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Abstract

In this paper direct numerical simulations of exchange flows of large density ratios are

presented and are compared with experiments by Gröbelbauer et al. [J. Fluid Mech. 250,

669 (1993)]. These simulations, which make use of a dynamic mesh adaptation technique,

cover the whole density ratio range of the experiments and very good agreement with the

experimental front velocities and the Froude number variations is obtained. Moreover, in

order to establish more definitely the Froude number dependency on density ratio, the

simulations were carried up to ratios of 100 compared with 21.6 accessible in experiments.

An empirical law for the dense front Froude number as a function of the density parameter

is proposed. The mathematical difficulty of the problem is discussed. This difficulty

arises because, when the density ratio is large, the existence of a solution is dependent

on a compatibility condition between the diffusion and viscous terms model. Moreover, a

specific numerical technique is required to treat the finite, non-uniform divergence of the

mass-averaged velocity field described by the continuity equation.
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I. Introduction

Numerical simulations of gravity driven flows are relatively rare compared with the

number of experiments which considered various aspects of gravity currents and of density

intrusions.1 Recent numerical simulation2,3 of gravity currents are limited to small density

differences where the Boussinesq approximation is applicable.4 In certain geophysical

flows, such as avalanches or pyroclastic flows, and in industrial applications related with

heavy gases, the density change across the current fronts is, however, no longer small.

Since theoretical models or experimental results which hold for small density ratios can,

in general, not be extrapolated to these flows, large density ratio flows need specific

attention.

Direct numerical simulations of gravity currents of large density ratios seem to be

inexistent. Most of the experiments are also limited to low density ratios because these

were mostly performed with liquids where it is difficult to establish large density ratios.

Gröbelbauer et al.5 conducted lock-exchange flow experiments with gases of density ratios

up to 21.6. These flows exhibit some interesting behaviours. In the Boussinesq limit the

flow is symmetric and the Froude number varies6 like Fr = UF/
√
gh = %∗/

√
2, where h

is half the channel depth, UF the front velocity, %∗ =
√

(%d − %`)/(%d + %`) and %` and

%d are the densities of the light and dense fluids respectively. For large density ratios

the exchange flow is asymmetric and asymptotic theories (for %` → 0) give for the light

front7 Fr∞` = 1/
√

2 and for the dense front8 Fr∞d = 2
√

2. The experimental results of

Gröbelbauer et al. clearly show this divergence in the respective Froude number values

and the results seem to approach the asymptotic limits. In the lock-exchange experiments

of Keller and Chyou9 which cover density ratios up to 103 (water/air) for the light front,

the Froude number limit 1/
√

2 is not reached. The reason for this are most likely viscous

effects due to the small channel dimensions used in these experiments.

Lock-exchange flows are a good test for direct numerical simulations of flows of mis-

cible, large density difference fluids. Numerical simulations can reach larger values of
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the density ratio than accessible in experiments, except for the limit-case of non-miscible

liquid-gas exchange flows where density ratios of order 103 are reached, and can give

additional information about the variation of the Froude number and the structure of

the intrusion fronts. However, the existence of a solution of the Navier-Stokes equations

in these conditions is subject to a condition either on the density ratio compared with

Schmidt number, or on the form of the viscous and diffusion terms. Furthermore, due

to the unusual condition of a finite, non-uniform divergence of the mass-averaged veloc-

ity field, a specific technique is needed in order to preserve this existence result when

the equations are discretized. Finally, dynamic mesh adaptation is necessary when the

density ratio is large. This was accomplished by using a finite element method.

In Section II the flow conditions, corresponding to the experiments of Gröbelbauer

et al. are presented. The governing equations for large density ratio flows are derived in

Section III and the numerical algorithm is presented in Section IV. The initial behaviour

of the front in the asymptotic limit of negligible %` is derived in Section V and compared

with numerical results. The numerical results of the front velocities and the variations of

the Froude number are presented in Section VI and compared with experiments.

