Semidefinite Representations of Sets Delineated by Plane Quartics

Roland Hildebrand

Université Grenoble 1 / CNRS
September 19, 2011 / AFG Conference 2011

Outline

(1) Semi-definite representability

- Semi-algebraic sets
- Semi-definite representations

Representation of planar quartic sets

- Planar sets and their homogenizations
- Lasserre construction and its homogenization
- Representation of planar quartic sets

Outline

(1) Semi-definite representability

- Semi-algebraic sets
- Semi-definite representations
(2) Representation of planar quartic sets
- Planar sets and their homogenizations
- Lasserre construction and its homogenization
- Representation of planar quartic sets

Semi-algebraic sets

Definition

A subset
$S=\left\{x \in \mathbb{R}^{n} \mid p_{k}(x)=0, k=1, \ldots, m ; q_{l}(x)>0, I=1, \ldots, m^{\prime}\right\}$
given by a finite number of polynomial equalities and inequalities is called basic semi-algebraic.

Definition

A set $S \subset \mathbb{R}^{n}$ which is a finite union of basic-semi-algebraic sets is called semi-algebraic.

Conic semi-algebraic sets

Lemma

Let $S \subset \mathbb{R}^{n}$ be a semi-algebraic set. Then the set

$$
\tilde{S}=\left\{\tilde{x}=\left(\lambda, \lambda x^{T}\right)^{T} \mid \lambda \geq 0, x \in S\right\} \subset \mathbb{R}^{n+1}
$$

is also semi-algebraic.

- homogenize polynomials
- add constraint $x_{0}>0$
- unite with $\{0\}$

Semi-definite representability

Definition

A cone K is called semi-definite representable if it is linearly isomorphic to a linear projection of a linear section of $S_{+}(n)$ for some n.

- linear intersection with subspace $L \subset \mathcal{S}(n)$
- linear projection along subspace $L^{\prime} \subset L$
assume $L \cap S_{++}(n) \neq \emptyset$
K linearly isomorphic to

$$
K_{L, L^{\prime}}^{n}=\left\{x \in L / L^{\prime} \mid \exists y \in x: \quad y \in L \cap S_{+}(n)\right\}
$$

Semi-definite representability
Representation of planar quartic sets

Semi-definite representable cones

Example

Nonnegative ternary quartics [Hilbert, 1888]:

$$
\begin{aligned}
& \sum_{\alpha+\beta \leq 4} c_{\alpha \beta} x^{\alpha} y^{\beta} \geq 0 \quad \forall x, y \in \mathbb{R} \\
& \Leftrightarrow \quad \exists a_{02}, a_{20}, a_{22}, a_{21}, a_{12}, a_{11} \in \mathbb{R}: \\
& \left(\begin{array}{cccccc}
2 c_{40} & c_{22}-a_{22} & c_{20}-a_{20} & c_{21}-a_{21} & c_{30} & c_{31} \\
c_{22}-a_{22} & 2 c_{04} & c_{02}-a_{02} & c_{03} & c_{12}-a_{12} & c_{13} \\
c_{20}-a_{20} & c_{02}-a_{02} & 2 c_{00} & c_{01} & c_{10} & c_{11}-a_{11} \\
c_{21}-a_{21} & c_{03} & c_{01} & 2 a_{02} & a_{11} & a_{12} \\
c_{30} & c_{12}-a_{12} & c_{10} & a_{11} & 2 a_{20} & a_{21} \\
c_{31} & c_{13} & c_{11}-a_{11} & a_{12} & a_{21} & 2 a_{22}
\end{array}\right) \geq 0
\end{aligned}
$$

$n=6, \operatorname{dim} L=\operatorname{dim} \mathcal{S}(6)=21, \operatorname{dim} L^{\prime}=6$, $\operatorname{dim} K=\operatorname{dim} L / L^{\prime}=15$

Duality

Definition

Let $K \subset \mathbb{R}^{n}$ be a convex cone. The dual cone to K is given by

$$
K^{*}=\left\{y \in \mathbb{R}_{n} \mid\langle x, y\rangle \geq 0 \quad \forall x \in K\right\} .
$$

Theorem

Let $L^{\prime} \subset L \subset \mathcal{S}(n)$ be linear subspaces, $L \cap S_{++}(n) \neq \emptyset$. Then

$$
\left(K_{L, L^{\prime}}^{n}\right)^{*}=K_{L^{\prime}, L^{\perp}}^{n}
$$

Here $L^{\prime \perp}, L^{\perp}$ are the orthogonal complements of L^{\prime}, L.

