On the algebraic structure of the copositive cone

Roland Hildebrand

Laboratoire Jean Kuntzmann / CNRS

ILAS 2022, Galway, Ireland

June 21, 2022

Faces of a convex cone

Definition

Let K be a convex cone. A set $F \subset K$ is called a *face* if for every line segment $I \subset K$ and every interior point $x \in I$ such that $x \in F$ we have $I \subset F$. The *minimal face* of a point $x \in K$ is the smallest face of K which contains x.

- as a consequence a face has the following description:
 - let L be the linear hull of F
 - then $F = L \cap K$

remark: we do not demand that L is a supporting hyperplane in particular, if F is the minimal face of x, then x is in the interior of F

Faces of the PSD cone

let $K = S_+^n$ be the cone of $n \times n$ PSD matrices the faces of S_+^n are parameterized by the *linear subspaces* $V \subset \mathbb{R}^n$ $F_V = \{A \in S^n \mid Ax = 0 \ \forall \ x \in V\}$ by an appropriate coordinate change the face F_V becomes the set of PSD matrices of the form $A = \begin{pmatrix} * & 0 \\ 0 & 0 \end{pmatrix}$

the face F_V is the minimal face of A iff the upper left block is PD

Faces of the COP cone

the linear hull \mathcal{L}^A of the minimal face of $A \in \mathcal{COP}^n$ has been described in [Dickinson, H. 2016] in terms of its *minimal zeros*

Definition

A vector
$$v \in \mathbb{R}^n_+ \setminus \{0\}$$
 is a *zero* of A if $v^T A v = 0$.
The *support* of v is the index set $\{i \mid v_i > 0\}$.
The zero v is *minimal* if there does not exist a zero with strictly

smaller support.

let
$$\mathcal{V}^{\mathcal{A}}_{\min}$$
 be the set of minimal zeros of \mathcal{A}

$$\mathcal{L}^{A} = \{ B \in \mathcal{S}^{n} \mid (Bv)_{i} = 0 \ \forall \ v \in \mathcal{V}_{\min}^{A}, \ (Av)_{i} = 0 \}$$

the minimal face of A is then $\mathcal{L}^A \cap \mathcal{COP}^n$

・ロト・(四ト・(川下・(日下・))の(の)

Structure of the set of faces of the PSD cone

the faces of \mathcal{S}^n_+ are organized in smooth manifolds:

- F_V analytically depends on the subspace V
- all subspaces V of the same dimension k form an analytic manifold
- ▶ all corresponding faces *F_V* are isomorphic

unions of interiors of faces corresponding to subspaces V of the same dimension n - k form an analytic (even algebraic) manifold \mathcal{F}_k :

$$\mathcal{F}_k = \{A \in \mathcal{S}^n_+ \mid \mathsf{rk} \ A = k\}$$

 \mathcal{F}_k is an *open* subset of an algebraic variety \mathcal{Z}_k determined by polynomial equations:

the determinant of every submanifold of A of size k + 1 vanishes

the cone \mathcal{S}^n_+ is a disjoint union of finitely many subsets \mathcal{F}_k

goal: carry over these results to the case of the COP cone COP cone more complicated than PSD cone

summary:

- COP^n is the disjoint union of a *finite* number of sets $\mathcal{F}_{\mathcal{E}}$
- each $\mathcal{F}_{\mathcal{E}}$ is an *open* subset of an *algebraic* variety $\mathcal{Z}_{\mathcal{E}}$
- each \$\mathcal{F}_{\mathcal{E}}\$ is a disjoint union of interiors of faces \$\mathcal{F}\$ sharing some characteristics \$\mathcal{E}\$

Motivation

example: extreme rays of COP^5

the exceptional extreme rays are in the orbit of either

$$H = \begin{pmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{pmatrix}$$

or

$$T_{\psi} = egin{pmatrix} 1 & -c_1 & c_{12} & c_{45} & -c_5 \ -c_1 & 1 & -c_2 & c_{23} & c_{15} \ c_{12} & -c_2 & 1 & -c_3 & c_{34} \ c_{45} & c_{23} & -c_3 & 1 & -c_4 \ -c_5 & c_{15} & c_{34} & -c_4 & 1 \end{pmatrix}$$

with $c_i = \cos \psi_i$, $c_{ij} = \cos(\psi_i + \psi_j)$, $\psi_i > 0$, $\sum_i \psi_i < \pi$

orbits of T_{ψ} form one manifold, orbit of H another one they can be distinguished by their *minimal zero support set* (supports of all minimal zeros)

Motivation

example: extreme rays of COP^6

classification with respect to the minimal zero support set *not fine enough*:

