The extreme rays of the 6×6 copositive cone

Andrey Afonin, Roland Hildebrand, Peter J.C. Dickinson

MIPT, Laboratoire Jean Kuntzmann / CNRS, RaboBank

December 9, 2019 / RICAM Workshop Conic and Copositive Optimization

Outline

- Introduction: Copositive cone Applications
- Previous work: Basic definitions and classical results Zero support sets Scaling and Permutations Extremal rays of C⁵

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Our work: General strategy
 Extremal rays of C⁶
 Future outlook

Copositive cone

Definition

A real symmetric $n \times n$ matrix A such that $x^T A x \ge 0$ for all $x \in \mathbb{R}^n_+$ is called copositive.

the set of all such matrices is a regular convex cone, the copositive cone \mathcal{C}^n

$$(\mathcal{C}^n)^* = \mathit{conv}\{xx^{\mathcal{T}}: x \in R^n_+\}$$
 - completely positive cone

the cone \mathcal{C}^n is difficult to describe and has many applications in optimization

- graph stability number
- graph clique number
- graph chromatic number
- standard quadratic optimization problem
- quadratic programming
- convex quadratic underestimator over polytope
- mixed-integer programs

Standard Quadratic Optimization Problem

$$\min x^T A x \\ \text{s.t. } x \in \mathbb{R}^n_+, e^T x = 1$$

It's reformulation [Bomze et al.'00]:

$$\underset{x \in \mathbb{R}^n_+, \langle E, X \rangle = 1, X \in (\mathcal{C}^n)^* }{\min \langle A, X \rangle}$$

Convex underestimation

Find best convex quadratic underestimator: $g_P(x) = x^T A x + 2b^T x + c, A \in S^n_+$ of non-convex functions $f(x) = x^T Q x$ over polytope $P = conv\{v_1, ..., v_n\}$ s.t. $f(x) \ge g_P(x), \forall x \in P$.

[Locatelli/Schoen '10]

Can be reformulated as:
min
$$\langle E + I, X \rangle$$

s.t. $X = Q_P - U_P, X \in C^n$,
where $Q_P = V^T QV$,
 $U_P = V^T AV + (V^T b)e^T + e(V^T b) + cE, A \in S^n_+$

Graph clique number

Given an undirected graph G = (V, E)Clique $S \subset V$ is maximal if S is not contained in a larger clique Finding the clique number $w(G) = S_{max}$ is an NP-complete combinatorial optimization problem

Reduce problem to line search.

Classical results

Exceptional copositive matrices

Related cones:

- ► completely positive cone (*C*^{*n*})*
- ▶ sum $\mathcal{N}^n + \mathcal{S}^n_+$ of nonnegative and positive semi-definite cone

▶ doubly nonnegative cone $\mathcal{N}^n \cap \mathcal{S}^n_+$ $(\mathcal{C}^n)^* \subset \mathcal{N}^n \cap \mathcal{S}^n_+ \subset \mathcal{N}^n + \mathcal{S}^n_+ \subset \mathcal{C}^n$

the cones $\mathcal{N}^n,$ \mathcal{S}^n_+ and their sum are semi-definite representable and hence easy to describe

Theorem (Diananda 1962) For $n \leq 4$ the cones C^n and $\mathcal{N}^n + \mathcal{S}^n_+$ coincide.

Definition

A copositive matrix $A \in C^n \setminus (\mathcal{N}^n + \mathcal{S}^n_+)$ is called exceptional. exceptional copositive matrices exist for $n \ge 5$

Extreme rays

Definition

Let $K \subset \mathbb{R}^n$ be a regular convex cone. An non-zero element $u \in K$ is called extreme if it cannot be decomposed into a sum of other elements of K in a non-trivial manner. In other words, u = v + w with $v, w \in K$ imply $v = \alpha u, w = \beta u$ for some $\alpha, \beta \ge 0$. The conic hull of an extreme element is called extreme ray.

applications:

suppose $K \subset S^n$ is an inner approximation of C^n , i.e., $K \subset C^n$ if all extreme rays of C^n are contained in K, then $K = C^n$ knowledge of the extreme rays of C^n allows to test the exactness of inner approximations

Classical results

in [Hall, Newman 63] the extreme rays of C^n belonging to $\mathcal{N}^n + S^n_+$ have been described:

• the extreme rays of \mathcal{N}^n : E_{ii} and $E_{ij} + E_{ji}$

rank 1 matrices A = xx^T with x having both positive and negative elements

- Baumert 1966: duplicating rows and columns allows to construct new extreme rays from known ones
- ► Hoffman, Pereira 1973: extreme rays of Cⁿ with elements in {-1,0,+1}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reduced copositive matrices

Definition (Dickinson, Dür, Gijben, Hildebrand 2013)

A copositive matrix $A \in C^n$ is called reduced with respect to a subset $\mathcal{M} \subset S^n$ if it cannot be in a non-trivial manner represented as a sum A = B + C with B copositive and $C \in \mathcal{M}$.

reducedness with respect to \mathcal{N}^n and \mathcal{S}^n_+ is necessary for being exceptional extremal

reducedness with respect to \mathcal{N}^n

- Diananda 62: first studied
- ▶ Hall, Newman 63: reduced matrices satisfy $A_{ij} \leq \sqrt{A_{ii}A_{jj}}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Baumert 65: sufficient conditions

(Minimal) zero support sets

Definition (Baumert 65)

A non-zero nonnegative vector $u \in \mathbb{R}^n_+$ is called zero of $A \in \mathcal{C}^n$ if $u^T A u = 0$. The index set supp $u = \{i \mid u_i > 0\}$ is called the support of u.

The set of supports of all zeros of A is called the zero support set (initially zero pattern) of A.

Definition

A zero u of a copositive matrix A is called minimal if there exists no zero v of A such that the inclusion supp $v \subset$ supp u holds strictly. The set of supports of all minimal zeros of A is called the minimal zero support set of A.

the (minimal) zero support set is a subset of $2^{\{1,...,n\}}$

Scaling and Permutations

- ► the transformation A → DAD preserves the copositive cone and the minimal zero support set of A, where D is diagonal matrix with strictly positive diagonal
- A ∈ Sⁿ, permutation matrix P ∈ ℝ^{n×n}. Then A → PAP^T preserves the copositive cone and V^{PAP^T} = PV^A, where P permute elements of zeros.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reducedness

Theorem (Dickinson, Dür, Gijben, Hildebrand 2013) Let $A \in C^n$, $n \ge 2$, and let $1 \le i, j \le n$. Then the following conditions are equivalent.

(i) A is reduced with respect to E_{ij} ,

(ii) there exists a zero u of A such that $(Au)_i = (Au)_j = 0$ and $u_i + u_j > 0$.

