On the algebraic structure of the copositive cone

Roland Hildebrand
Laboratoire Jean Kuntzmann / CNRS

ILAS 2022, Galway, Ireland

June 21, 2022

Faces of a convex cone

Definition

Let K be a convex cone. A set $F \subset K$ is called a face if for every line segment $I \subset K$ and every interior point $x \in I$ such that $x \in F$ we have $I \subset F$.
The minimal face of a point $x \in K$ is the smallest face of K which contains x.
as a consequence a face has the following description:

- let L be the linear hull of F
- then $F=L \cap K$
remark: we do not demand that L is a supporting hyperplane in particular, if F is the minimal face of x, then x is in the interior of F

Faces of the PSD cone

let $K=\mathcal{S}_{+}^{n}$ be the cone of $n \times n$ PSD matrices the faces of \mathcal{S}_{+}^{n} are parameterized by the linear subspaces $V \subset \mathbb{R}^{n}$ $F_{V}=\left\{A \in \mathcal{S}^{n} \mid A x=0 \forall x \in V\right\}$
by an appropriate coordinate change the face F_{V} becomes the set of PSD matrices of the form $A=\left(\begin{array}{ll}* & 0 \\ 0 & 0\end{array}\right)$
the face F_{V} is the minimal face of A iff the upper left block is PD

Faces of the COP cone

the linear hull \mathcal{L}^{A} of the minimal face of $A \in \mathcal{C O} \mathcal{P}^{n}$ has been described in [Dickinson, H. 2016] in terms of its minimal zeros

Definition

A vector $v \in \mathbb{R}_{+}^{n} \backslash\{0\}$ is a zero of A if $v^{T} A v=0$.
The support of v is the index set $\left\{i \mid v_{i}>0\right\}$.
The zero v is minimal if there does not exist a zero with strictly smaller support.
let $\mathcal{V}_{\text {min }}^{A}$ be the set of minimal zeros of A

$$
\mathcal{L}^{A}=\left\{B \in \mathcal{S}^{n} \mid(B v)_{i}=0 \forall v \in \mathcal{V}_{\min }^{A},(A v)_{i}=0\right\}
$$

the minimal face of A is then $\mathcal{L}^{A} \cap \mathcal{C O} \mathcal{P}^{n}$

Structure of the set of faces of the PSD cone

the faces of \mathcal{S}_{+}^{n} are organized in smooth manifolds:

- F_{V} analytically depends on the subspace V
- all subspaces V of the same dimension k form an analytic manifold
- all corresponding faces F_{V} are isomorphic
unions of interiors of faces corresponding to subspaces V of the same dimension $n-k$ form an analytic (even algebraic) manifold \mathcal{F}_{k} :

$$
\mathcal{F}_{k}=\left\{A \in \mathcal{S}_{+}^{n} \mid \text { rk } A=k\right\}
$$

\mathcal{F}_{k} is an open subset of an algebraic variety \mathcal{Z}_{k} determined by polynomial equations:
the determinant of every submanifold of A of size $k+1$ vanishes the cone \mathcal{S}_{+}^{n} is a disjoint union of finitely many subsets \mathcal{F}_{k}

Analogous result for COP?

goal: carry over these results to the case of the COP cone
COP cone more complicated than PSD cone
summary:

- $\mathcal{C O P}{ }^{n}$ is the disjoint union of a finite number of sets $\mathcal{F}_{\mathcal{E}}$
- each $\mathcal{F}_{\mathcal{E}}$ is an open subset of an algebraic variety $\mathcal{Z}_{\mathcal{E}}$
- each $\mathcal{F}_{\mathcal{E}}$ is a disjoint union of interiors of faces F sharing some characteristics \mathcal{E}