Case 9.1

/ 1	$^{-1}$	$-\cos \phi_2$	$\cos(\phi_1 + \phi_2)$	$\cos(\phi_2 + \phi_3)$	$\cos \phi_5$	
-1	1	$\cos \phi_2$	$\cos(\phi_4 + \phi_5)$	$\cos(\phi_5 - \phi_6)$	$-\cos \phi_5$	
$-\cos \phi_2$	$\cos \phi_2$	1	$-\cos \phi_1$	$-\cos \phi_3$	$\cos(\phi_1 + \phi_4)$	
$\cos(\phi_1 + \phi_2)$	$\cos(\phi_4 + \phi_5)$	$-\cos \phi_1$	1	$\cos(\phi_4 + \phi_6)$	$-\cos \phi_4$,
$\cos(\phi_2 + \phi_3)$	$\cos(\phi_5 - \phi_6)$	$-\cos \phi_3$	$\cos(\phi_4 + \phi_6)$	1	$-\cos \phi_6$	
$\cos \phi_5$	$-\cos \phi_5$	$cos(\phi_1 + \phi_4)$	$-\cos \phi_4$	$-\cos\phi_6$	1 /	

 $\phi_i > 0, \phi_2 + \phi_3 < \pi, \phi_2 + \phi_3 + \phi_5 < \pi + \phi_6, \phi_1 + \phi_4 + \phi_6 < \phi_3, \phi_2 + \phi_3 + \phi_6 < \pi + \phi_5, \text{ excluding } \phi_2 + \phi_3 + \phi_6 = \phi_5.$

Case 9.2

$$\begin{pmatrix} 1 & -1 & -\cos\phi_2 & \cos(\phi_1 + \phi_2) & \cos(\phi_2 + \phi_3) & \cos\phi_5 \\ -1 & 1 & \cos\phi_2 & \cos(\phi_1 + \phi_5) & -\cos\phi_5 \\ -\cos\phi_2 & 1 & -\cos\phi_1 & -\cos\phi_3 & \cos(\phi_1 + \phi_4) \\ \cos(\phi_1 + \phi_2) & \cos(\phi_4 + \phi_5) & -\cos\phi_1 & 1 & \cos(\phi_4 + \phi_6) \\ \cos(\phi_2 + \phi_3) & -\cos\phi_2 + \phi_3) & -\cos\phi_3 & \cos(\phi_1 + \phi_6) & 1 & 1 & -\cos\phi_6 \\ \cos\phi_2 & -\cos\phi_3 & \cos(\phi_1 + \phi_4) & -\cos\phi_4 & -\cos\phi_6 & 1 \end{pmatrix},$$

minimal zero support sets the same, but matrices have a different structure

Extended minimal zero support set

Definition Let $A \in COP^n$, $v \in \mathbb{R}^n_+ \setminus \{0\}$ a zero of A. Let $I_v = \{i \mid v_i > 0\}$, $J_v = \{j \mid (Av)_j = 0\}$. We call (I_v, J_v) the extended support set of v. The set $\mathcal{E}(A) = \{(I_v, J_v) \mid v \in \mathcal{V}_{\min}^A\}$ is the extended minimal zero support set of A.

▶ $\emptyset \neq I_{v} \subset J_{v}$, because $A_{I_{v}} \succeq 0$ and hence $(Av)_{I_{v}} = 0$

•
$$A_{J_v \times I_v} v_{I_v} = 0$$
 by definition

▶ hence submatrix A_{J_v×I_v} is rank-deficient → polynomial equations

classification of $A \in COP^n$ according to the extended minimal zero support set is finer than by just the minimal zero support set adapted to the description of the linear hull of the minimal face F_A

Main result

Theorem

Let $A \in COP^n$, and let $\mathcal{E} = \{(I_{\alpha}, J_{\alpha}) \mid \alpha = 1, ..., |\mathcal{E}|\}$ be the extended minimal zero support set of A. Set $\mathcal{Z}_{\mathcal{E}} = \{B \in COP^n \mid \text{rk } B_{J_{\alpha} \times I_{\alpha}} < |I_{\alpha}| \forall \alpha\}.$ Then there exists a neighbourhood U of A such that for all $A' \in U \cap \mathcal{Z}_{\mathcal{E}}$ we have $A' \in COP^n$ and A' has the same extended minimal zero support set as A.

let $\mathcal{F}_{\mathcal{E}}$ be the set of all $A \in \mathcal{COP}^n$ such that \mathcal{E} is the extended minimal zero support set of A

