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Abstrat

Iterative Feedbak Tuning (IFT) is a widely used proedure for ontroller tuning.

It is a sequene of iteratively performed speial experiments on the plant interlaed

with periods of data olletion under normal operating onditions. In this note we

prove a rigorous result on the onvergene of the IFT proedure for disturbane

rejetion, whih is one of the main �elds of appliation.
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1 Introdution

Iterative Feedbak Tuning (IFT) is a data based method for the tuning of restrited om-

plexity ontrollers. It has proved to be very e�etive in pratie and is now widely used

in proess ontrol, often for disturbane rejetion. Following the original formulation of

the method in [5℄, [6℄ many improvements and modi�ations of IFT have been suggested

and partially implemented in pratie. The reader is referred to [4℄ for a reent overview.

However, surprisingly little attention was paid to the theoretial properties of IFT.

A quantitative study of the asymptoti aspets of onvergene was undertaken in [2℄.

The only proof of onvergene of the algorithm appeared in [3℄. Unfortunately this proof

ontains a aw, so that stritly speaking the onvergene of the method is not yet proven.

The goal of this note is to even out this disrepany between the wide pratial use of

IFT and the state of theoretial knowledge about it. In this note we fous on IFT for

disturbane rejetion.

The objetive of IFT is to minimize a quadrati performane riterion. IFT is a

stohasti gradient desent sheme in a �nitely parameterized ontroller spae. The gra-

dient of the ost funtion at eah step is estimated from data. These data are olleted

with the atual ontroller in the loop. One of the advantages of IFT is that most data are

olleted while the proess runs under normal operating onditions. These data are then

used to design a speial experiment, whih yields a noisy, but unbiased, estimate of the

ost funtion gradient. This gradient estimate is used to perform the next desent step

in ontroller spae. For more details of the proedure see [5℄.

It will be shown that under suitable assumptions the algorithm onverges to a station-

ary point of the performane riterion. The proof is based on the proof provided in [3℄,

but ontains an additional proposition whih is neessary for mathematial orretness.

The remainder of the note is strutured as follows. In the next setion we summarize

the details of the IFT algorithm for disturbane rejetion. In Setion 3 we state and prove

the onvergene theorem and establish onditions for its validity.

2 IFT for disturbane rejetion

In this setion we review the IFT method for the disturbane rejetion problem with a

lassial LQ riterion. For a more general and detailed presentation of IFT the reader is

referred to [5℄, [6℄.
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Figure 1: The ontrol system under normal operating onditions.

Consider a SISO disrete time system desribed by

y(t) = G(q)u(t) + v(t) ; (1)

where y(t) is the output, u(t) is the input, G(q) is a linear time-invariant transfer funtion,

with q being the shift operator, and v(t) = H(q)e(t) is the proess disturbane. HereH(q)

is a moni, stable and inversely stable transfer funtion and e(t) is zero mean white noise

with variane �

2

.

We fous on the feedbak loop around G(q) depited in Figure 1, where C(q; �) is

a one-degree-of-freedom ontroller belonging to a parameterized set of ontrollers with

parameter � 2 R

n

. We assume that in the ontrol system of Figure 1 the referene signal

r(t) is set at zero under normal operating onditions. Our goal is to tune the ontroller

C(q; �) so that the variane of the noise-driven losed loop output

y(t; �) =

1

1 +G(q)C(q; �)

v(t) = S(q; �)v(t)

is as small as possible. Here the transfer funtion S(q; �) is the sensitivity funtion.

In order to avoid a large ontrol e�ort, it is ommon to inlude a penalty also on the

variane of the input signal

u(t; �) = �C(q; �)S(q; �)v(t) :

Thus we have to �nd a minimizer for the ost funtion

J(�) =

1

2

E

h

y(t; �)

2

+ �u(t; �)

2

i

; (2)

where � � 0 is a salar expressing the importane of the penalty on the ontrol e�ort.
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1

Figure 2: The setting of the seond experiment.

The IFT method yields an approximate solution to the above problem. IFT is based

on the possibility of obtaining an unbiased estimate of the gradient

�J

��

(�) of the ost

funtion at � = �

i

from data olleted from the losed-loop system with the ontroller

C(�

i

) operating on the loop. The ost funtion J(�) an then be minimized with an

iterative stohasti gradient desent sheme of Robbins-Monro type [1℄. In the sheme a

sequene of ontrollers C(q; �

i

) is omputed and applied to the plant. In the i-th iteration

step data obtained from the system with the ontroller C(�

i

) operating on the loop are

used to onstrut the next parameter vetor �

i+1

aording to

�

i+1

= �

i

� 

i

R

�1

i

est

N

"

�J

��

(�

i

)

#

: (3)

Here 

i

is a nonnegative salar sequene of step lengths, R

i

is a sequene of positive def-

inite matries and est

N

h

�J

��

(�

i

)

i

is an unbiased estimate of the gradient

�J

��

(�) obtained

from data.