Problem formulation

necessary conditions for semi-definite representability of K

- K is convex
- K is semi-algebraic

Is every regular convex semi-algebraic cone semi-definite representable?

this talk

- $\operatorname{dim} K=3$
- defining polynomials are quartics

Known results

- semi-definite representability local property of the boundary [Helton, Nie 2009]
- smooth boundary patches with positive curvature are not an obstacle [Helton, Nie 2010]
- more explicit construction in [Nie, 2010] with convexity assumptions on the defining polynomials
- the semi-definite representation is a member of the Lasserre hierarchy [Lasserre, 2009]
- degree of the LMI can be arbitrarily high
[Henrion, 2009]: semi-definite representation of convex hulls of certain rational algebraic varieties and of zero sets of convex polynomials with fixed block size

Planar semi-algebraic sets

Lemma

A closed convex semi-algebraic set $S \subset \mathbb{R}^{2}$ is bounded by a finite number of arcs. The Zariski closure of each arc is a plane algebraic curve, which is the zero set of some nonzero irreducible polynomial.
w.r.o.g.

- the interior of each arc consists of nonsingular points
- in the interior of each arc the curvature is nonzero
- defining polynomials are positive on the inside of S

Semi-definite representability
Representation of planar quartic sets

Compact and noncompact case

Homogenization

Lemma

A regular convex semi-algebraic cone $K \subset \mathbb{R}^{3}$ is bounded by a finite number of conic surface patches. The Zariski closure of each patch corresponds to a plane projective algebraic curve, which is the zero set of some nonzero irreducible polynomial.
w.r.o.g.

- the interior of each patch consists of nonsingular points
- in the interior of each patch the curvature is nonzero
- defining polynomials are positive on the inside of K

Semi-definite representability Representation of planar quartic sets

3-dimensional cones

Regularity condition

$\Delta \subset \partial S$ — boundary patch defined by $p(x, y, z)=0$
$v^{*}=\left(x^{*}, y^{*}, z^{*}\right) \in \Delta^{\circ}$ - interior point
v^{*} nonsingular: $p^{\prime}\left(v^{*}\right) \neq 0$
curvature at v^{*} nonzero: $p^{\prime \prime}\left(v^{*}\right)<0$ on the direction $v^{*} \times p^{\prime}\left(v^{*}\right)$
$\Leftrightarrow \operatorname{det} p^{\prime \prime}\left(v^{*}\right)>0$
$p^{\prime \prime}\left(v^{*}\right)$ of signature $(+--)$

Semi-definite representability Representation of planar quartic sets

Local geometry of $p^{\prime \prime}\left(v^{*}\right)$

Problem formulation

describe by LMI's the convex hull of the set

$$
\Delta=\left\{x \in \mathbb{R}^{n} \mid p(x)=0, q_{k}(x) \geq 0, k=1, \ldots, m\right\}
$$

Moment vectors

Definition

For $x \in \mathbb{R}^{n}$, let $\mathcal{X}_{N}(x)$ be the vector of monomials x^{α} with $|\alpha| \leq N$.
the PSD rank 1 matrix $\mathcal{X}_{N}(x) \mathcal{X}_{N}^{T}(x)$ contains the elements of $\mathcal{X}_{2 N}(x)$
\Rightarrow the vector $\mathcal{X}_{2 N}(x)$ has to satisfy the corresponding LMI

