ON THE ALGEBRAIC STRUCTURE OF THE COPOSITIVE CONE

ROLAND HILDEBRAND

A closed convex cone can be decomposed into a disjoint union of interiors of its faces. This well-known facial decomposition yields a lot of information on the structure of the cone. However, in general there are infinitely many faces, and for some purposes this decomposition is too fine. Some cones admit a coarser, finite decomposition which unites faces which are of the same type. For example, the cone of positive semi-definite matrices of size n decomposes into n + 1 relatively open manifolds, each of which contains positive semi-definite matrices of constant rank and which are themselves unions of interiors of similar faces.

We propose such a finite decomposition for the copositive cone COP^n . The components of the decomposition are parameterized by the *extended minimal zero* support set. This means that each component $S_{\mathcal{E}}$ is composed of copositive matrices A with the same extended minimal zero support set \mathcal{E} . This set is a collection of pairs $\mathcal{E} = (I_{\alpha}, J_{\alpha})_{\alpha=1,...,|\mathcal{E}|}$, where α enumerates the minimal zeros u_{α} of A, I_{α} is the support of the minimal zero u_{α} , and the index set $J_{\alpha} \supset I_{\alpha}$ consists of those indices $j \in \{1, ..., n\}$ such that $(Au_{\alpha})_j = 0$.

The set $S_{\mathcal{E}}$ lies in a real-algebraic variety $Z_{\mathcal{E}}$ which is given by a finite number of polynomial equalities, namely those equivalent to the rank-deficiency of the submatrix $A_{I_{\alpha} \times J_{\alpha}}$. Our main result states that for every $A \in COP^n$ with extended minimal zero support set \mathcal{E} , there exists a neighbourhood U of A in the space of real symmetric matrices such that $U \cap Z_{\mathcal{E}} \subset S_{\mathcal{E}}$, i.e., $S_{\mathcal{E}}$ is open in $Z_{\mathcal{E}}$. Thus the polynomial equalities cited above fully determine the local structure of $S_{\mathcal{E}}$.

References

[1] Roland Hildebrand. On the algebraic structure of the copositive cone. *Optim. Lett.* 14(8):2007–2019, (2020).

UNIV. GRENOBLE ALPES, CNRS, GRENOBLE INP, LJK, 38000 GRENOBLE, FRANCE *Email address*: roland.hildebrand@univ-grenoble-alpes.fr