"zero" can be replaced with "minimal zero"

Theorem

A copositive matrix $A \in C^n$ is reduced with respect to the cone S^n_+ if and only if the linear span of the minimal zeros of A equals \mathbb{R}^n . Equivalently, the number of linearly independent minimal zeros equals n.

in particular, the number of minimal zero supports is at least n

the number of equivalence classes (with respect to the action of S_n) of minimal zero support sets of matrices $A \in C^n$ which satisfy all restrictions derived for reduced matrices is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ 2 for *n* = 5
- ▶ 44 for *n* = 6
- 12378 for n = 7

Extremal rays of \mathcal{C}^5

the two equivalence classes of minimal zero support sets have representatives

$$\{\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{1,5\}\},$$

 $\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{1,4,5\},\{1,2,5\}\}$

realized by the Horn matrix and the matrices

$$T(\psi) = \begin{pmatrix} 1 & -\cos\psi_4 & \cos(\psi_4 + \psi_5) & \cos(\psi_2 + \psi_3) & -\cos\psi_3 \\ -\cos\psi_4 & 1 & -\cos\psi_5 & \cos(\psi_5 + \psi_1) & \cos(\psi_3 + \psi_4) \\ \cos(\psi_4 + \psi_5) & -\cos\psi_5 & 1 & -\cos\psi_1 & \cos(\psi_1 + \psi_2) \\ \cos(\psi_2 + \psi_3) & \cos(\psi_5 + \psi_1) & -\cos\psi_1 & 1 & -\cos\psi_2 \\ -\cos\psi_3 & \cos(\psi_3 + \psi_4) & \cos(\psi_1 + \psi_2) & -\cos\psi_2 & 1 \end{pmatrix}$$

with $\psi_1, \ldots, \psi_5 > 0$ and $\sum_{k=1}^5 \psi < \pi$ the Horn matrix is of the form $T(\psi)$ with $\psi = 0$ these correspond to the exceptional extreme rays of C_5

The extreme rays of the 6×6 copositive cone

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

All cases

No.	No. in [17]	$\operatorname{supp} \mathcal{V}_{\min}^{\mathcal{A}}$
1	2	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{4,5,6\}$
2	3	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5,6\},\{4,5,6\}$
3	4	$\{1,2\},\{1,3\},\{1,4\},\{2,5,6\},\{3,5,6\},\{4,5,6\}$
4	5	$\{1,2\},\{1,3\},\{2,4\},\{3,4,5\},\{1,5,6\},\{4,5,6\}$
5	6	$\{1,2\},\{1,3\},\{1,4,5\},\{2,4,6\},\{3,4,6\},\{4,5,6\}$
6	8	$\{1,2\},\{1,3\},\{2,4,5\},\{3,4,5\},\{2,4,6\},\{3,5,6\}$
7	9	$\{1,5\},\{2,6\},\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\}$
8	13	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{2,5,6\}$
9	15	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{4,5,6\}$
10	16	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$
11	21	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,4,6\}$
12	22	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,5,6\}$
13	34	$\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{1,5,6\},\{1,2,6\}$
14	36	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{4,5\},\{3,6\},\{5,6\}$
15	37	$\{1,2\},\{1,3,4\},\{1,3,5\},\{1,4,6\},\{2,5,6\},\{3,5,6\},\{4,5,6\}$
16	41	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,4,6\},\{3,5,6\}$
17	42	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$
18	43	$\{1,2,3\},\{2,3,4\},\{3,4,5\},\{1,4,5\},\{1,2,5\},\{3,4,6\},\{1,4,6\},\{1,2,6\}$
19	23	$\{3,4,5\},\{1,4,5\},\{1,2,5\},\{1,2,3\},\{1,5,6\},\{2,3,4,6\}$
20	1	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{5,6\}$
21	11	$\{1,2\},\{1,3,4\},\{1,3,5\},\{1,4,6\},\{2,5,6\},\{3,5,6\}$
22	12	$\{1,2\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{2,5,6\},\{2,3,6\}$
23	17	$\{1,2\},\{1,3,4\},\{2,3,5\},\{3,4,5\},\{2,4,6\},\{3,4,6\}$
24	24	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{3,4,6\},\{3,5,6\}$
25	25	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{3,4,6\},\{4,5,6\}$
20	28	$\{1,2,3\},\{1,2,4\},\{1,3,3\},\{2,4,5\},\{3,4,5\},\{2,3,0\}$
27	30	$\{1,2,3\},\{1,2,4\},\{1,3,3\},\{2,4,3\},\{3,4,0\},\{3,3,0\}$
28	32	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{2,4,5\},\{1,5,6\},\{4,5,6\}$
29		$\{1,2,3\},\{1,2,4\},\{1,2,3\},\{1,3,0\},\{1,4,0\},\{2,3,0\},\{3,3,0\}$
30	10	$\{1,2\},\{1,3\},\{2,4,5\},\{3,4,5\},\{2,4,0\},\{3,4,0\}$
20	10	$\{1,2\},\{1,3,4\},\{1,3,0\},\{2,3,0\},\{3,4,0\},\{3,0,0\}$
32	14	{1,2},{1,0,4},{1,0,0},{2,4,0},{0},{0},{0},{0},{0},{0},{0},{0},{0},
34	10	{1,9,0,0}, {1,9,0,3}, {1,2,0,0}, {1,0,0}, {1,3,0}, {1,3,0}, {1,0,0
35	20	$\{1, 2, 3\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 3, 6\}, \{1, 4, 6\}, \{2, 5, 6\}$
36	26	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,5\},\{2,3,6\},\{2,4,6\}$
37	27	$\{1,2,3\}$ $\{1,2,4\}$ $\{1,3,5\}$ $\{1,4,5\}$ $\{2,3,6\}$ $\{3,4,6\}$
38	38	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{2,5,6\},\{3,5,6\}$
39	40	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{1,4,6\},\{3,5,6\},\{4,5,6\}$
40	44	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,5\},\{2,3,6\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$
41	35	$\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,6\},\{1,4,5,6\},\{1,2,5,6\},\{1,2,3,6\}$
42	33	$\{1,2,5\},\{1,4,5\},\{1,2,3\},\{3,4,5\},\{2,3,6\},\{3,4,6\}$
43	31	{1,2,5}, {1,4,5}, {1,2,3}, {3,4,5}, {1,3,6}, {3,5,6}
44	29	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{2,4,5\},\{2,3,6\},\{2,5,6\}$
-		

æ

◆重≯

General algorithm

Parametrization

- First order conditions
- Copositivity and absence of additional minimal zeros

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Extremality

Parametrization

- ▶ Diagonal elements of A are positive and normalized to 1 by A → DAD
- ► Hall and Newman: $A_{ij} = -\cos \phi_{ij}, \phi_{ij} \in [0, \pi], \forall i, j.$
- Zeros imposes conditions on the elements A_{ii}
- ▶ A_{ij} not covered by zeros are parameterized by $b_i \in [-1, 1]$.

Lemma

Let $A \in C_n$ with $A_{ii} = 1$ for all *i*, and let $u \in \mathcal{V}_{\min}^A$ with supp $u = \{i, j\}$ for some indices $i, j \in \{1, ..., n\}$. Then $A_{ij} = -1$ and the two positive elements of *u* are equal.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Parametrization

Lemma

Let $A \in C_n$ be extremal and $A_{ii} = 1$ for all *i*. Suppose $\{i, j\}, \{j, k\} \in \text{supp } \mathcal{V}_{\min}^A$, where i, j, k are mutually different indices. Then $A_{\{i, j, k\}}$ is a rank 1 positive semi-definite matrix with $A_{ik} = -A_{ij} = -A_{jk} = 1$.

Lemma

Let $A \in C_n$ have unit diagonal and suppose there exists a minimal zero u of A with support $\{i, j, k\}$, where $i, j, k \in \{1, ..., n\}$ are mutually different indices. Then the submatrix $A_{\{i, j, k\}}$ is given by

$$egin{pmatrix} 1 & -\cos \phi_k & -\cos \phi_j \ -\cos \phi_k & 1 & -\cos \phi_i \ -\cos \phi_j & -\cos \phi_i & 1 \end{pmatrix},$$

where $\phi_i, \phi_j, \phi_k \in (0, \pi)$ and $\phi_i + \phi_j + \phi_k = \pi$. Moreover, there exists $\lambda > 0$ such that $\lambda u_{\{i,j,k\}} = (\sin \phi_i, \sin \phi_j, \sin \phi_k)^T$.