- COP^n is a disjoint union of finitely many $\mathcal{F}_{\mathcal{E}}$
- ▶ each $\mathcal{F}_{\mathcal{E}}$ is an open subset of the algebraic variety $\mathcal{Z}_{\mathcal{E}}$
- ▶ each $\mathcal{F}_{\mathcal{E}}$ is a disjoint union of interiors of faces of \mathcal{COP}^n

Limits of the analogy with PSD cone

not all nice properties from the decomposition of the PSD cone carry over

- the faces in irreducible components of \$\mathcal{F_E}\$ have a generic dimension, but there may be faces with higher dimension among them
- ► irreducible components of *F_E* may not be manifolds (M. Manainen et al 2022)

depending on whether the generic dimension is > 1 or = 1: $\mathcal{F}_{\mathcal{E}}$ either does not contain extremal rays at all, or the generic matrix in $\mathcal{F}_{\mathcal{E}}$ is extremal

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example

consider the family of matrices in \mathcal{COP}^6

$$\begin{pmatrix} 1 & -\cos\phi_1 & \cos(\phi_1 + \phi_2) & \cos\phi_4 & -1 & \cos\phi_1 \\ -\cos\phi_1 & 1 & -\cos\phi_2 & \cos(\phi_2 + \phi_3) & \cos\phi_1 & -1 \\ \cos(\phi_1 + \phi_2) & -\cos\phi_2 & 1 & -\cos\phi_3 & \cos(\phi_3 + \phi_4) & \cos\phi_2 \\ \cos\phi_4 & \cos(\phi_2 + \phi_3) & -\cos\phi_3 & 1 & -\cos\phi_4 & \cos(\phi_4 + \phi_5) \\ -1 & \cos\phi_1 & \cos(\phi_3 + \phi_4) & -\cos\phi_4 & 1 & -\cos\phi_5 \\ \cos\phi_1 & -1 & \cos\phi_2 & \cos(\phi_4 + \phi_5) & -\cos\phi_5 & 1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\phi_i>$ 0, $i=1,\ldots,5,~\phi_1<\phi_5,~\phi_2+\phi_3+\phi_4+\phi_5<\pi$

Conditions on the extended minimal zero support set

Given a dimension n, which sets \mathcal{E} are the extended minimal zero support sets of some (extremal) matrix in COP^n ?

some conditions on $\mathcal E$ can be given:

$$\blacktriangleright \ \emptyset \neq I_{\alpha} \subset J_{\alpha}, \ I_{\alpha} \not\subset I_{\beta}$$

• $\mathcal{E} = \emptyset$ corresponds to the interior of \mathcal{COP}^n

- for I ⊂ {1,..., n} arbitrary, E = {(I, I)} corresponds to generic boundary points of COPⁿ
- $\mathcal{E} = \{(\{k\}, \{1, ..., n\}) \mid k = 1, ..., n\}$ corresponds to A = 0
- ▶ collection of admissible sets \mathcal{E} is invariant under the action of the permutation group S_n

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\blacktriangleright \ I_{\alpha} \subset J_{\beta} \text{ iff } I_{\beta} \subset J_{\alpha}$$

Boundaries

for every \mathcal{E} with $\mathcal{F}_{\mathcal{E}} \neq \emptyset$, the boundary $\partial \mathcal{F}_{\mathcal{E}} \subset \mathcal{Z}_{\mathcal{E}}$ consists of matrices A belonging to different $\mathcal{F}_{\mathcal{E}'}$ with $\mathcal{E}' \neq \mathcal{E}$

Lemma Let $\mathcal{E} = \{(I_{\alpha}, J_{\alpha}) \mid \alpha = 1, ..., |\mathcal{E}|\},\$ $\mathcal{E}' = \{(I_{\alpha'}, J_{\alpha'}) \mid \alpha' = 1, ..., |\mathcal{E}'|\}$ be related as above. Then for every α , there exists α' such that $I_{\alpha'} \subset I_{\alpha}, J_{\alpha} \subset J_{\alpha'}.$ Moreover, $\mathcal{Z}_{\mathcal{E}'} \subset \mathcal{Z}_{\mathcal{E}}.$

open question: does the inclusion $\mathcal{F}_{\mathcal{E}'} \subset \mathcal{F}_{\mathcal{E}}$ hold?

Application

given a (extremal) matrix $A \in COP^n$, we may construct families of other (extremal) matrices $A' \in COP^n$ by considering a small enough neighbourhood of A in $\mathcal{Z}_{\mathcal{E}(A)}$

technically: solve the polynomial system on A' which defines $\mathcal{Z}_{\mathcal{E}(A)}$ consider solutions A' which are close enough to A

close enough means absence of additional minimal zeros and additional indices j: $(A'v)_j = 0$, where v is a minimal zero of A

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?