Motivation

example: extreme rays of $\mathcal{C O} \mathcal{P}^{5}$
the exceptional extreme rays are in the orbit of either

$$
H=\left(\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right)
$$

or

$$
T_{\psi}=\left(\begin{array}{ccccc}
1 & -c_{1} & c_{12} & c_{45} & -c_{5} \\
-c_{1} & 1 & -c_{2} & c_{23} & c_{15} \\
c_{12} & -c_{2} & 1 & -c_{3} & c_{34} \\
c_{45} & c_{23} & -c_{3} & 1 & -c_{4} \\
-c_{5} & c_{15} & c_{34} & -c_{4} & 1
\end{array}\right)
$$

with $c_{i}=\cos \psi_{i}, c_{i j}=\cos \left(\psi_{i}+\psi_{j}\right), \psi_{i}>0, \sum_{i} \psi_{i}<\pi$ orbits of T_{ψ} form one manifold, orbit of H another one they can be distinguished by their minimal zero support set (supports of all minimal zeros)

Motivation

example: extreme rays of $\mathcal{C O} \mathcal{P}^{6}$
classification with respect to the minimal zero support set not fine enough:

Case 9.1

$$
\left(\begin{array}{cccccc}
1 & -1 & -\cos \phi_{2} & \cos \left(\phi_{1}+\phi_{2}\right) & \cos \left(\phi_{2}+\phi_{3}\right) & \cos \phi_{5} \\
-1 & 1 & \cos \phi_{2} & \cos \left(\phi_{4}+\phi_{5}\right) & \cos \left(\phi_{5}-\phi_{6}\right) & -\cos \phi_{5} \\
-\cos \phi_{2} & \cos \phi_{2} & 1 & -\cos \phi_{1} & -\cos \phi_{3} & \cos \left(\phi_{1}+\phi_{4}\right) \\
\cos \left(\phi_{1}+\phi_{2}\right) & \cos \left(\phi_{4}+\phi_{5}\right) & -\cos \phi_{1} & 1 & \cos \left(\phi_{4}+\phi_{6}\right) & -\cos \phi_{4} \\
\cos \left(\phi_{2}+\phi_{3}\right) & \cos \left(\phi_{5}-\phi_{6}\right) & -\cos \phi_{3} & \cos \left(\phi_{4}+\phi_{6}\right) & 1 & -\cos \phi_{6} \\
\cos \phi_{5} & -\cos \phi_{5} & \cos \left(\phi_{1}+\phi_{4}\right) & -\cos \phi_{4} & -\cos \phi_{6} & 1
\end{array}\right)
$$

$\phi_{i}>0, \phi_{2}+\phi_{3}<\pi, \phi_{2}+\phi_{3}+\phi_{5}<\pi+\phi_{6}, \phi_{1}+\phi_{4}+\phi_{6}<\phi_{3}, \phi_{2}+\phi_{3}+\phi_{6}<\pi+\phi_{5}$, excluding $\phi_{2}+\phi_{3}+\phi_{6}=\phi_{5}$.
Case 9.2

$$
\left(\begin{array}{cccccc}
1 & -1 & -\cos \phi_{2} & \cos \left(\phi_{1}+\phi_{2}\right) & \cos \left(\phi_{2}+\phi_{3}\right) & \cos \phi_{5} \\
-1 & 1 & \cos \phi_{2} & \cos \left(\phi_{4}+\phi_{5}\right) & -\cos \left(\phi_{2}+\phi_{3}\right) & -\cos \phi_{5} \\
-\cos \phi_{2} & \cos \phi_{2} & 1 & -\cos \phi_{1} & -\cos \phi_{3} & \cos \left(\phi_{1}+\phi_{4}\right) \\
\cos \left(\phi_{1}+\phi_{2}\right) & \cos \left(\phi_{4}+\phi_{5}\right) & -\cos \phi_{1} & 1 & \cos \left(\phi_{4}+\phi_{6}\right) & -\cos \phi_{4} \\
\cos \left(\phi_{2}+\phi_{3}\right) & -\cos \left(\phi_{2}+\phi_{3}\right) & -\cos \phi_{3} & \cos \left(\phi_{4}+\phi_{6}\right) & 1 & -\cos \phi_{6} \\
\cos \phi_{5} & -\cos \phi_{5} & \cos \left(\phi_{1}+\phi_{4}\right) & -\cos \phi_{4} & -\cos \phi_{6} & 1
\end{array}\right)
$$