II. Lock-exchange flow conditions

When a horizontal channel is divided into two parts by a vertical splitter-plate and

each chamber is filled with a fluid of different density, an intruding, gravity-driven flow

occurs when the splitter-plate is removed (see Figure 1). It consists in the spread of a

dense current of the heavier fluid under the lighter fluid, and of a lighter fluid current

above the heavier fluid. This is referred to as lock-exchange flow. In the experiments by

Gröbelbauer et al., gases with a density ratio of up to 21.6 were released in an unevenly

divided horizontal channel of half-height h = 0.15 m, as shown in Figure 1. The lock gate

could be placed at a distance 20h from the right or left wall, and 10h from the other one.

The passage time of either the light or dense front was measured at fixed positions on

the horizontal walls of the larger chamber and the Froude number of each front for the
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various gas pairs was calculated. Table 1 lists the pairs of gases used and the range of

the numerical simulations conducted. The dynamic viscosity µ of these gases lies between

12.57 · 10−6 Pa·s (Freon 22), 18.64 · 10−6 Pa·s (Helium) and 21 · 10−6 Pa·s (Argon), while

the kinematic viscosity ν ranges from 3.43 · 10−6 m2·s−1 (Freon 22) to 1.10 · 10−4 m2·s−1

(Helium). Thus, it is natural to keep the dynamic viscosity constant in the attempt to

reproduce these experiments by numerical simulation. This might be different for liquids.

The theoretical formulation below is sufficiently general to include liquids provided the

physical properties are known.

In a lock-exchange flow, instabilities could develop in the wall boundary-layers at the

top and the bottom, at the interface between the dense and light fluids and at the intrusion

fronts. Concerning the wall boundary-layer, it is well known10 that for a flow past a flat

plate, the boundary-layer becomes turbulent for Rex & 3.5 · 105. The Reynolds numbers

of the two fronts based on distance x ' Ut are Rex,d = %dU
2t/µ and Rex,` = %`U

2t/µ.

Assuming that both fronts have a velocity U of the same order of magnitude, the Reynolds

numbers differ by the density ratio, Rex,d/Rex,` = %d/%`. The dense front boundary layer

might reach the critical value, for instance at x ' 8h for a density ratio of 9.93. For larger

density ratios turbulence or at least instabilities could develop at even shorter distances.

A transition to turbulence would cause a decrease of the front progression because of an

increased wall shear-stress. In the experiments by Gröbelbauer et al. this is not clearly

observed.

At the interface between the dense and light fluids, shear-layer instabilities develop

which give rise to Kelvin–Helmholtz billows. The smoke visualization by Gröbelbauer

et al. indicate some instability on the interface especially close to the dense front when

the density ratio is large. The essential features of this instability is captured by the

two-dimensional simulations.
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III. Governing equations

Let us consider an isothermal flow of local density % and velocity ũ in a domain Ω

over a time span [0, T ] (the symbol ˜ denotes dimensional counterparts of quantities

and operators otherwise used in non-dimensional form). For a perfect mixture of two

incompressible fluids, of density %d (the heavier one) and of density %` (the lighter one), the

local density is % = %dΦd +%`Φ` where Φd, Φ` are the volumic fraction of the constituents,

Φd + Φ` = 1 and both, %d and %`, are constants. The characteristic density ratio is

α = (%d − %`)/%`.

Our main concern in this section is to take into account the mutual diffusion of the

fluids in the non-homogeneous, incompressible Navier-Stokes equations.