LMI constraints on moment vectors

$$
\Delta=\left\{x \in \mathbb{R}^{n} \mid p(x)=0, q_{k}(x) \geq 0, k=1, \ldots, m\right\}
$$

for every $x \in \Delta, N \in \mathbb{N}$ sufficiently large, $\mathcal{X}_{2 N}(x)$ satisfies the linear constraint

$$
p(x) b(x)=0
$$

for every polynomial b with $\operatorname{deg} b+\operatorname{deg} p \leq 2 N$ for every $I \subset\{1, \ldots, m\}, \mathcal{X}_{2 N}(x)$ satisfies the LMI

$$
\prod_{k \in I} q_{k}(x) \mathcal{X}_{N^{\prime}}(x) \mathcal{X}_{N^{\prime}}^{\top}(x) \succeq 0
$$

with $N^{\prime} \leq N-\frac{1}{2} \sum_{k \in I} \operatorname{deg} q_{k}$

Recovery of the original point

suppose we have a semi-definite representable set S in moment space
the map $\Pi: \mathcal{X}_{2 N}(x) \mapsto x$ is a linear projection

Lemma

Let $\Delta \subset \mathbb{R}^{n}$ be a set and

$$
S \supset\left\{\mathcal{X}_{2 N}(x) \mid x \in \Delta\right\}
$$

a convex outer approximation of the corresponding moment set. Then $\Pi[S]$ is an outer approximation of conv Δ.

Scheme of relaxation

$$
\begin{array}{ccc}
\left\{\mathcal{X}_{2 N}(x) \mid x \in \Delta\right\} & \subset & S \\
\Pi \downarrow & & \Pi \downarrow \\
\Delta & \subset & \Pi[S]
\end{array}
$$

- S defined by LMIs which $\mathcal{X}_{2 N}(x)$ satisfy
- $S, \Pi[S]$ semi-definite representable
- $\Pi[S]$ is the Lasserre relaxation of conv Δ

Homogeneous moments

Definition

For $x \in \mathbb{R}^{n+1}$, let $\mathcal{X}_{N}(x)$ be the vector of monomials x^{α} with $|\alpha|=N$.
the PSD rank 1 matrix $\mathcal{X}_{N}(x) \mathcal{X}_{N}^{\top}(x)$ contains the elements of $\mathcal{X}_{2 N}(x)$
\Rightarrow the vector $\mathcal{X}_{2 N}(x)$ has to satisfy the corresponding LMI other LMIs carry over from inhomogeneous case

Recovery of the original point

the linear projection $\Pi: \mathcal{X}_{2 N}(x) \mapsto x$ is no longer available

- choose polynomial $f(x)$ of degree $2 N-1$
- define linear projection $\Pi: \mathcal{X}_{2 N}(x) \mapsto\left(f(x) x_{k}\right)_{k=0, \ldots, n}$
$x \mapsto \mathcal{X}_{2 N}(x) \mapsto f(x) \cdot x$ is "pointwise homothety"
recovery of original point up to scalar factor $f(x)$
does not matter since we are in homogeneous setting

Recovery cont'd

Lemma

Let $\Delta \subset \mathbb{R}^{n+1}$ be a conic set and

$$
S \supset\left\{\mathcal{X}_{2 N}(x) \mid x \in \Delta\right\}
$$

a closed convex outer approximation of the moment set. Let f of degree $2 N-1$ be such that $f(x)>0$ a.e. on Δ. Then $K=\Pi[S]$ is an outer approximation of conv Δ.
many degrees of freedom to construct relaxations

Form of relaxation parameters

p defining boundary patch Δ is a quartic polynomial

- $N=2 \Rightarrow$ monomials up to 4 th order
- q isolating Δ is a quadric with signature $(+--)$
- f defining the recovering projection Π is I^{3}

I linear functional s.t. $q \prec 0, p^{\prime \prime}(v) \prec 0$ on ker $/$ for all $v \in \Delta$

$$
\Delta=\{v=(x, y, z) \mid p(v)=0, q(v) \geq 0, I(v) \geq 0\}
$$

Semi-definite representability

Geometric interpretation

Explicit description

$$
\Sigma=S^{*}=\left\{p \cdot b+\sigma_{1} q+\sigma_{2} \mid b \in \mathbb{R}, \sigma_{1}, \sigma_{2} \mathrm{SOS}\right\}
$$

is dual to the cone of moment vectors satisfying the LMI σ_{1}, σ_{2} SOS of degree $2,4 \Leftrightarrow \sigma_{1} \geq 0, \sigma_{2} \geq 0$

$$
K^{*}=(\Pi[S])^{*}=\left\{y \in \mathbb{R}_{n} \mid \beta^{3} \cdot y(\cdot) \in \Sigma\right\}
$$

is the dual to the convex cone K approximating conv Δ
linear functionals y such that $I^{3} y \in \Sigma$ are supporting the semi-definite approximation K