In the sequel we desribe the onstrution of the unbiased gradient estimate.

The exat expression of the gradient of J(�) is given by

�J

��

(�

i

) = E

"

y(t; �

i

)

�y

��

(t; �

i

) + �u(t; �

i

)

�u

��

(t; �

i

)

#

: (4)

Its unbiased estimate est

N

h

�J

��

(�

i

)

i

is obtained from two data sets olleted from the

losed loop as follows. First, a sequene of N input-output data are olleted under

normal operating onditions, i.e. without referene signal:

u

1

(t; �

i

) = �C(q; �

i

)S(q; �

i

)v

1

i

(t) ;

y

1

(t; �

i

) = S(q; �

i

)v

1

i

(t) :
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Here v

1

i

(t) denotes the orresponding realization of the noise v(t) for the �rst bath of

olleted data at iteration i. Seondly, a speial experiment of the same length N is

performed. During this experiment the loop is fed with the referene signal

r

2

i

(t) = �K

i

(q)y

1

(t; �

i

);

where K

i

(q) is a suitable pre�lter (see Figure 2). The obtained input and output data

are given by

u

2

(t; �

i

) = �S(q; �

i

)

h

K

i

(q)y

1

(t; �

i

) + C(q; �

i

)v

2

i

(t)

i

;

y

2

(t; �

i

) = �G(q)S(q; �

i

)K

i

(q)y

1

(t; �

i

) + S(q; �

i

)v

2

i

(t) ;

where v

2

i

(t) is the orresponding realization of the noise, i.e. for the seond bath of data

at iteration i.

We assume the two experiments of iteration step i to be suÆiently separated in time,

so that the realization v

2

i

(t) of the noise an be onsidered as being independent of the

realization v

1

i

(t). The obtained data are used to form the following estimates of the

gradients of u

1

(t; �

i

) and y

1

(t; �

i

):

est

"

�u

1

��

(t; �

i

)

#

=

1

K

i

(q)

�C

��

(q; �

i

)u

2

(t; �

i

) ; (5)

est

"

�y

1

��

(t; �

i

)

#

=

1

K

i

(q)

�C

��

(q; �

i

) y

2

(t; �

i

) : (6)

These estimates are orrupted by the noise v

2

i

(t) of the seond experiment as follows:

est

"

�u

1

��

(t; �

i

)

#

=

�u

1

��

(t; �

i

)�

S(q; �

i

)

K

i

(q)

C(q; �

i

)

�C

��

(q; �

i

) v

2

i

(t) ;

est

"

�y

1

��

(t; �

i

)

#

=

�y

1

��

(t; �

i

) +

S(q; �

i

)

K

i

(q)

�C

��

(q; �

i

) v

2

i

(t) : (7)

Using (5) and (6), an estimate of the gradient

�J

��

(�

i

) is then obtained as

est

N

"

�J

��

(�

i

)

#

=

1

N

N

X

t=1

"

y

1

(t; �

i

)est

"

�y

1

��

(t; �

i

)

#

+ �u

1

(t; �

i

)est

"

�u

1

��

(t; �

i

)

##

: (8)

The estimate is unbiased beause independeny between the disturbane realizations in

the �rst and seond experiments was assumed.

Thus the IFT proedure for disturbane rejetion amounts to the iterative sheme (3)

with the gradient estimate est

N

h

�J

��

(�

i

)

i

given by (8), (5{6). The sequenes 

i

and R

i

are basially left to the hoie of the user, but have to ful�ll some requirements for the

algorithm to onverge, whih will be spei�ed below. The onsisteny of the algorithm

and its onvergene properties are studied in the next setion.
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3 Convergene analysis of IFT

This setion ontains the main result of the present note. It is largely based on the

results presented in the Appendix of [3℄, but Proposition 3.4 is new. Further we state

exat onditions under whih the IFT algorithm for disturbane rejetion is guaranteed

to onverge to a subset of the set of stationary points of the ost funtion. We reformulate

the onvergene theorem and �ll a gap in its original proof as it is found in [3℄.

The proof of onvergene is based on the following proposition stated in [7℄.