A. Mass and constituent conservation equations

The mass conservation of constituent i across the surface S of a fixed volume V can

be written as:

− ∂

∂t̃

∫

V

%iΦidV =

∫

S

%iΦiũi · ndS +

∫

S

%iq̃i · ndS

where q̃i is the part of the mass flux which is due to diffusion. Thus Φd and Φ` obey the

equations:

DΦd

Dt̃
+ Φd∇̃ · ũ = −∇̃ · q̃d (1a)

DΦ`

Dt̃
+ Φ`∇̃ · ũ = −∇̃ · q̃` (1b)

Fick’s law governs the diffusive fluxes of one fluid into the other with q̃d = −Dd`(Φd)∇̃Φd

and q̃` = −D`d(Φd)∇̃Φ` = D`d(Φd)∇̃Φd, where the Dij coefficients may depend on the

local composition Φd of the mixture. Since Φd + Φ` = 1 we can use only one volume

fraction Φ = Φd. Now, if we sum (1a) and (1b) multiplied respectively by %d and %`, we
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get:

D%

Dt̃
+ %∇̃ · ũ = ∇̃ ·

[

(%dDd` − %`D`d)∇̃Φ
]

(2)

Because of mass conservation, the left hand side of equation (2) is necessarily zero. Now,

in order for the right hand side to be zero for arbitrary distributions of the constituents,

we need to have %dDd` = %`D`d = %dDF (Φ), where D is a reference diffusivity and F is

some function of the local composition, as suggested by Joseph and Renardy.11

In non-dimensional form, when using these specific fluxes in (2) and (1a), the continuity

equation and the corresponding equation of the volume fractions are:

∇ · u = − α

1 + αΦ

DΦ

Dt
(3)

DΦ

Dt
+ Φ∇ · u =

1

ReSc
∇ · (F (Φ)∇Φ) (4)

where ReSc = Uh/D is the product of the Reynolds and Schmidt numbers, with U =
√
αgh the terminal velocity of a dense fluid parcel in the light fluid. The variables are

non-dimensionalized by x = x̃/h, u = ũ/U and t = t̃U/h.

Equation (3), ∇ ·u 6= 0, is unusual. It arises because of the diffusion between the two

species. It is readily seen from equations (3, 4) that when Sc tends to infinity, ∇ ·u goes

to zero. Otherwise, diffusion will result in equal and opposite mass fluxes of constituents

d and ` across the boundary of any small volume V (t) entrained by the flow velocity. As

a result, since both constituents are incompressible and of different densities, the volume

V (t) will vary; giving ∇ · u 6= 0. Note that diffusion effects are obviously negligible for

Boussinesq conditions, α � 1.

B. Momentum equation

We can assume that the mixture behaves like a Newtonian fluid, with a dynamic

viscosity µ that may depend on the local composition of the mixture Φ. Therefore, we

6



write µ(Φ) = ηλ(Φ), where η is a constant reference dynamic viscosity, and λ a non-

dimensional function of the composition of the mixture. Denoting Du = (∇u +∇uT)/2,

the momentum equation12 is:

(1 + αΦ)
Du

Dt
= −∇p +

1

Re
∇ ·
[

λ(Φ)

(

2Du − 2

3
∇ · u I

)]

− 1 + αΦ

α
ey (5)

and here Re = %`Uh/η. For lock-exchange flows and most gravity-driven flows, the

boundary condition for u is either u |∂Ω = 0 (no inflow, no slip condition) or u · n = 0

and a zero wall friction σ · n − [(σ · n) · n]n = 0, where n is the wall normal and

σ = 2Du−2
3
∇·u I (no inflow, slip condition). Then, for both mechanical and mathematical

reasons, the boundary condition for Φ will be ∇Φ · n = 0.

In Section II we have argued that for gases, λ(Φ) ∼= 1. However, in this case, proofs

of existence of a global weak solution13 are subject to the condition that 2Sc > α, which

means that as far as we know the model may be ill-posed in other situations. There is

no physical reason for the Schmidt number to behave this way when α varies; indeed,

its value remains of order 1 for common gases. In practice, a blow-up of the numerical

solution occured within the relevant time-range for lock-exchange flows for α & 60.