(日) (日) (日) (日) (日) (日) (日) (日)

Linear dependency of minimal zeros

Reducedness of $A \in C_n$ with respect to S_+^n :

In cases 30-42 there is linear dependency of the minimal zeros, so this excludes the extremality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

First order conditions

- ▶ If $u \in \mathcal{V}^A$, then $Au \ge 0$ and $(Au)_i$ is zero whenever $u_i > 0$
- Zeros imposes conditions on the elements A_{ii}
- b_i are expressed explicitly as a function of the angles ϕ_{ij}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First order conditions

Lemma

Let $\mathcal{I} \subset 2^{\{1,...,n\}}$ be an index set and let $A \in \mathcal{C}_n$ be an exceptional extremal copositive matrix such that $A_{ii} = 1$ for all i and such that $\sup \mathcal{V}_{\min}^A = \mathcal{I}$. Let \mathcal{B} be the set of all matrices $B \in S^n$ such that $B_{ij} = A_{ij}$ for all elements A_{ij} covered by \mathcal{I} , and $Bu \geq 0$ for all minimal zeros $u \in \mathcal{V}_{\min}^A$. Then A is an extremal element of the polyhedron \mathcal{B} . In particular, there exists a subset of equalities $(Au^j)_k = 0$ which determine the

values of the uncovered elements of A uniquely.

(日本本語を本書を本書を入事)の(で)

In cases 43, 44 happens that first order conditions are incompatible constraints on the angles. There are no copositive matrices with the corresponding minimal zero support set.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Copositivity

Theorem

A matrix $A \in S^n$ is copositive if and only if for every non-empty index set $I \subset \{1, ..., n\}$, the submatrix A_I is copositive or there exists $v \in \mathbb{R}^n \setminus (-\mathbb{R}^n_+)$ with supp $v \subseteq I \subseteq \text{supp}_{>0}(Av)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Copositivity

• For
$$|I| = \{1, 2\}, v = \sum_{i \in I} e_i$$

For I containing the support of a minimal zero u we may take v = u and |I| = {5,6} turn always out to be supersets of a minimal zero support

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ |I| = 4 we provide a vector v for each case individually

List of vectors

Case No.	Index subset	Certifying vectors v
1	{2,3,4,5}	$e_3 - e_2$
2	$\{2, 3, 4, 5\}, \{2, 3, 4, 6\}$	$e_3 - e_2, e_2 + e_6$
3	$\{2, 3, 4, 5\}, \{2, 3, 4, 6\}$	$e_2 + e_5, e_2 + e_6$
4	$\{2, 3, 5, 6\}$	$e_5 + e_6$
5	$\{2, 3, 4, 5\}, \{2, 3, 5, 6\}$	$e_3 - e_2, e_2 - e_3$
6	$\{1, 4, 5, 6\}$	$e_4 + e_5$
7	$\{1, 3, 4, 6\}$	$e_3 + e_4$
8	$\{1, 4, 5, 6\}, \{2, 3, 4, 5\}$	$e_4 + e_6, e_3 + e_4 \ (\phi_1 \le 2\phi_3) \text{ or } e_3 + e_5 \ (\phi_3 \le 2\phi_1)$
9	$\{2, 3, 4, 5\}, \{2, 3, 5, 6\}$	$e_3 + e_4, e_5 + e_6 (9.1)$ or $e_2 + e_6 (9.2)$
10	$\{2, 3, 4, 5\}$	$e_3 + e_5$
11	$\{1, 3, 4, 5\}, \{2, 3, 4, 5\}$	$e_1 + e_3, e_2 + e_4$
	$\{1, 4, 5, 6\}$	$\sin(\phi_6 - \phi_3)e_1 - \sin(\phi_2 + \phi_6)e_4 + \sin(\phi_2 + \phi_3)e_5$
	$\{2, 3, 5, 6\}$	$\sin(\phi_1 + \phi_2 + \phi_6)e_2 - \sin\phi_6e_3 + \sin(\phi_1 + \phi_2)e_5$
12	$\{1, 3, 4, 5\}, \{2, 3, 4, 5\}$	$e_1 + e_3, e_2 + e_4$
	$\{1, 4, 5, 6\}$	$\sin(\phi_4 - \phi_3)e_1 - \sin(\phi_2 + \phi_4)e_4 + \sin(\phi_2 + \phi_3)e_5$
13	$\{1, 2, 4, 5\}, \{1, 3, 4, 6\}, \{2, 3, 5, 6\}$	$e_4 \cos \phi_4 + e_5, e_1 + e_6, e_2 + \cos \phi_2 e_3$
15	$\{2, 3, 4, 5\}, \{2, 3, 4, 6\}$	$e_3 + e_5, e_4 + e_6$
16	$\{1, 4, 5, 6\}$	$e_5 + e_6 \ (2\phi_6 \ge \phi_7) \text{ or } e_4 \cos \phi_6 + e_6 \ (\phi_6 \le \phi_7)$
	$\{1, 3, 4, 5\}, \{2, 3, 4, 5\}$	$e_1 + e_3, e_2 + e_4$
17	$\{1, 3, 4, 5\}, \{2, 3, 4, 5\}$	$e_1 + e_3, e_2 + e_4$
18	$\{1,3,5,6\},\{2,3,5,6\}$	$e_1 + e_5 \ (-\phi_3 \le 2\phi_6) \text{ or } e_1 + e_6 \ (\phi_6 \le \phi_3), \ e_2 + e_3,$
	$\{2, 4, 5, 6\}$	$e_4 + e_5 \ (2\phi_6 \le \phi_2) \text{ or } e_4 + e_6 \ (-\phi_2 \le \phi_6)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Copositivity

▶ |I| = 3 we check copositivity of A_I by the following criterion:

Lemma

Let

$$A = \begin{pmatrix} 1 & -\cos\phi_1 & -\cos\phi_2 \\ -\cos\phi_1 & 1 & -\cos\phi_3 \\ -\cos\phi_2 & -\cos\phi_3 & 1 \end{pmatrix} \in S^3$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

with $\phi_1, \phi_2, \phi_3 \in [0, \pi]$. Then A is copositive if and only if $\phi_1 + \phi_2 + \phi_3 \ge \pi$.

Absence of additional minimal zeros

Lemma

Let $A \in C_n$ and let w be a minimal zero of A with support set I. Let $u \in \mathbb{R}^n \setminus (-\mathbb{R}^n_+)$ be such that supp $u \subset I \subset \text{supp}_{\geq 0}(Au)$. Set $B = A_I$ and $v = u_I$. Then v is proportional to w_I with a positive proportionality constant and Bv = 0.

- For *I* = {*i*, *j*, *k*} the absence can in many cases be certified by verifying the strict inequality φ_i + φ_j + φ_k > π
- For $|I| \ge 4$ the absence is certified for all occurring cases
- In other cases this inequality has to be added as a constraint

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Existence of additional min. zeros

In cases 20-29 one of non-strict inequalities happens to be possible only as the equality $\phi_i + \phi_j + \phi_k = \pi$, which leads to the conclusion that a minimal zero with corresponding support *I* does indeed exist and this excludes these cases.

Extremality

Theorem

Let $A \in C^n$. Then A is not extremal if and only if there exists a matrix $B \in S^n$, not proportional to A, such that $(Bu)_i = 0$ $\forall u \in \mathcal{V}^A_{\min}, i \notin \text{supp } Au$.

It is linear system and we need to determine its rank

Our approach to check extremality

Reduction of system by linear change of variables: $F^{T}u_{i} = 0, B_{I} = (FPF^{T})_{I}$ $F^{T}u_{j} = 0, B_{J} = (GQG^{T})_{J}, j \neq i$

$$FPF^{T} = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \star & \star & \star \\ b_{12} & b_{22} & b_{23} & b_{24} & \star & b_{26} \\ b_{13} & b_{23} & b_{33} & b_{34} & b_{35} & b_{36} \\ \star & b_{24} & b_{34} & b_{44} & b_{45} & b_{46} \\ \star & \star & b_{35} & b_{45} & b_{55} & \star \\ \star & b_{26} & b_{36} & b_{46} & \star & b_{66} \end{pmatrix}, \qquad GQG^{T} = \begin{pmatrix} b_{11} & b_{12} & \star & b_{14} & b_{15} & b_{16} \\ b_{12} & b_{22} & \star & \star & b_{25} & b_{26} \\ \star & \star & \star & \star & \star & \star & \star \\ b_{14} & \star & \star & b_{44} & b_{45} & \star \\ b_{15} & b_{25} & \star & b_{45} & b_{55} & b_{56} \\ b_{16} & b_{26} & \star & \star & b_{56} & b_{66} \end{pmatrix}$$

Got equations to express more entries of B as a function of P

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

.

