its dual cone, let F be a self-concordant barrier on K with parameter ν, and let F_{*} be the dual barrier on K^{*}. Then F is called self-scaled if for every $x, w \in K^{o}$ we have

$$
F^{\prime \prime}(w) x \in \operatorname{int} K^{*}, \quad F_{*}\left(F^{\prime \prime}(w) x\right)=F(x)-2 F(w)-\nu
$$

A cone K admitting a self-scaled barrier is called self-scaled cone.
Hauser, Güler, Lim, Schmieta 1998-2002:

- self-scaled cone \Leftrightarrow symmetric cone
- self-scaled barriers on products are sums of self-scaled barriers on irreducible components
- self-scaled barriers on irreducible cones are log-determinants

Parallelism conditions

the affine connection ∇ is generated by the primal immersion the dual immersion generates the dual connection $\bar{\nabla}$ the primal-dual symmetric connection $\hat{\nabla}=\frac{1}{2}(\nabla+\bar{\nabla})$ is the Levi-Civita connection of the affine metric
the most simple class of barriers are the hyperbolic barriers, on whose level surfaces $C=0$
the next class, ordered by complexity, are the barriers whose level surfaces have constant cubic form
constant means preserved by the geodesic flow of the affine metric

$$
\hat{\nabla} C=0
$$

Equivalence between self-scaledness and parallelism

Theorem
Let $K \subset \mathbb{R}^{n}$ be a regular convex cone and F a self-concordant barrier on it. Then the following are equivalent:

- F is a self-scaled barrier (and K a self-scaled cone)
- on the level surfaces of F the condition $\hat{\nabla} C=0$ holds.

Every convex hyperbolic centro-affine hypersurface immersion satisfying $\hat{\nabla} C=0$ can be completed to the level surface of a self-scaled barrier on some symmetric cone.
this yields a local characterization of self-scaled barriers

Sketch of proof

$\hat{\nabla} C=0$ can be rewritten as the 4-th order quasi-linear PDE

$$
F_{, \alpha \beta \gamma \delta}=\frac{1}{2} F^{, \rho \sigma}\left(F_{, \alpha \beta \rho} F_{, \gamma \delta \sigma}+F_{, \alpha \gamma \rho} F_{, \beta \delta \sigma}+F_{, \alpha \delta \rho} F_{, \beta \gamma \sigma}\right)
$$

here $F^{, \rho \sigma}$ is the inverse Hessian and $F_{, \gamma \delta \sigma}$ etc. the partial derivatives
the integrability condition of this PDE is the Jordan identity for the algebra defined by the structure tensor ($u \bullet v=K_{\alpha \beta}^{\gamma} u^{\alpha} v^{\beta}$)

$$
K_{\alpha \beta}^{\gamma}=-\frac{1}{2} F^{, \gamma \delta} F_{, \alpha \beta \delta}
$$

the barrier can be recovered from a metrised Euclidean Jordan algebra by

$$
F(x)=\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k} g\left[x, x^{k-1}\right]
$$

Non-convex case

most of the proof remains valid if the convexity assumption is dropped
the appropriate framework is the theory of Koechers ω-domains

convex case	general case
symmetric cone	ω-domain
Euclidean Jordan algebra	semi-simple Jordan algebra
irreducible Euclidean Jordan algebra	simple Jordan algebra
canonical barrier	logarithmic potential Φ
determinant of Jordan algebra	ω-function

Affine spheres with $\hat{\nabla} C=0$

the classification of affine spheres with parallel cubic form reduces to the classification of semi-simple Jordan algebras irreducible spheres / simple factors:

vector space	real dimension	range	Φ	ω	affine sphere
\mathbb{C}	2		$\operatorname{Re}(\log x)$	$\|x\|^{2}$	$\|x\|=$ const
\mathbb{C}^{m}	$2 m$	$m \geq 3$	$\operatorname{Re}\left(\log x^{T} x\right)$	$\left\|x^{T} x\right\|^{m}$	$\left\|x^{T} x\right\|=$ const
$S_{m}(\mathbb{C})$	$m(m+1)$	$m \geq 3$	$\operatorname{Re}(\log \operatorname{det} A)$	$\|\operatorname{det} A\|^{m+1}$	$\|\operatorname{det} A\|=$ const
$M_{m}(\mathbb{C})$	$2 m^{2}$	$m \geq 3$	$\operatorname{Re}(\log \operatorname{det} A)$	$\|\operatorname{det} A\|^{2 m}$	$\|\operatorname{det} A\|=$ const
$A_{2 m}(\mathbb{C})$	$2 m(2 m-1)$	$m \geq 3$	$\operatorname{Re}(\log \operatorname{pf} A)$	$\|\operatorname{pf} A\|^{2(2 m-1)}$	$\|\operatorname{pf} A\|=$ const
$H_{3}(O, \mathbb{C})$	54		$\operatorname{Re}(\log \operatorname{det} A)$	$\|\operatorname{det} A\|^{18}$	$\|\operatorname{det} A\|=$ const
\mathbb{R}	1		$\log \|x\|$	$\|x\|$	point
\mathbb{R}^{m}	m	$m \geq 3$	$\log \left\|x^{T} Q x\right\|$	$\left\|x^{T} Q x\right\|^{m / 2}$	quadric
$M_{m}(\mathbb{R})$	m^{2}	$m \geq 3$	$\log \|\operatorname{det} A\|$	$\|\operatorname{det} A\|^{m}$	$\operatorname{det} A=$ const
$M_{m}(\mathbb{H})$	$4 m^{2}$	$m \geq 2$	$\log \operatorname{det} S$	$(\operatorname{det} S)^{2 m}$	$\operatorname{det} S=$ const
$S_{m}(\mathbb{R})$	$\frac{m(m+1)}{2}$	$m \geq 3$	$\log \|\operatorname{det} A\|$	$\|\operatorname{det} A\|^{(m+1) / 2}$	$\operatorname{det} A=$ const
$H_{m}(\mathbb{C})$	m^{2}	$m \geq 3$	$\log \|\operatorname{det} A\|$	$\|\operatorname{det} A\|^{m}$	$\operatorname{det} A=$ const
$H_{m}(\mathbb{H})$	$m(2 m-1)$	$m \geq 3$	$\log \operatorname{det} S$	$(\operatorname{det} S)^{m-1 / 2}$	$\operatorname{det} S=$ const
$A_{2 m}(\mathbb{R})$	$m(2 m-1)$	$m \geq 3$	$\log \|\operatorname{pf} A\|$	$\|\operatorname{pf} A\|^{2 m-1}$	$\operatorname{pf} A=$ const
$S H_{m}(\mathbb{H})$	$m(2 m+1)$	$m \geq 2$	$\log \operatorname{det} S$	$(\operatorname{det} S)^{m+1 / 2}$	$\operatorname{det} S=$ const
$H_{3}(\mathbb{O})$	27		$\log \|\operatorname{det} A\|$	$\|\operatorname{det} A\|^{9}$	$\operatorname{det} A=$ const
$H_{3}(O, \mathbb{R})$	27		$\log \|\operatorname{det} A\|$	$\|\operatorname{det} A\|^{9}$	$\operatorname{det} A=$ const

Thank you