Bresch et al.,14 on the contrary, show that if the relation

∇λ(Φ) =
α

2Sc
(1 + αΦ)F (Φ)∇Φ (6)

holds, then the unconditional existence of global weak solutions can be proved. This

condition is never satisfied if we choose λ(Φ) = 1. If we take a constant kinematic

viscosity ν = µ/%, that is, if λ(Φ) = 1 + αΦ, then the relation is matched for Sc = 1/2,

which is close to the actual Schmidt number for gas mixtures, and a diffusivity of the form

F (Φ) = 1/(1 + αΦ). This form of the mass diffusivity is a common choice, and can be

shown to correspond to the case when the molecular diffusivity of species are equal and

independent of the local composition of the mixture.15

In numerical simulations, a non-constant F is nevertheless an additional difficulty,
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which requires a specific and computationally expensive treatment.16 Thus the numerical

simulations presented here were all performed with a constant mass diffusivity (F =

1). This means that condition (6) was not satisfied in most numerical simulations, but

nevertheless the solutions for constant kinematic viscosity (λ(Φ) = 1+αΦ) and F (Φ) = 1

were stable in all cases (α up to 100 was tested). Tests were conducted for α = 20.6, with

λ = 1 and λ = 1 +αΦ. The results showed that the choice of F has no effect on the front

velocities.

It should be kept in mind that, when α is large, the meaning of the Reynolds number

is very different in cases of λ(Φ) = 1 and λ(Φ) = 1 + αΦ. Indeed, suppose two solutions

of (5), one for each choice of λ. The actual Reynolds number of the light front (i.e., that

could be calculated a posteriori from measurements of the light front velocity) will be the

same for both solutions, while the actual Reynolds number of the dense front is α + 1

times larger in the case of constant λ than in the case of constant kinematic viscosity.

This is because the kinematic viscosity of the dense fluid is α + 1 times smaller. The

dilemna is that one model is not able to treat density ratios of α & 60, and the other

does, strictly speaking, not conform to the conditions of the experiments considered, but

remains stable.

Note also that numerical simulations can be found in literature (e.g. Ref. 17) which

are based on the volume-averaged velocity v = u+(α/ReSc)F (Φ)∇Φ, because this vector

field is solenoidal: ∇·v = 0. Nevertheless, this choice introduces additional inertial terms15

of higher order in the transformed momentum equation, which cannot be neglected when

α is large. The problem is not simplified in doing this.

IV. Numerical approach

The large density difference flows considered are composed of intrusion fronts,18 where

density and velocity gradients are locally steep, and of large areas away from these fronts

which have a uniform density and small velocity gradients away from the walls. This calls
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for a method capable of automatic and unconstrained mesh adaptation, since the location

of the interface between dense and light parts of the flow is unknown. However, refining

the mesh in areas of steep density gradients makes it difficult to control numerical stability

conditions such as ‖u‖∆t < ∆x, where ∆t and ∆x are the time-step and a local mesh-

resolution indicator. Thus we use the method of characteristics for the time-discretisation

of the convective part of the equations, which is not subject to such a condition.19 For the

space discretisation, we have used a finite elements method, for which mesh adaptation

based on the error control is well developped and which allows to use the method of

characteritics because the approximation of the velocity is a continuous function. A

classical choice for solving the Stokes problem is obtained with the Taylor-Hood finite

element,20 which is a piecewise quadratic approximation of the velocity and a piecewise

linear one for the pressure. The volume fraction Φ is also discretised in a piecewise

quadratic functional space.

The discretisation we have used is given in more detail in the Appendix, but one tech-

nical difficulty specific to high-density ratio Navier-Stokes equations needs to be pointed

out here. The continuity equation (3) is ∇ · u = −χ for some function χ which is one of

the unknowns of the problem. Now if there is no inflow at the boundary,21 it is clear from

the divergence theorem that −
∫

Ω
χ dx =

∫

Ω
∇ · u dx = 0. In general, this is not true

anymore for the numerical approximation χh of χ (where h denotes the diameter of the

largest element in the mesh), and we have
∫

Ω
χh dx of the same order like the numerical

error. This is not sufficiently small to guarantee that an approximation uh of u exists

such that ∇·uh = −χh, and thus the numerical method will break down. In the Appendix

we propose an additional projection step which resolves this problem without reducing

the quality of approximation, and we show16 that this is optimal in the sense of a finite

elements approximation.