Cases 1-5, 11, 12, 17, 18: the extremal matrices correspond to the interior of the polytope of possible angles.

Cases 7, 8, 13, 15, 16: parts of the boundary of the polytope also correspond to extremal matrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cases 7-10, 13: there exist submanifolds in the interior of the polytope corresponding to non-extremal matrices.

Extreme rays of the cone C^6

Case NE

The non-exceptional extreme rays are generated by products $DPAP^TD$ with central factor $A = E_{11}, E_{12}, aa^T$, where a is one of the columns of the matrix

/1	1	1	1	1	1	1	1	- 1 \	
-1	1	1	1	1	1	1	1	1	
0	$^{-1}$	-1	1	1	1	1	1	1	
0	0	-1	$^{-1}$	$^{-1}$	-1	1	1	1	
0	0	0	0	$^{-1}$	-1	$^{-1}$	$^{-1}$	1	
0/	0	0	0	0	-1	0	$^{-1}$	-1/	

Case O5

/ 1	$-\cos\phi_1$	$\cos(\phi_1 + \phi_2)$	$cos(d_4 + d_5)$	- c as ds	0	
$-\cos\phi_1$	1	- cos dg	$\cos(\phi_2 + \phi_3)$	$\cos(\phi_1 + \phi_5)$	0	
$\cos(\phi_1 + \phi_2)$	$-\cos\phi_2$	1	$-\cos\phi_3$	$\cos(\phi_3 + \phi_4)$	0	
$\cos(\phi_4 + \phi_5)$	$cos(\phi_2 + \phi_3)$	- cos da	1	$-\cos\phi_4$	0	
$-\cos\phi_5$	$cos(\phi_1 + \phi_5)$	$\cos(\phi_3 + \phi_4)$	$-\cos\phi_4$	1	0	
1 0	0	0	0	0	- 0/	

where either $\phi_1 = \cdots = \phi_5 = 0$, or $\phi_i > 0$ for $i = 1, \dots, 5$ and $\sum_{i=1}^5 \phi_i < \pi$.

Case 1

/1	-1	-1	-1	1	1 \
1-1	1	1	1	-1	$\cos \phi_2$
-1	1	1	1	005.02	-1
-1	1	1	1	$-\cos\phi_1$	$cos(\phi_1 + \phi_2)$
1	$^{-1}$	COS Ø2	$-\cos \phi_1$	1	$-\cos\phi_2$
11	COS 62	-1	$\cos(\phi_1 + \phi_2)$	- cos d-2	1 /

$\phi_1>0, \phi_1+\phi_2<\pi.$

Case 2

/ 1	-1	-1	-1	1	COS \$2 1	
-1	1	1	1	-1	005-01	1
-1	1	1	1	$\cos(\phi_1 + \phi_2)$	- cos d2	L
-1	1	1	1	$\cos(\phi_1 + \phi_3)$	- cos da	Ŀ
1	-1	$\cos(\phi_1 + \phi_2)$	$cos(\phi_1 + \phi_3)$	1	$-\cos \phi_1$	L
lasos	005.01	- cos d-a	$-\cos\phi_0$	$-\cos\phi_1$	1.	/

 $\phi_1 > 0, \phi_2 < \phi_3 < \pi - \phi_1.$

Case 3

	/ 1	-1	$^{-1}$	-1	$-\cos(\phi_1 + \phi_2)$	cos #4 \
	-1	1	1	1	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_2$
	-1	1	1	1	$\cos(\phi_1 + \phi_3)$	$-\cos\phi_3$
	-1	1	1	1	$\cos(\phi_1 + \phi_4)$	$-\cos\phi_4$
	$-\cos(\phi_1 + \phi_2)$	$\cos(\phi_1 + \phi_2)$	$cos(\phi_1 + \phi_3)$	$\cos(\phi_1 + \phi_4)$	1	$-\cos\phi_1$
	005.04	$-\cos \phi_2$	- cos \$3	$-\cos \phi_4$	$-\cos\phi_1$	1 /
$\dot{\phi}_{1} > 0, \dot{\phi}_{4} < \dot{\phi}_{1}$	$\langle \dot{\phi}_2 \rangle < \pi - \dot{\phi}_1$.					

Case 4

(1	$^{-1}$	- 1	1	$\cos(\phi_3+\phi_4)$	$-\cos \phi_4$	1
-1	1	1	-1	cos d/2	CO8 Ø4	1
-1	1	1	$-\cos\phi_1$	$cos(\phi_1 + \phi_2)$	cos φ4	L
1	$^{-1}$	$-\cos\phi_1$	1	$-\cos\phi_2$	$\cos(\phi_2 + \phi_3)$	Ľ
$cus(\phi_3 + \phi_4)$	cas do	$cos(\phi_1 + \phi_2)$	$-\cos\phi_2$	1	- cos ds	L
\ - cos φ ₄	cos da	COS Ø 4	$\cos(\phi_2 + \phi_3)$	$-\cos\phi_3$	1 /	

 $\phi_1 > 0, \phi_1 + \phi_2 + \phi_3 + \phi_4 < \pi$

Case 5

	$\begin{pmatrix} 1 \\ -1 \\ -1 \\ \cos(\phi_2 + \phi_5) \\ -\cos \phi_5 \\ \cos \phi_2 \end{pmatrix}$	-1 1 $\cos(\phi_1 + \phi_4)$ $\cos \phi_5$ $-\cos \phi_4$	-1 1 $\cos(\phi_1 + \phi_3)$ $\cos \phi_5$ $-\cos \phi_3$	$cos(\phi_2 + \phi_5)$ $cos(\phi_1 + \phi_4)$ $cos(\phi_1 + \phi_3)$ 1 $-cos \phi_2$ $-cos \phi_1$	$-\cos \phi_5$ $\cos \phi_5$ $\cos \phi_5$ $-\cos \phi_2$ 1 $\cos(\phi_1 + \phi_2)$	$\begin{array}{c} \cos \phi_3 \\ -\cos \phi_4 \\ -\cos \phi_3 \\ -\cos \phi_1 \\ \cos(\phi_1 + \phi_2) \end{array}$	
$\phi_i > 0, \phi_1 + \phi_2 +$	$-\phi_4 + \phi_5 < \pi_1$	$\phi_3 < \phi_4$.	0.00.003	00001	(41 1 42)	. ,	

Case 6

/ 1	-1	-1	cos d/2	cos #1	cos #5 \
1 -	1 1	1	- cos d ₂	$cos(\phi_2 + \phi_3)$	$\cos(\phi_2 + \phi_4)$
-	1 1	1	$\cos(\phi_1 + \phi_3)$	- cos d1	- cos ds
008	$\phi_2 = -\cos \phi_2$	$\cos(\phi_1 + \phi_3)$	1	$-\cos\phi_3$	$-\cos\phi_4$
008	$\phi_1 = \cos(\phi_2 + \phi_3)$	$-\cos\phi_1$	- cos \$\$3	1	$\cos(\phi_1 + \phi_5)$
008	$\phi_5 = \cos(\phi_2 + \phi_4)$	- cos \$5	$-\cos\phi_4$	$cos(\phi_1 + \phi_5)$	1 /

 $\phi_{1} > 0, \phi_{1} + \phi_{3} + \phi_{5} < \phi_{4}, \phi_{2} + \phi_{4} + \phi_{5} < \pi.$