Proposition 3.1 [7℄ Let (
;F ; P ) be a probability spae. Let Z

n

, �

n

, �

n

and �

n

be �nite

nonnegative F

n

-measurable random variables, where F

1

� : : : � F

n

� : : : is a sequene of

sub-�-algebras of F . Suppose that E(Z

n+1

j F

n

) � Z

n

(1+�

n

)+ �

n

� �

n

for all n. Then the

sequene fZ

n

g and the sum

P

1

n=1

�

n

onverge with probability 1 onditioned on the event

that the sums

P

1

n=1

�

n

,

P

1

n=1

�

n

onverge. 2

In order to apply Proposition 3.1 to the IFT algorithm we introdue the following as-

sumptions.

Assumption 3.2 Let D be a onvex ompat subset of the parameter spae R

n

. Let the

following onditions hold.

1. The proess noise v is uniformly bounded for all experiments. Realizations of the

noise in di�erent experiments are mutually independent.

2. There exists a neighbourhood O of D suh that the set of ontrollers fC(�) j � 2 Og

is two times ontinuously di�erentiable with respet to �.

3. The ontrollers C(�) and their �rst and seond derivatives have their poles uniformly

bounded away from the unit irle for � 2 D.

4. The losed loop systems orresponding to the ontrollers C(�) are stable and have

their poles uniformly bounded away from the unit irle for � 2 D.

5. The sequene f

n

g of step lengths is nonnegative and satis�es

P

1

n=1



n

=1,

P

1

n=1



2

n

<

1.

6. The sequene fR

n

g of positive de�nite symmetri weighting matries satis�es �I �

R

n

� �I for some positive onstants �; �.

6a. The weighting matrix R

n

may also be a random variable, but R

�1

n

is unorrelated

with the noise realizations v

1

n

; v

2

n

in experiment n.
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7. The event A = f�

n

2 D 8ng has a non-zero probability.

The �rst six onditions are standard assumptions in the literature on IFT (see e.g.

[3℄,[4℄).

By ondition 6a, the matrix R

�1

n

an be onsidered as �xed during iteration step n. Con-

ditions 6 and 6a assure that at non-stationary points of the ost funtion J the expeted

value of J at the next step is smaller than its value at the urrent step. Condition 6a is

pratially relevant only in the neighbourhood of stationary points of J , where the error

in the gradient estimate is omparable to or larger than the gradient itself. If ondition

6a is to hold, the hoie of R

n

an be based on data olleted during previous iterations,

but not in the urrent one.

Condition 7 is to make onvergene analysis meaningful. A neessary ondition for it to

hold is e.g. that the set D ontains stationary points of the ost funtion J .

We are now ready to apply Proposition 3.1 to IFT. Setting Z

n

= J(�

n

), �

n

= 0, �

n

=

E

�
�

�

�

�

J(�

n+1

)� J(�

n

) + 

n

�

�J

��

(�

n

)

�

T

R

�1

n

est

N

h

�J

��

(�

n

)

i

�

�

�

�

�

, �

n

= 

n

�

�J

��

(�

n

)

�

T

R

�1

n

�J

��

(�

n

), and

de�ning F

n

as the �-algebra generated by iteration steps 1; : : : ; n� 1, we obtain the fol-

lowing result.

Proposition 3.3 Let Assumption 3.2 hold. Then the sum

P

1

n=1



n

�

�J

��

(�

n

)

�

T

R

�1

n

�J

��

(�

n

)

and the sequene J(�

n

) onverge with probability 1 onditioned on the event A.

Proof. A detailed proof an be found in [3℄. 2

By onditions 5 and 6 of Assumption 3.2, Proposition 3.3 implies that the sequene f�

n

g

aumulates to stationary points of J with probability 1 onditioned on A. However, it

does not follow immediately that f�

n

g annot also aumulate to non-stationary points.

We have to exlude this possibility expliitly by the following proposition.

Proposition 3.4 Let Assumption 3.2 hold. Then the sequene f�

n

g onverges to a losed

onneted subset of the set D



= f� 2 D j

�J

��

(�) = 0g with probability 1, onditioned on

the event A.

Before proving Proposition 3.4, we furnish an auxiliary result.

Let U be a subset of R

k

. Let V be a subset of U suh that the minimal distane

between points in V and points in the omplement of U is stritly positive:

inffjx� yj jx 2 V; y 2 R

k

n Ug = l > 0: (9)
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Consider a stohasti proess

X

n+1

= X

n

+ 

n

Y

n

;

where X

n

; Y

n

are random variables that take values in R

k

and f

n

g is a sequene of non-

negative numbers suh that

P

1

n=1



n

=1. Suppose that the expetations and varianes

of the variables Y

n

are uniformly bounded:

jEY

n

j < 

E

; Trae[CovY

n

℄ < 

2

�

8 n;

where 

E

; 

�

> 0 are positive onstants.