The mesh adaptation is an iterative process : a first guess of the solution at time tn+1

is calculated on a uniform coarse mesh, and is used to generate a new mesh on which a

better approximation of the solution can be calculated. When iterated, this procedure
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reaches a fixed point corresponding to the best approximation space of a given dimension

for the solution.22 This process is handled by the mesh generator bamg
23 for both Φ and

u, using refinement ratios of order 103 between the coarsest triangle size and the finest

one. Figure 2 shows the mesh refined around the vorticity-sheets of a dense intruding

front. The whole of the finite elements resolution is embedded in the open-source C++

environment rheolef.24

V. Asymptotic behaviour at the release

Following Stoker,8 who obtained an asymptotic solution for the dam-break flow, we

have conducted an analytical study of the onset of the lock-exchange flow in the case

when α tends to infinity, noting that, away from the walls, viscous effects are negligible

in the limit t → 0. The boundary conditions are shown in Figure 1b, and in addition we

suppose that the left boundary is at the infinity. Also, we suppose that the side walls

of the channel allow a perfect slip and thus that the solution is spanwise-invariant (in z

direction). Note that since we neglect %`, only the left part of the domain Ω− is considered

in the calculation. Because α is then infinity, we do not use the same non-dimensional

form as in Section III, but we use U ′ =
√
gh. Thus, in Lagrange representation with

(a, b) the coordinates corresponding to the initial positions of the particles, if we denote

X(a, b; t) and Y (a, b; t) the displacement of the particles and p(a, b; t) the pressure, the

Euler equations can be rearranged such that:

XttXa + (Ytt + 1)Ya + βpa = 0 (7a)

XttXb + (Ytt + 1)Yb + βpb = 0 (7b)

XaYb −XbYa = 1, (7c)

in which the only dimensional quantities are the pressure and β = h/%dU
′2.

The initial conditions correspond to the gate in Figure 1 with the fluid at rest, so that

a Taylor expansion of the displacements around t = 0 gives X(a, b; t) = a + γt2 + o(t2)
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and Y (a, b; t) = b + δt2 + o(t2), and keeping the O(t2) terms in (7):

2γ(1 + γat
2) + (2δ + 1)δat

2 + βpa = 0 (8a)

2γγbt
2 + (2δ + 1)(1 + δbt

2) + βpb = 0 (8b)

γa + δb = 0 (8c)

Summing equations (8a) and (8b), and taking the derivates with respect to b and a

respectively, yields

γb − δa = 0. (9)

We recognize in equations (8c,9) the Cauchy-Riemann conditions, thus, it is necessary

and sufficient that the complex function δ + iγ be an analytic function of a + ib in its

domain so that γ, δ are solutions of the problem.

Now we make use of the boundary conditions. Obviously, δ vanishes for b = 0 and

b = 2. For a = 0, using the free surface condition p = 0, the first order term in (8b)

gives δ = −1/2, and for a → −∞ we have δ → 0. From equations (8c,9), we infer that

∇γ · n∂Ω− = 0.

Since the system (8c,9) implies that ∆γ = ∆δ = 0 in Ω−, there cannot be more than

one solution for δ, and γ is unique up to a constant. This constant is easy to determine,

since there must be no influx from infinity, so
∫ 2

0
γ(a, b)db tends to 0 when a tends to

infinity.

Using the mapping w̄ = cosh[π(−a+ ib)/2], Stoker exhibits an analytic function which

enforces the boundary conditions:

δ + iγ = − i

2π
log

w̄ − 1

w̄ + 1
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Finally we obtain the initial acceleration:

2γ(a, b) =
1

π
ln

(

cos2 πb
4

+ sinh2 πa
4

sin2 πb
4

+ sinh2 πa
4

)

(10)

2δ(a, b) = − 2

π
arctan

(

sin πb
2

sinh πa
2

)

(11)

The acceleration is independent of %d, but depends only on U ′2/h = g. There is a singu-

larity in the acceleration at the junction points between the free surface and the walls.