Case 7

(- co	$l = -\cos \phi_1$ $s \phi_1 = 1$	$cos(\phi_1 + \phi_2)$ - $cos \phi_2$	$\cos \phi_4$ $\cos(\phi_2 + \phi_3)$	-1 $\cos \phi_1$	$\frac{\cos \phi_1}{-1}$	١.
$\cos{[\phi_1}$	$+\phi_2) - \cos \phi_2$	1	$-\cos\phi_3$	$\cos(\phi_3 + \phi_4)$	005.02	١.
005	$\phi_4 = \cos(\phi_2 + \phi_3)$ $1 = \cos \phi_1$	$-\cos \phi_3 \cos(\phi_3 + \phi_4)$	- cos \$\$4	- cos ou	$-\cos(\phi_4 + \phi_5) - \cos\phi_5$	
005	φ ₁ -1	005.0/2	$\cos(\phi_4 + \phi_5)$	- cos de	1 /	(

 $\phi_{i} > 0, \phi_{1} \leq \phi_{5}, \phi_{1} + \phi_{2} + \phi_{3} + \phi_{4} < \pi, \phi_{2} + \phi_{3} + \phi_{4} + \phi_{5} < \pi, \phi_{1} + \phi_{5} \neq \pi.$

Case 8

$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	-1	$-\cos \phi_2$ $\cos \phi_2$	$cot(\phi_1 + \phi_2)$ $cot(\phi_4 + \phi_5)$	$cos(\phi_2 + \phi_3)$ $cos(\phi_5 + \phi_6)$	cosφ5 \ - cosφ5	١
$-\cos \phi_2$	cos do	1	- cos d ₁	- cos da	$\cos(\phi_1 + \phi_4)$	١.
$\cos(\phi_1 + \phi_2)$	$\cos(\phi_4 + \phi_5)$	- c c (d 1	1	$cos(\phi_1 - \phi_3)$	- cos #4	Ŀ
$\cos(\phi_2 + \phi_3)$	$\cos(\phi_5 + \phi_6)$	$-\cos\phi_3$	$cos(\phi_1 - \phi_3)$	1	$-\cos\phi_6$	L
con dis	- cos ds.	$con(\dot{\sigma}_1 + \dot{\sigma}_4)$	- com di 4	- con de	1 /	/

 $\begin{array}{l} \phi_1>0, \phi_3+\phi_4\leq\phi_1+\phi_6, \phi_2+\phi_3+\phi_5+\phi_6\leq\pi, \ \phi_1+\phi_4<\phi_3+\phi_6 \ \text{with either} \ \phi_2+\phi_3\neq\phi_5+\phi_6 \ \text{or with} \ \phi_2+\phi_3=\phi_5+\phi_6=\frac{\pi}{2} \ \text{or with} \ \phi_2+\phi_3=\phi_5+\phi_6, \ \phi_1+\phi_6=\phi_3+\phi_6. \end{array} \end{array}$

Case 9.1

	/ 1	-1	$-\cos \phi_2$	$\cos(\phi_1 + \phi_2)$	$cos(\phi_2 + \phi_3)$	cos \$5	1
	-1	1	cos \$\$2	$\cos(\phi_4 + \phi_5)$	$cos(\phi_5 - \phi_6)$	- cos ds	1
	$-\cos \phi_2$	$\cos \phi_2$	1	$-\cos\phi_1$	$-\cos\phi_3$	$\cos(\phi_1 + \phi_4)$	
	$\cos(\phi_1 + \phi_2)$	$cos(\phi_4 + \phi_5)$	$-\cos\phi_1$	1	$cos(\phi_4 + \phi_6)$	- cos da	1
	$\cos(\phi_2 + \phi_3)$	$cos(\phi_5 - \phi_6)$	$-\cos\phi_3$	$\cos(\phi_4 + \phi_6)$	1	$-\cos \phi_6$	1
	00545	$-\cos\phi_5$	$cos(\phi_1 + \phi_4)$	$-\cos\phi_4$	$-\cos\phi_6$	1 ,	/
$\phi_2 + \phi_3$	$< \pi, \phi_2 + \phi_3 +$	$\phi_5 < \pi + \phi_6, \phi_1$	$+\phi_1+\phi_2 < \phi_1$	$3, \phi_2 + \phi_3 + \phi_6$	$< \pi + \phi_5$, excl	uding $\phi_2 + \phi_3$	$+ \phi_6 = \phi_5$.

Case 9.2

$\begin{array}{cccc} \cos(\phi_1 + \phi_2) & \cos(\phi_4 + \phi_5) & -\cos\phi_1 & 1 & \cos(\phi_4 + \phi_6) \\ \cos\phi_2 + \phi_3) & -\cos\phi_4 & -\cos\phi_3 & \cos\phi_4 + \phi_6 & 1 \\ \cos\phi_4 & -\cos\phi_4 & -\cos\phi_4 & -\cos\phi_4 & -\cos\phi_4 \\ \cos\phi_4 & -\cos\phi_4 & -\cos\phi_4 & -\cos\phi_4 \\ \end{array}$		$1 -1 - \cos \phi_2 \cos(\phi_1 + \phi_2) \cos(\phi_2 + \phi_3) \cos \phi_5$	-1 1 $\cos \phi_2$ $\cos (\phi_4 + \phi_5)$ $-\cos (\phi_2 + \phi_3)$ $-\cos \phi_5$	$-\cos \phi_2$ $\cos \phi_2$ 1 $-\cos \phi_3$ $\cos(\phi_1 + \phi_4)$	$cos(\phi_1 + \phi_2)$ $cos(\phi_4 + \phi_5)$ $- cos \phi_1$ 1 $cos(\phi_4 + \phi_6)$ $- cos \phi_4$	$cos(\phi_2 + \phi_3)$ $- cos(\phi_2 + \phi_3)$ $- cos \phi_3$ $cos(\phi_4 + \phi_6)$ 1 $- cos \phi_5$	$cos \phi_5$ $-cos \phi_5$ $cos(\phi_1 + \phi_4)$ $-cos \phi_4$ $-cos \phi_6$ 1	ļ
--	--	--	---	---	---	---	--	---

 $\phi_4 > 0, \phi_2 + \phi_3 < \pi, \phi_2 + \phi_3 + \phi_5 < \pi + \phi_6, \phi_1 + \phi_4 + \phi_6 < \phi_8, \phi_2 + \phi_8 + \phi_6 > \pi + \phi_5.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Extreme rays of the cone C^6

Case 10

	/ 1	-1	$-\cos \phi_2$	$\cos(\phi_1 \pm \phi_2)$	$\cos(\phi_2 + \phi_3)$	cos ds \		
	-1	1	cos.¢2	$cos(\phi_4 + \phi_5)$	$\cos(\phi_5 - \phi_6)$	- cos \$5		
	- cos do	cos dg	1	- cos-\$1	$-\cos \phi_8$	$\cos(\phi_3 + \phi_6)$		
	$\cos(\phi_1 + \phi_2)$	$\cos(\phi_4 + \phi_5)$	$-\cos \phi_1$	1	$\cos(\phi_4 + \phi_6)$	$-\cos\phi_4$		
	$cos(\phi_2 + \phi_3)$	$cos(\phi_5 - \phi_6)$	- cos ds	$cos(\phi_4 + \phi_6)$	1	$-\cos\phi_6$		
	coseds	- cos \$\$5	$\cos(\phi_3 + \phi_6)$	- cos 04	- cos de	1 /		
$\phi_1 > 0, \phi_1 + \phi_2 + \phi_1 + \phi_1 < \pi, \phi_1 + \phi_1 + \phi_2 + \phi_1 + \phi_2 + \phi_2 + \phi_3 + \phi_4 \neq \phi_4.$								