$\phi_{i}>0, \phi_{2}+\phi_{3}<\pi, \phi_{2}+\phi_{3}+\phi_{5}<\pi+\phi_{6}, \phi_{1}+\phi_{4}+\phi_{6}<\phi_{3}, \phi_{2}+\phi_{3}+\phi_{6}>\pi+\phi_{5}$.
minimal zero support sets the same, but matrices have a different structure

Extended minimal zero support set

Definition

Let $A \in \mathcal{C O P}{ }^{n}, v \in \mathbb{R}_{+}^{n} \backslash\{0\}$ a zero of A. Let $I_{v}=\left\{i \mid v_{i}>0\right\}$, $J_{v}=\left\{j \mid(A v)_{j}=0\right\}$.
We call $\left(I_{v}, J_{v}\right)$ the extended support set of v.
The set $\mathcal{E}(A)=\left\{\left(I_{v}, J_{v}\right) \mid v \in \mathcal{V}_{\text {min }}^{A}\right\}$ is the extended minimal zero support set of A.

- $\emptyset \neq I_{v} \subset J_{v}$, because $A_{I_{v}} \succeq 0$ and hence $(A v)_{I_{v}}=0$
- $A_{J_{v} \times I_{v}} v_{l_{v}}=0$ by definition
- hence submatrix $A_{J_{v} \times I_{v}}$ is rank-deficient \rightarrow polynomial equations
classification of $A \in \mathcal{C O} \mathcal{P}^{n}$ according to the extended minimal zero support set is finer than by just the minimal zero support set adapted to the description of the linear hull of the minimal face F_{A}

Main result

Theorem
Let $A \in \mathcal{C O P}{ }^{n}$, and let $\mathcal{E}=\left\{\left(I_{\alpha}, J_{\alpha}\right)|\alpha=1, \ldots,|\mathcal{E}|\}\right.$ be the extended minimal zero support set of A. Set
$\mathcal{Z}_{\mathcal{E}}=\left\{B \in \mathcal{C O} \mathcal{P}^{n} \mid\right.$ rk $\left.B_{J_{\alpha} \times I_{\alpha}}<\left|I_{\alpha}\right| \forall \alpha\right\}$.
Then there exists a neighbourhood U of A such that for all $A^{\prime} \in U \cap \mathcal{Z}_{\mathcal{E}}$ we have $A^{\prime} \in \mathcal{C O P}{ }^{n}$ and A^{\prime} has the same extended minimal zero support set as A.
let $\mathcal{F}_{\mathcal{E}}$ be the set of all $A \in \mathcal{C O P}{ }^{n}$ such that \mathcal{E} is the extended minimal zero support set of A

- $\mathcal{C O P}{ }^{n}$ is a disjoint union of finitely many $\mathcal{F}_{\mathcal{E}}$
- each $\mathcal{F}_{\mathcal{E}}$ is an open subset of the algebraic variety $\mathcal{Z}_{\mathcal{E}}$
- each $\mathcal{F}_{\mathcal{E}}$ is a disjoint union of interiors of faces of $\mathcal{C O} \mathcal{P}^{n}$

Limits of the analogy with PSD cone

not all nice properties from the decomposition of the PSD cone carry over

- the faces in irreducible components of $\mathcal{F}_{\mathcal{E}}$ have a generic dimension, but there may be faces with higher dimension among them
- irreducible components of $\mathcal{F}_{\mathcal{E}}$ may not be manifolds (M. Manainen et al 2022)
depending on whether the generic dimension is >1 or $=1$: $\mathcal{F}_{\mathcal{E}}$ either does not contain extremal rays at all, or the generic matrix in $\mathcal{F}_{\mathcal{E}}$ is extremal