Semi-definite representability
Representation of planar quartic sets

Supporting planes

Gradient functional

Reduction to polynomial inequality

to show: $\beta^{3} \cdot\left\langle p^{\prime}\left(v^{*}\right), \cdot\right\rangle=p \cdot b+\sigma_{1} \cdot q+\sigma_{2}, \quad b \in \mathbb{R}, \sigma_{1}, \sigma_{2} \geq 0$
let v^{0} be the centre of Δ normalized s.t. $I\left(v^{0}\right)=1$
with $c>0$ set

- $b=l^{3}\left(v^{*}\right)$
- $q=\varepsilon^{2} I^{2}(v)+p^{\prime \prime}\left(v^{0}\right)\left[v-I(v) v^{0}, v-I(v) v^{0}\right]$
- $\sigma_{1}=-c \cdot I\left(v^{*}\right) \cdot p^{\prime \prime}\left(v^{0}\right)\left[I\left(v^{*}\right) v-I(v) v^{*}, I\left(v^{*}\right) v-I(v) v^{*}\right]$

Reduction to polynomial inequality

to show: $\beta^{3} \cdot\left\langle p^{\prime}\left(v^{*}\right), \cdot\right\rangle=p \cdot b+\sigma_{1} \cdot q+\sigma_{2}, b \in \mathbb{R}, \sigma_{1}, \sigma_{2} \geq 0$ set $b=\beta^{3}\left(v^{*}\right)$, for v^{0} with $I\left(v^{0}\right)=1$
$q=\varepsilon^{2} l^{2}(v)+p^{\prime \prime}\left(v^{0}\right)\left[v-I(v) v^{0}, v-I(v) v^{0}\right]$,
$\sigma_{1}=-c \cdot I\left(v^{*}\right) \cdot p^{\prime \prime}\left(v^{0}\right)\left[I\left(v^{*}\right) v-I(v) v^{*}, I\left(v^{*}\right) v-I(v) v^{*}\right], c>0$
sufficient condition: for all $v \in \mathbb{R}^{3}$ and all $v^{*} \in K_{q}$

$$
I\left(v^{*}\right)\left[\beta^{3}(v) \cdot\left\langle p^{\prime}\left(v^{*}\right), v\right\rangle-p(v) \cdot b-\sigma_{1} \cdot q\right]-3 I^{4}(v) \cdot p\left(v^{*}\right) \geq 0
$$

homogeneous in each of v, v^{*} of degree 4

Reduction to polynomial inequality

to show: $\beta^{3} \cdot\left\langle p^{\prime}\left(v^{*}\right), \cdot\right\rangle=p \cdot b+\sigma_{1} \cdot q+\sigma_{2}, b \in \mathbb{R}, \sigma_{1}, \sigma_{2} \geq 0$
set $b=\beta^{3}\left(v^{*}\right)$, for v^{0} with $I\left(v^{0}\right)=1$
$q=\varepsilon^{2} l^{2}(v)+p^{\prime \prime}\left(v^{0}\right)\left[v-I(v) v^{0}, v-I(v) v^{0}\right]$,
$\sigma_{1}=-c \cdot I\left(v^{*}\right) \cdot p^{\prime \prime}\left(v^{0}\right)\left[I\left(v^{*}\right) v-I(v) v^{*}, I\left(v^{*}\right) v-I(v) v^{*}\right], c>0$
sufficient condition: for all $v \in \mathbb{R}^{3}$ and all $v^{*} \in K_{q}$ $I\left(v^{*}\right)\left[\beta^{3}(v) \cdot\left\langle p^{\prime}\left(v^{*}\right), v\right\rangle-p(v) \cdot b-\sigma_{1} \cdot q\right]-3 I^{4}(v) \cdot p\left(v^{*}\right) \geq 0$
homogeneous in each of v, v^{*} of degree 4 for $I\left(v^{*}\right)=I(v)=1$:
$c\left(\varepsilon^{2}+p^{\prime \prime}\left(v^{0}\right)\left[v-v^{0}, v-v^{0}\right]\right) \leq \frac{p(v)-p\left(v^{*}\right)-\left\langle p^{\prime}\left(v^{*}\right), v-v^{*}\right\rangle}{p^{\prime \prime}\left(v^{0}\right)\left[v-v^{*}, v-v^{*}\right]}$