Case 11

(1	$-\cos\phi_2$	$-\cos \phi_1$	$\cos(\phi_2 \pm \phi_3)$	$\cos(\phi_2 + \phi_6)$	$\cos(\phi_1 + \phi_4)$	
$-\cos \phi_2$	1	$cos(\phi_1 + \phi_2)$	- cos \$3	- cos dis	$con(\phi_3 + \phi_5)$	1
$-\cos\phi_1$	$\cos(\phi_1 + \phi_2)$	1	$\cos(\phi_4 + \phi_5)$	$-\cos(\phi_1 + \phi_2 + \phi_6)$	$-\cos \phi_4$	1
$cos(\phi_2 + \phi_3)$	- cos da	$\cos(\phi_4 + \phi_5)$	1	$\cos(\phi_3 - \phi_6)$	$-\cos\phi_5$	ł.
$\cos(\phi_2 + \phi_6)$	$-\cos\phi_6$	$-\cos(\phi_1 + \phi_2 + \phi_6)$	$cos(\phi_3 - \phi_6)$	1	b_S	
$\cos(\phi_1 + \phi_4)$	$\cos(\phi_1 + \phi_2)$	- 005.04	- 006.05	ha	i /	2

 $b_3 = \frac{-\cos(\phi_3 - \phi_4)\sin(\phi_4) + \cos(\phi_1 + \phi_2 + \phi_4)\sin(\phi_3)}{\sin(\phi_1 - \phi_4)}, \ \\ \phi_1 > 0, \ \\ \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_3 - \phi_2 < 2\phi_6 < \pi, \\ \pi - \phi_1 - \phi_2 - \phi_4 - \phi_5 + \phi_3 - \phi_4 - \phi_5 + \phi_4 - \phi_5 < \pi, \\ \pi - \phi_1 - \phi_4 - \phi_5 + \phi_5 - \phi_4 - \phi_5 + \phi_5 - \phi_6 = 0$ $\pi = \phi_1 + \phi_5 + \phi_3 + \phi_4 - \phi_2$.

Case 12

	7 1	$-\cos\phi_2$	- cas φ ₁	$cos(\phi_2 + \phi_3)$	$cos(\phi_2 + \phi_4)$	$\cos(\phi_1 + \phi_5)$	
	- cas \$\$2	1	$\cos(\phi_1 + \phi_2)$	- 005-03	- cos d4	$\cos(\phi_3 + \phi_6)$	L
	- cas \$\$	$cos(\phi_1 + \phi_2)$	1	b1	$\cos(\phi_5 + \phi_7)$	$-\cos\phi_5$	L
	$\cos(\phi_2 + \phi_3)$	$-\cos\phi_3$	b_1	1	$\cos(\phi_8 - \phi_4)$	$-\cos\phi_6$	ŀ
	$\cos(\phi_2 + \phi_4)$	$-\cos\phi_4$	$\cos(\phi_5 + \phi_7)$	$\cos(\phi_3 - \phi_4)$	1	$-\cos\phi_7$	
1	$(\cos(\phi_1 + \phi_2))$	$con(\phi_1 + \phi_2)$	- cos ds	- cos du	- con d+	1 /	

 $b_1 = \frac{\sin(\phi_1 + \phi_7)\cos\phi_6 - \cos(\phi_3 - \phi_4)\sin\phi_8}{\cos\phi_6}, \\ \phi_i > 0, \\ \phi_1 + \phi_2 + \phi_4 + \phi_5 + \phi_7 < \pi, \\ \phi_4 + \phi_7 > \phi_5 + \phi_6, \\ \phi_4 + \phi_6 > \phi_3 + \phi_7, \\ \phi_7 + \phi_3 + \phi_6 > \phi_4. \\ \phi_8 + \phi_8 > \phi_8 + \phi_8$

Case 13.1

	(1	- cos \$\$1	$\cos(\phi_1 + \phi_2)$	$-\cos(\phi_1 + \phi_2 + \phi_3)$	$\cos(\phi_5 \pm \phi_6)$	- cos de)
1	- cos da	1	- cos-\$2	$\cos(\phi_2 + \phi_3)$	$-\cos(\phi_2 + \phi_3 + \phi_4)$	$\cos(\phi_1 + \phi_6)$
	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_2$	1	$-\cos\phi_3$	$\cos(\phi_3 \pm \phi_4)$	$-\cos(\phi_3 + \phi_4 + \phi_5)$
	$-\cos(\phi_1 + \phi_2 + \phi_3)$	$cos(\phi_2 + \phi_5)$	cos \$\$	1	- cos \$4	$cos(\dot{o}_4 + \dot{o}_5)$
1	$\cos(\phi_5 + \phi_6)$	$-\cos(\phi_2 + \phi_3 + \phi_4)$	$\cos(\phi_3 + \phi_4)$	- cos 04	1	- cos ds
	- cos d ₆	$cos(\phi_1 + \phi_6)$	$-\cos(\phi_3 + \phi_4 + \phi_5)$	$cos(\phi_4 + \phi_5)$	- cos \$\$5	1 /

 $\phi_i > 0, \sum_{i=1}^6 \phi_j < 2\pi, \phi_i + \phi_{i+1} < \pi, i = 1, \dots, 5, \phi_1 + \phi_6 < \pi, \phi_1 + \phi_2 + \phi_3 \ge \phi_4 + \phi_6 + \phi_6, \phi_2 + \phi_4 \ge \phi_1 + \phi_6, \phi_3 + \phi_6, \phi_6 + \phi_6, \phi_8 + \phi_8, \phi_8 + \phi$ $\phi_1 \neq \phi_{(2)=1} \phi_j \in \text{such that } \sum_{i=1}^{n} \phi_i \neq \pi$, or at least two of the non-strict inequalities are equalities.

Case 13.2

	(1	$-\cos\phi_1$	$\cos(\phi_1 + \phi_2)$	$-\cos(\phi_1 + \phi_2 + \phi_3)$	$\cos(\phi_5 + \phi_6)$	$-\cos\phi_6$)	ί.
4	$-\cos \phi_1$	1	- cos.¢2	$\cos(\phi_2 + \phi_3)$	$-\cos(\phi_1 + \phi_5 + \phi_6)$	$\cos(\phi_1 + \phi_6)$	1
i	$\cos(\phi_1 + \phi_2)$	- cos ó 2	1	- cos \$\$3	$con(\phi_3 + \phi_4)$	$-\cos(\phi_3 + \phi_4 + \phi_5)$	i.
1	$-\cos(\phi_1 + \phi_2 + \phi_3)$	$cos(\phi_2 \pm \phi_3)$	- cos.\$3	1	$-\cos\phi_4$	$\cos(\phi_4 + \phi_5)$	Ŀ
1	$\cos(\phi_5 + \phi_6)$	$-\cos(\phi_1 + \phi_5 + \phi_6)$	$\cos(\phi_3 + \phi_4)$	- cos di 4	1	- cos \$\$5	L
	- cos d ₆	$cos(\phi_1 \pm \phi_6)$	$-\cos(\phi_3 + \phi_4 + \phi_5)$	$\cos(\phi_4 \pm \phi_5)$	$-\cos \phi_5$	1)	۶.

$$\begin{split} \phi_1 > 0, \sum_{j=1}^6 \phi_j < 2\pi, \phi_i + \phi_{i+1} < \pi, i = 1, \dots, 5, \phi_1 + \phi_6 < \pi, \phi_1 + \phi_2 + \phi_5 \geq \phi_4 + \phi_5 + \phi_6, \phi_2 + \phi_5 + \phi_6 + \phi_5 + \phi_6, \phi_3 + \phi_4 + \phi_5 \geq \phi_1 + \phi_2 + \phi_6, \text{ such that } \sum_{j=1}^6 \phi_j \neq \pi, \text{ or at least two of the non-strict inequalities are equalities. \end{split}$$

Case 14

$\begin{pmatrix} -1 & 1 & 1 & 1 & -1 & 1 \\ -1 & 1 & 1 & 1 & 1 & -1 \\ -1 & 1 & 1 & 1 & -1 & 1 \end{pmatrix}$	
311111	
1 -1 1 -1 1 -1	
1 1 -1 1 -1 1/	