This of course would be damped by viscous forces, nevertheless we can expect a strong

boundary layer at these points. Moreover, since the viscous effects propagate as νt, we

can compare the velocity profile of the solution of a viscous model with the analytical

results outside the boundary-layer.

In Figure 3 we have plotted the velocity obtained from asymptotic theory of the a = 0

particles at time t. For comparison, we have included the velocity of the particles at x = 0

at the same instant25 obtained from a numerical simulation with α = 79. Figure 3 shows

that the numerical error is small.

VI. Results and comparison with experiments

A. Evolution of front positions

In order to validate the numerical simulations presented in this paper, the conditions

of the experiments of Gröbelbauer et al. were reproduced as closely as possible. No-

slip boundary conditions, which are known to be the relevant conditions for gas-solid

interfaces, were used for all boundaries, except when specified otherwise (see Figure 9).

The parameters of seven of these experiments reproduced by numerical simulation are

shown in Table 1. The characteristic Reynolds number of these flows was calculated with

the viscosity µ` and density %` of the lighter gas, Re = %`Uh/µ`. Since the dynamic

viscosity is nearly invariant, the Reynolds number for a given density ratio α is directly
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proportional to %` and, therefore, differs by nearly an order of magnitude, depending

on whether the light gas is air or helium. It was found that for the large density ratio

flows presented here, the influence of the characteristic Reynolds number on the front

progression remains noticeable up to large values of Re. This is seen in Figure 4, where

the Froude number variation with Reynolds number is shown for two density ratios α

(α = 6.23 and α = 20.6) for the light and dense fronts. Values obtained by Birman et al.4

for α = 1.5 are included for comparison. For this reason, additional numerical simulations

were carried out for different values of α, keeping the kinematic viscosity of the light fluid

unchanged (equal to the kinematic viscosity of air), so that the characteristic Reynolds

number in these simulations varies like
√
α.

The flow is two-dimensional except for the instability at the leading edge, giving rise

to the so-called lobe-and-cleft structure, and, possibly, for the boundary layer instability

of the dense intrusion when α is large. The Kelvin-Helmholtz instability at the interface is

mainly a two-dimensional process but three-dimensional structures at a smaller scale are

known to develop as well. All these three-dimensional motions resulting from instabilities

can be assumed to have a negligible effect on the exchange flow and the simulations using

the Boussinesq approximation conducted by Härtel et al.2 support this assumption. This

justifies to restrict our Direct Numerical Simulations to two-dimensions. The advantage

of this restriction is its much lower computational cost, thus enabling us to use much finer

meshes than in a three-dimensional simulation.

In Figure 5, we compare the numerical results obtained with the constant dynamic

viscosity model (λ = 1) with the experimental results of Gröbelbauer et al. For the light

front the agreement between the arrivals of the simulated and the experimental fronts

is very good. For the dense front, however, a nearly constant shift in time between the

calculated and measured front arrivals is observed (Fig. 5b). Possible explanations for

this time shift are either a large numerical inconsistency in time around t = 0 or a time

lag in the measurements. The first hypothesis is eliminated by the asymptotic study

of the onset of the lock-exchange carried out in section V, showing that the numerical
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solution does fit the analytical prediction. Thus, we are left to suppose that there is

either a uniform time lag in the measured arrival time of the front, which may be due to

a detection problem, or that the time shift is due to the opening of the gate. Gröbelbauer

et al. claim that its manual opening was fast enough and did not induce a large scatter in

their measurements, but their chief concern was the established front velocity and not the

initial acceleration. One referee pointed out that the front detection probes were located

at a distance from the floor or the ceiling amounting to 25% of the total height. The

foremost front considered in the numerical results may, therefore, have a consistent lead

over the front position detected by the probes. This may not explain the whole difference

but would account for part of it.