Polar coordinates

pass to polar coordinates in ker/ with scalar product $-p^{\prime \prime}\left(v^{0}\right)$

$$
\begin{aligned}
& \text { with } v-v^{*}=\delta\binom{\cos \zeta}{\sin \zeta}, v^{*}-v^{0}=\rho\binom{\cos \xi}{\sin \xi} \\
& \qquad c\left(\varepsilon^{2}+p^{\prime \prime}\left(v^{0}\right)\left[v-v^{0}, v-v^{0}\right]\right)= \\
& =c\left(\varepsilon^{2}-\left\|v-v^{0}\right\|^{2}\right) \leq c\left(\varepsilon^{2}-(\delta-\rho)^{2}\right)
\end{aligned}
$$

$$
\frac{p(v)-p\left(v^{*}\right)-\left\langle p^{\prime}\left(v^{*}\right), v-v^{*}\right\rangle}{p^{\prime \prime}\left(v^{0}\right)\left[v-v^{*}, v-v^{*}\right]}=
$$

$$
=-\frac{\frac{1}{2} p^{\prime \prime}\left(v^{*}\right)\left[v-v^{*}\right]+\frac{1}{6} p^{\prime \prime \prime}\left(v^{*}\right)\left[v-v^{*}\right]+\frac{1}{24} p^{\prime v}\left[v-v^{*}\right]}{\delta^{2}}
$$

$$
=\frac{1}{2}+\sum_{1 \leq k+1 \leq 2} c_{k \mid}(\zeta, \xi) \delta^{k} \rho^{\prime} \geq \frac{1}{2}+\sum_{1 \leq k+1 \leq 2} \min _{\zeta, \xi} c_{k \mid} \delta^{k} \rho^{\prime}
$$

Reduction to copositivity condition

with $\tilde{c}_{k l}=\min _{\zeta, \xi} c_{k l}$:

$$
c\left(\varepsilon^{2}-(\delta-\rho)^{2}\right) \leq \frac{1}{2}+\sum_{1 \leq k+l \leq 2} \tilde{c}_{k l} \delta^{k} \rho^{\prime}
$$

for all $\delta=\left\|v-v^{*}\right\| \in \mathbb{R}_{+}, \rho=\left\|v^{*}-v^{0}\right\| \in[0, \varepsilon]$

$$
\Leftrightarrow
$$

$$
\left(\begin{array}{ccc}
\frac{1}{2}-c \varepsilon^{2} & \frac{\tilde{c}_{10}}{2} & \frac{1}{2}+\varepsilon \frac{\tilde{c}_{01}}{2}-c \varepsilon^{2} \\
\frac{\tilde{c}_{10}}{2} & \tilde{c}_{20}+c & \frac{\tilde{c}_{10}}{2}+\varepsilon \frac{\tilde{c}_{11}}{2}-\varepsilon c \\
\frac{1}{2}+\varepsilon \frac{\tilde{c}_{01}}{2}-c \varepsilon^{2} & \frac{\tilde{c}_{10}}{2}+\varepsilon \frac{\tilde{c}_{11}}{2}-\varepsilon c & \frac{1}{2}+\varepsilon \tilde{c}_{01}+\varepsilon^{2} \tilde{c}_{02}
\end{array}\right) \in \mathcal{C}_{3}
$$

satisfied if c large and ε small

Main result

Theorem

Let p be a homogeneous ternary quartic, let $Z(p)$ be the zero set of p, and let $v^{0} \in Z(p)$ be a regular point such that $\operatorname{det} p^{\prime \prime}\left(v^{*}\right)>0$.
Then there exists a conic subset $\Delta \subset Z(p)$ containing v^{0} in its interior such that conv Δ has a semi-definite description with blocks of size 1,3 and 6 and with 11 lifting variables.

Thank you