Example

consider the family of matrices in $\mathcal{C O P}{ }^{6}$

$$
\left(\begin{array}{cccccc}
1 & -\cos \phi_{1} & \cos \left(\phi_{1}+\phi_{2}\right) & \cos \phi_{4} & -1 & \cos \phi_{1} \\
-\cos \phi_{1} & 1 & -\cos \phi_{2} & \cos \left(\phi_{2}+\phi_{3}\right) & \cos \phi_{1} & -1 \\
\cos \left(\phi_{1}+\phi_{2}\right) & -\cos \phi_{2} & 1 & -\cos \phi_{3} & \cos \left(\phi_{3}+\phi_{4}\right) & \cos \phi_{2} \\
\cos \phi_{4} & \cos \left(\phi_{2}+\phi_{3}\right) & -\cos \phi_{3} & 1 & -\cos \phi_{4} & \cos \left(\phi_{4}+\phi_{5}\right) \\
-1 & \cos \phi_{1} & \cos \left(\phi_{3}+\phi_{4}\right) & -\cos \phi_{4} & 1 & -\cos \phi_{5} \\
\cos \phi_{1} & -1 & \cos \phi_{2} & \cos \left(\phi_{4}+\phi_{5}\right) & -\cos \phi_{5} & 1
\end{array}\right)
$$

where $\phi_{i}>0, i=1, \ldots, 5, \phi_{1}<\phi_{5}, \phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}<\pi$

- if $\phi_{1}+\phi_{5} \neq \pi$, then $\operatorname{dim} F_{A}=1$
- if $\phi_{1}+\phi_{5}=\pi$, then $\operatorname{dim} F_{A}=2$
but the extended minimal zero support set is the same

Conditions on the extended minimal zero support set

Given a dimension n, which sets \mathcal{E} are the extended minimal zero support sets of some (extremal) matrix in $\mathcal{C O} \mathcal{P}^{n}$?
some conditions on \mathcal{E} can be given:

- $\emptyset \neq I_{\alpha} \subset J_{\alpha}, I_{\alpha} \not \subset I_{\beta}$
- $\mathcal{E}=\emptyset$ corresponds to the interior of $\mathcal{C O P}{ }^{n}$
- for $I \subset\{1, \ldots, n\}$ arbitrary, $\mathcal{E}=\{(I, I)\}$ corresponds to generic boundary points of $\mathcal{C O P}{ }^{n}$
- $\mathcal{E}=\{(\{k\},\{1, \ldots, n\}) \mid k=1, \ldots, n\}$ corresponds to $A=0$
- collection of admissible sets \mathcal{E} is invariant under the action of the permutation group S_{n}
- $I_{\alpha} \subset J_{\beta}$ iff $I_{\beta} \subset J_{\alpha}$

Boundaries

for every \mathcal{E} with $\mathcal{F}_{\mathcal{E}} \neq \emptyset$, the boundary $\partial \mathcal{F}_{\mathcal{E}} \subset \mathcal{Z}_{\mathcal{E}}$ consists of matrices A belonging to different $\mathcal{F}_{\mathcal{E}^{\prime}}$ with $\mathcal{E}^{\prime} \neq \mathcal{E}$

Lemma
Let $\mathcal{E}=\left\{\left(I_{\alpha}, J_{\alpha}\right)|\alpha=1, \ldots,|\mathcal{E}|\}\right.$, $\mathcal{E}^{\prime}=\left\{\left(I_{\alpha^{\prime}}, J_{\alpha^{\prime}}\right)\left|\alpha^{\prime}=1, \ldots,\left|\mathcal{E}^{\prime}\right|\right\}\right.$ be related as above.
Then for every α, there exists α^{\prime} such that $I_{\alpha^{\prime}} \subset I_{\alpha}, J_{\alpha} \subset J_{\alpha^{\prime}}$. Moreover, $\mathcal{Z}_{\mathcal{E}^{\prime}} \subset \mathcal{Z}_{\mathcal{E}}$.
open question: does the inclusion $\mathcal{F}_{\mathcal{E}^{\prime}} \subset \mathcal{F}_{\mathcal{E}}$ hold?

Application

given a (extremal) matrix $A \in \mathcal{C O} \mathcal{P}^{n}$, we may construct families of other (extremal) matrices $A^{\prime} \in \mathcal{C O} P^{n}$ by considering a small enough neighbourhood of A in $\mathcal{Z}_{\mathcal{E}(A)}$
technically: solve the polynomial system on A^{\prime} which defines $\mathcal{Z}_{\mathcal{E}(A)}$ consider solutions A^{\prime} which are close enough to A
close enough means absence of additional minimal zeros and additional indices $j:\left(A^{\prime} v\right)_{j}=0$, where v is a minimal zero of A

Thank you!