B. Variation of Froude number with density ratio

In Figures 6 and 7, we compare experimental and numerical Froude numbers, Fr` =

U`/
√
gh and Frd = Ud/

√
gh, of both the light and dense fronts for different density ratios.

We use the same density parameter as the one introduced by Gröbelbauer et al., that is

%∗ =

√

%d − %`

%d + %`

.

Since the Froude number only accounts for the established velocity of the front, the shift

in front arrival between numerical and experimental results has no effect.

It is seen in Figure 6 that, for the light front, the constant dynamic viscosity model

(λ = 1) is in close agreement with the experiments of Gröbelbauer et al.. It is interesting

to note that both the numerical and experimental results concerning Fr` deviate from

the straight line %∗/
√

2. Nevertheless, the numerical results carried to α = 59 show that

when Re is large, Re = (%air

√
gh/µair)

√
α (that is keeping the same light fluid), the non-

dissipative limit Fr∞` = 1/
√

2 is approached. The Froude number values obtained for

large α and for Reynolds numbers corresponding to experiments are only slightly lower.

In the same figure, we show the results obtained with the constant kinematic viscosity
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model (λ = 1 + αΦ); this increases the dense fluid viscosity by the density ratio α + 1.

The results indicate that this model is clearly not consistent with the experiments by

Gröbelbauer et al. and neither approaches the asymptotic limit; the velocity is strongly

reduced by the increase of viscosity of the dense fluid. The results come actually closer to

the experimental observations of Keller and Chyou9 where viscous effects are important.

Figure 7 shows that for the dense front the constant kinematic viscosity model (λ =

1+αΦ) as well as the dynamic viscosity model (λ = 1) for Reynolds numbers corresponding

to the experiments of Gröbelbauer et al.fit closely the experiments. The simulations with

larger Re (%` = %air) and constant dynamic viscosity give slightly higher values of Frd

when α is large. The data points can be closely fitted by a power law of the form

Frd = Fr∞d [1 − (1 − %∗)n] .

From the logarithmic plot shown in Figure 8a, it is seen that the high Reynolds number

results fall on a straight line over nearly two decades when Fr∞d = 2
√

2 and n = 0.3. The

lower Reynolds number results, including the experimental points, are better approxi-

mated by Fr∞d = 1.8
√

2 and n = 0.3. These results imply that when the Reynolds number

is sufficiently large, the dense front can be considered to be non-dissipative in the sense of

Stoker.8 Therefore, at large Reynolds number friction in the boundary layer must remain

negligibly small.

In order to clarify the importance of the wall boundary layers at the top and bottom

of the channel we performed calculations for the same density ratio (α = 20.6) with

slip boundary conditions on the channel walls. The results are presented in Figure 9

where the non-dimensional dense and light front velocities are plotted as function of non-

dimensional distance xd. It is seen from this Figure that when there is a free slip on

the wall the established dense front velocity is found to be practically the same for both

viscous models λ = 1 and λ = 1 + αΦ. Furthermore, a no-slip wall boundary condition

has practically no effect on the dense front velocity in the case of the constant dynamic
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viscosity model (λ = 1). On the contrary, for the constant kinematic viscosity model

(λ = 1 + αΦ), the dense front progression is reduced by friction in the wall boundary

layer. The constant kinematic viscosity model increases the effective dynamic viscosity,

hence decreases the effective Reynolds number, in the dense intrusion boundary layer by

µd = (α + 1)µ`. Consequently, the wall shear-stress increases from τµ = 1/Re ∂ux/∂y

when λ = 1 to τν = (α + 1)/Re ∂ux/∂y if λ = 1 + αΦ. Thus, it can be concluded that

the experimental results of Gröbelbauer et al. are probably affected by non-negligible wall

friction when α & 10. In the calculations with the constant dynamic viscosity model and

Reynolds number larger than the experimental values, wall friction is negligible.