Case 15

	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	-1	$-\cos \phi_2$ $\cos \phi_2$	 - cos φ₁ cos φ₁ 	$cos(\phi_2 + \phi_3)$ $cos(\phi_5 + \phi_6)$	$cos(\phi_1 + \phi_4)$ - $cos \phi_6$	
	$-\cos \phi_2$	cas ϕ_2	1	$\cos(\phi_1 + \phi_2)$	- cos \$\phi_3\$	$\cos(\phi_3 + \phi_5)$	
	$-\cos \phi_1$	$\cos \phi_1$	$\cos(\phi_1 + \phi_2)$	1	$\cos(\phi_4 + \phi_5)$	$-\cos\phi_4$	1
	$\cos(\phi_2 + \phi_3)$	$\cos(\phi_5 + \phi_6)$	$-\cos \phi_3$	$\cos(\phi_4 + \phi_5)$	1	- cos \$\$5	
	$\cos(\phi_1 + \phi_4)$	$-\cos\phi_6$	$\cos(\phi_3 + \phi_5)$	$-\cos\phi_4$	$-\cos\phi_5$	1 /	
2 1 2				N 4 1 4			

 $\phi_i > 0, \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 < \pi, \phi_2 + \phi_3 + \phi_5 + \phi_6 \le \pi, \phi_6 \ge \phi_1 + \phi_4.$

Case 16

/ 1	$-\cos\phi_2$	$-\cos \phi_1$	$\cos(\phi_2 + \phi_3)$	$\cos(\phi_2 + \phi_4)$	$\cos(\phi_1 + \phi_5)$
$-\cos \phi_2$	1	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_3$	- cos d4	$\cos(\phi_3 + \phi_6)$
$-\cos \phi_1$	$cos(\phi_1 + \phi_2)$	1	$\cos(\phi_5 + \phi_6)$	$\cos(\phi_5 + \phi_7)$	- cos \$\$5
$cos(\phi_2 + \phi_3)$	$-\cos\phi_3$	$\cos(\phi_5 + \phi_6)$	1	$\cos(\phi_6 - \phi_7)$	- cos \u03c6
$\cos(\phi_2 + \phi_4)$	$-\cos\phi_4$	$\cos(\phi_5 + \phi_7)$	$\cos(\phi_6 - \phi_7)$	1	- cos \$\$7
$\cos(\phi_1 + \phi_5)$	$cos(\phi_3 + \phi_6)$	 – cαs φ₅ 	$-\cos\phi_6$	$-\cos \phi_7$	1 /

 $\phi_1 > 0, \phi_1 + \phi_2 + \phi_4 + \phi_7 + \phi_7 < \pi, \phi_4 + \phi_7 > \phi_8 + \phi_8, \phi_4 + \phi_8 > \phi_8 + \phi_7.$

Case 17

/ 1	$-\cos \phi_2$	$-\cos \phi_1$	$\cos(\phi_2 + \phi_3)$	$\cos(\phi_2 + \phi_4)$	$\cos(\phi_1 + \phi_5)$
$-\cos \phi_2$	1	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_3$	$-\cos \phi_4$	$\cos(\phi_3 + \phi_6)$
$-\cos \phi_1$	$\cos(\phi_1 + \phi_2)$	1	$\cos(\phi_5 - \phi_6)$	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_5$
$cos(\phi_2 + \phi_3)$	$-\cos\phi_3$	$\cos(\phi_5 - \phi_6)$	1	$\cos(\phi_6 + \phi_7)$	$-\cos\phi_6$
$\cos(\phi_2 + \phi_4)$	$-\cos\phi_4$	$\cos(\phi_5 + \phi_7)$	$\cos(\phi_6 + \phi_7)$	1	$-\cos\phi_7$
$\cos(\phi_1 + \phi_5)$	$cos(\phi_3 + \phi_6)$	$-\cos\phi_5$	$-\cos\phi_6$	$-\cos \phi \eta$	1 /

 $\phi_1 > 0, \phi_3 + \phi_6 + \phi_7 < \phi_4, \phi_1 + \phi_5 + \phi_7 + \phi_2 + \phi_4 < \pi.$

Case 18

$\begin{pmatrix} 1 \\ -\cos\phi_4 \\ \cos(\phi_4 + \phi_5) \\ \cos(\phi_2 + \phi_3) \\ -\cos\phi_3 \\ -\cos\phi_3 \end{pmatrix}$	$-\cos\phi_4$ 1 $-\cos\phi_5$ $\cos(\phi_1 + \phi_5)$ $\cos(\phi_3 + \phi_4)$ $\cos(\phi_3 + \phi_4)$	$cos(\phi_4 + \phi_5)$ $-cos \phi_5$ 1 $-cos \phi_1$ $cos(\phi_1 + \phi_2)$ $cos(\phi_1 + \phi_2)$	$cos(\phi_2 + \phi_3)$ $cos(\phi_1 + \phi_5)$ $-cos \phi_1$ 1 $-cos \phi_2$ $-cos \phi_2$	$-\cos \phi_3$ $\cos(\phi_3 + \phi_4)$ $\cos(\phi_1 + \phi_2)$ $-\cos \phi_2$ 1 $\cos \phi_3$	$-\cos(\phi_3 + \phi_6)$ $\cos(\phi_3 + \phi_4 + \phi_6)$ $\cos(\phi_1 + \phi_2 - \phi_6)$ $-\cos(\phi_2 - \phi_6)$ $\cos\phi_6$
$l - \cos(\phi_3 + \phi_6)$	$\cos(\phi_3 + \phi_4 + \phi_6)$	$\cos(\phi_1 + \phi_2 - \phi_6)$	$-\cos(\phi_2 - \phi_6)$	cos ¢6	1 /

 $\phi_1, \dots, \phi_5 > 0, \phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 < \pi, -\phi_1 < \phi_6 < \phi_2$

Case 19

	/ 1	$-\cos\phi_4$	$\cos(\phi_4 + \phi_5)$	$\cos(\phi_2 + \phi_3)$	$-\cos \phi_3$	$\cos(\phi_3 + \phi_6)$	
	- cos \$4	1	$-\cos\phi_5$	#24	$\cos(\phi_3 + \phi_4)$	- cos \$7	i
	$\cos(\phi_4 + \phi_5)$	$-\cos\phi_5$	1	$-\cos\phi_1$	$\cos(\phi_1 + \phi_2)$	436	
	$cos(\phi_2 + \phi_3)$	a24	$-\cos \phi_1$	1	$-\cos \phi_2$	$\cos(\phi_6 - \phi_2)$	1
	$-\cos\phi_3$	$\cos(\phi_3 + \phi_4)$	$\cos(\phi_1 + \phi_2)$	$-\cos\phi_2$	1	- cos \$6	
	$\log(\phi_3 + \phi_6)$	$-\cos\phi_7$	a36	$\cos(\phi_6 - \phi_2)$	$-\cos\phi_6$	1 /	
A							

▲□▶▲□▶▲□▶▲□▶ □ のQの

Dimensions of exceptional extremal matrices with unit diagonal:

Case No.	Dim.	Case No.	Dim.	Case No.	Dim.	Case No.	Dim.
1	2	6	5	11	6	16	$7,\!6,\!6,\!5$
2	3	7	5,4	12	7	17	7
3	4	8	6, 5, 5, 4	13	6, 6, 5, 5, 4, 3	18	6
4	4	9	6,6	14	0	19	8,7
5	5	10	6	15	6, 5, 5		

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Respective maximal dimension equals the number of free parameters in the expressions for the factor A

Extreme rays of the cone C^6

Generators and types of the non-trivial symmetry groups of minimal zero support sets with the additional inequalities on ϕ_i