Now de�ne events V

n

, n = 1; 2; : : : by V

n

= fX

n

2 V g. Given the event V

n

, de�ne the

random number

^

N as the least integer N > n suh that X

N

62 U . If suh a number does

not exist, i.e. X

m

2 U for all m � n, then let

^

N =1.

With these de�nitions we have the following proposition.

Proposition 3.5

Prob

8

<

:

^

N

X

m=n



m

>

l

2(

E

+ 

�

)

j V

n

9

=

;

>

1

2

:

Proof. Suppose X

n

2 V , i.e. the event V

n

has ourred. De�ne

�

N as the least integer

N > n suh that

P

N

m=n



m

>

l

2(

E

+

�

)

. Then we have

E

"

max

n�m�

�

N

jX

m

�X

n

j

#

� E

2

4

�

N�1

X

m=n

jX

m+1

�X

m

j

3

5

=

�

N�1

X

m=n



m

EjY

m

j �

�

N�1

X

m=n



m

q

EjY

m

j

2

=

�

N�1

X

m=n



m

q

jEY

m

j

2

+ Trae[CovY

m

℄ �

q



2

E

+ 

2

�

l

2(

E

+ 

�

)

<

l

2

:

It follows that

Prob

(

max

n�m�

�

N

jX

m

�X

n

j < l

)

>

1

2

:

But we have

Prob

8

<

:

^

N

X

m=n



m

>

l

2(

E

+ 

�

)

9

=

;

= Probf

^

N �

�

Ng = ProbfX

n

; : : : ;X

�

N�1

2 Ug

� Prob

(

max

n�m�

�

N

jX

m

�X

n

j < l

)

:

Combining these inequalities ompletes the proof. 2
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Now we are ready to prove that non-stationary points of J annot be aumulation

points of the sequene f�

n

g.

Proof of Proposition 3.4

The proof is by redutio ad absurdum. Assume there is a non-zero probability, onditioned

on A, that f�

n

g aumulates to a non-stationary point of J . Denote this event by A

NSt

.

Suppose A

NSt

has ourred. Let �̂ 2 D be an aumulation point of f�

n

g suh that

�J

��

(�̂) 6= 0. By Proposition 3.3 there exists another aumulation point �

�

of f�

n

g with

�J

��

(�

�

) = 0. Then there exist a positive number  > 0, a neighbourhood U of �̂ and a

neighbourhood U

0

of �

�

suh that j

�J

��

(�)j >  for all � 2 U and the intersetion U \ U

0

is empty. Further there exist a positive number l > 0 and a neighbourhood V of �̂ suh

that ondition (9) holds.

Now observe that

 

�J

��

(�)

!

T

R

�1

n

�J

��

(�) � �

�1



2

8 � 2 U: (10)

Moreover, the quantities

�

�

�E

h

R

�1

n

est

N

h

�J

��

(�

n

)

ii
�

�

�, Trae

h

Cov

h

R

�1

n

est

N

h

�J

��

(�

n

)

iii

are bounded

uniformly by the positive numbers



E

= �

�1

max

�2D

�

�

�

�

�

�J

��

(�)

�

�

�

�

�

; 

2

�

= �

�2

max

�2D

TraeCov

"

est

N

"

�J

��

(�

n

)

##

with 

�

> 0.

Now Proposition 3.5 an be applied. By ombining it with (10) we get that for any pair

of integers (n

1

; n

2

) suh that n

2

> n

1

and �

n

1

2 V , �

n

2

2 U

0

, we have

Prob

8

<

:

n

2

X

n=n

1



n

 

�J

��

(�

n

)

!

T

R

�1

n

�J

��

(�

n

) >

l�

�1



2

2(

E

+ 

�

)

9

=

;

>

1

2

:

But both �̂ and �

�

are aumulation points of the sequene f�

n

g. Hene there exist in-

�nitely many onseutive pairs of suh numbers n

1

; n

2

. Thus the sum

P

1

n=1



n

�J

��

(�

n

)

T

R

�1

n

�J

��

(�

n

)

diverges with probability 1, onditioned on A

NSt

. Hene it diverges with a non-zero prob-

ability onditioned on A. This ontradits Proposition 3.3.

We have proven that with probability 1 f�

n

g aumulates only to a subset of D



. This

subset is losed by de�nition and is onneted with probability 1 beause the expetation

of j�

n+1

� �

n

j tends to zero as n!1. The proof is omplete. 2

Remark. Generially the stationary points of the ost funtion J will be isolated and

non-degenerated. It seems lear that the algorithm annot onverge to a loal maximum

or a saddle point of J if the noise in the gradient estimate is exiting in unstable diretions.

Therefore the assumption of onvergene to an isolated loal minimum is justi�ed.
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