Case No.	Generator(s)	Group	Inequalities
1	(1, 3, 2, 4, 6, 5)	S_2	
2	(1, 2, 4, 3, 5, 6)	S_2	$\phi_2 \le \phi_3$
3	(1, 3, 2, 4, 5, 6); (1, 2, 4, 3, 5, 6); (1, 2, 3, 4, 6, 5)	$S_3 \times S_2$	$\phi_4 \le \phi_3 \le \phi_2$
5	(1, 3, 2, 4, 5, 6)	S_2	$\phi_3 \le \phi_4$
6	(1, 3, 2, 5, 4, 6)	S_2	$\phi_2 + \phi_4 + \phi_5 \le \pi$
7	(6, 5, 4, 3, 2, 1)	S_2	$\phi_1 \le \phi_5$
8	(2, 1, 6, 4, 5, 3)	S_2	$\phi_3 + \phi_4 \le \phi_1 + \phi_6$
11	(2, 1, 4, 3, 5, 6)	S_2	
13	(6, 5, 4, 3, 2, 1); (6, 1, 2, 3, 4, 5)	D_6	$\phi_1 + \phi_2 + \phi_3 \ge \phi_4 + \phi_5 + \phi_6$,
			$\phi_3 + \phi_4 + \phi_5 \ge \phi_1 + \phi_2 + \phi_6$
14	(1, 4, 3, 2, 5, 6); (5, 2, 6, 4, 1, 3)	S_{2}^{2}	
15	(1, 2, 4, 3, 6, 5)	S_2	
16	(3, 6, 1, 4, 5, 2)	S_2	$\phi_4 + \phi_6 \ge \phi_3 + \phi_7$
17	(2, 1, 4, 3, 5, 6)	S_2	
18	(1, 2, 3, 4, 6, 5); (4, 3, 2, 1, 5, 6)	S_{2}^{2}	
19	(5, 4, 3, 2, 1, 6)	S_2	$\phi_7 - \phi_3 - \phi_4 - \phi_6 \ge \phi_6 + \phi_9 - \pi - \phi_2$

All cases

No.	No. in [17]	$\operatorname{supp} \mathcal{V}_{\min}^A$	result
1	2	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{4,5,6\}$	exceptional extremal
2	3	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,5,6\},\{4,5,6\}$	matrices with this
3	4	$\{1,2\},\{1,3\},\{1,4\},\{2,5,6\},\{3,5,6\},\{4,5,6\}$	minimal zero support
-4	5	$\{1,2\},\{1,3\},\{2,4\},\{3,4,5\},\{1,5,6\},\{4,5,6\}$	set exist
5	6	$\{1,2\},\{1,3\},\{1,4,5\},\{2,4,6\},\{3,4,6\},\{4,5,6\}$	
6	8	$\{1,2\},\{1,3\},\{2,4,5\},\{3,4,5\},\{2,4,6\},\{3,5,6\}$	
7	9	$\{1,5\},\{2,6\},\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\}$	
8	13	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{2,5,6\}$	
9	15	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{4,5,6\}$	
10	16	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$	
11	21	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,4,6\}$	
12	22	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,5,6\}$	
13	34	$\{1,2,3\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{1,5,6\},\{1,2,6\}$	
14	36	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{4,5\},\{3,6\},\{5,6\}$	
15	37	$\{1,2\},\{1,3,4\},\{1,3,5\},\{1,4,6\},\{2,5,6\},\{3,5,6\},\{4,5,6\}$	
16	41	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,4,6\},\{3,5,6\}$	
17	42	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$	
18	43	$\{1,2,3\},\{2,3,4\},\{3,4,5\},\{1,4,5\},\{1,2,5\},\{3,4,6\},\{1,4,6\},\{1,2,6\}$	
19	23	$\{3,4,5\},\{1,4,5\},\{1,2,5\},\{1,2,3\},\{1,5,6\},\{2,3,4,6\}$	
20	1	$\{1,2\},\{1,3\},\{1,4\},\{2,5\},\{3,6\},\{5,6\}$	copositivity and
21	11	$\{1,2\},\{1,3,4\},\{1,3,5\},\{1,4,6\},\{2,5,6\},\{3,5,6\}$	extremality enforce
22	12	$\{1,2\},\{2,3,4\},\{3,4,5\},\{4,5,6\},\{2,5,6\},\{2,3,6\}$	additional minimal
23	17	$\{1,2\},\{1,3,4\},\{2,3,5\},\{3,4,5\},\{2,4,0\},\{3,4,0\}$	zero supports
24	24	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,0\},\{3,4,0\},\{3,5,0\}$	
20	20	$\{1,2,3\},\{1,2,4\},\{1,2,3\},\{1,3,0\},\{3,4,0\},\{4,0,0\}$	
20	20	$\{1,2,3\},\{1,2,4\},\{1,3,0\},\{2,4,0\},\{3,4,0\},\{2,3,0\}$	
28	30	{1,2,3}, {1,2,4}, {1,2,4}, {1,3,3}, {2,4,3}, {3,4,0}, {3,5,0} {1,2,3}, {1,2,4}, {1,2,5}, {2,4,5}, {1,5,6}, {4,5,6}	
20	30	{1,2,3}, {1,2,4}, {1,3,3}, {2,4,3}, {1,3,0}, {4,3,0}	
30	7		linear span of
31	10	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,3,6\},\{3,4,6\},\{3,5,6\}$	minimal zeros is
32	14	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{3,5,6\}$	a proper subspace
33	18	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{1,4,6\},\{1,5,6\}$	
34	19	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{1,4,6\},\{2,5,6\}$	
35	20	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{1,4,6\},\{3,5,6\}$	
36	26	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,5\},\{2,3,6\},\{2,4,6\}$	
37	27	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,5\},\{2,3,6\},\{3,4,6\}$	
38	38	$\{1,2\},\{1,3,4\},\{1,3,5\},\{2,4,6\},\{3,4,6\},\{2,5,6\},\{3,5,6\}$	
39	40	$\{1,2,3\},\{1,2,4\},\{1,2,5\},\{1,3,6\},\{1,4,6\},\{3,5,6\},\{4,5,6\}$	
40	44	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{1,4,5\},\{2,3,6\},\{2,4,6\},\{3,5,6\},\{4,5,6\}$	
41	35	$\{1,2,3,4\},\{2,3,4,5\},\{3,4,5,6\},\{1,4,5,6\},\{1,2,5,6\},\{1,2,3,6\}$	
42	33	$\{1,2,5\},\{1,4,5\},\{1,2,3\},\{3,4,5\},\{2,3,6\},\{3,4,6\}$	
43	31	$\{1,2,5\},\{1,4,5\},\{1,2,3\},\{3,4,5\},\{1,3,6\},\{3,5,6\}$	first order conditions
44	29	$\{1,2,3\},\{1,2,4\},\{1,3,5\},\{2,4,5\},\{2,3,6\},\{2,5,6\}$	are incompatible

(ロ) (型) (主) (主) (三) のへで

Definition

Let \mathcal{M}_n be the stratified real algebraic manifold of extreme rays of the copositive cone \mathcal{C}_n . A stratum \mathcal{S} of \mathcal{M}_n is called essential if there does not exist a stratum $\mathcal{S}' \neq \mathcal{S}$ such that $\mathcal{S} \subset \partial \mathcal{S}'$.

Case 19 of dimension 14 is essential, because no other stratum has larger dimension.

- ロ ト - 4 回 ト - 4 □

Future outlook

Suppose K ⊂ Sⁿ is an inner approximation of Cⁿ, i.e., K ⊂ Cⁿ if all extreme rays of Cⁿ are contained in K, then K = Cⁿ knowledge of the extreme rays of Cⁿ allows to test the exactness of inner approximations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- What are the essential cases?
- Check $X \in C^6 => DXD \in ?K_n^1$

Thank you for your attention!

Preprint is available on:

http://www.optimization-online.org/DB_HTML/2019/11/7489.html

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