For the light intrusion front Figure 9 shows that for the constant dynamic viscosity

model the wall boundary-condition has practically no effect on the front velocity; the

velocity is nearly the same with and without wall slip. The constant kinematic viscosity

model does not change the wall conditions but increases the viscosity of the displaced

dense fluid.

An interesting feature of the flow is the interfacial instability behind the two fronts

exhibited by the numerical results. Images of the intrusions are shown in Figure 10 for

three different dense front positions and four density ratios. These images show that

in the Boussinesq limit (α = 0.11) the flow is practically symmetric and the interfacial

instability is located in the central part of the flow. The start-up rolls are also clearly

visible. With increasing density ratio, the instability moves more and more to the dense

side and even up to the front (see images for α = 20.6 and 39), which is in agreement

with the stability analysis of Benjamin7; the light front gets more stable with increasing

density ratio. The decrease of the thickness of the unstable interface (decrease in size of

the Kelvin-Helmholtz billows as well as of the start-up rolls) with increasing density ratio

is most likely the reason why the limit of Frd = 2
√

2 is approached in spite of dissipation

at the interface; as the density ratio goes to infinity, the ratio of energy dissipation rate

to the kinetic energy flux of the dense intrusion goes to zero. For this limit to be reached,

the dissipation in the wall boundary layer must also be negligible, which is the case for
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large Reynolds number (Figure 9) and as long as the boundary layer remains laminar.

VII. Conclusions and further discussions

The direct numerical simulations presented in this paper are, to our knowledge, the

first simulations of exchange flows of miscible fluids of very large density ratios. The

difficulty of the numerical simulation of such flows are exposed and an appropriate nu-

merical scheme is designed. A finite elements discretization is used, allowing a dynamic

mesh adaptation which is an essential feature in the simulations of this type of flow. The

results concerning front velocities and the related Froude number variation with density

ratio are in good agreement with the experiments by Gröbelbauer et al.5 which covered

density ratios %d/%` ≤ 21.6. In addition, the numerical simulations were extended to den-

sity ratios of 100 and allowed to establish more definitely the dependency of the Froude

numbers Frd and Fr` on the density parameter %∗. A new, empirical law for the variation

of the Froude number of the dense front with the density parameter is proposed.

It is found that the two fronts have a different sensitivity with respect to the viscosity

model used. While the light front requires a constant dynamic viscosity model which

corresponds to the physical properties of the fluids, the dense front is also fairly well

simulated with a constant kinematic viscosity model. An explanation for this behaviour

is proposed which relies on the wall boundary-layer in the case of the dense front and on

the effective viscosity of the displaced dense fluid by the light front.

In order to see why the interface of the light intrusion is more stable, it is of interest

to evaluate the interfacial Richardson number Ri = g∆i%/%i δi/(∆iU)2, where δi is the

interfacial shear layer thickness, ∆iU and ∆i% are respectively the velocity and density

changes across the shear layer and %i is the mean interfacial density. Behind the light front,

∆iU = C1U` ' C1

√

gh/2 %∗ and ∆i%/%i ' 2(%∗)2, which gives Ri` ∼ δi/h when C1 ∼ 2.

Since δi/h is of order 10−1, with δi increasing somewhat with the density ratio, Ri` is of

order 10−1 or less. The light intrusion interface should, therefore, be weakly unstable but
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gets more stable with increasing %∗. This is consistent with Benjamin’s stability analysis.7

At the dense side, ∆iU = C2Ud = C22
√

2gh(1 − 4
√

1 − %∗), with C2 decreasing from 2 to

about 1.2 as the density ratio increases, and again ∆i%/%i ' 2(%∗)2. The dense intrusion

Richardson number is, therefore, Rid = (%∗)2δi/
[

4hC2
2 (1 − 4

√
1 − %∗)2

]

. When %∗ � 1, we

have C2 = C1 ' 1, giving Rid = Ri` ∼ δi/h by Taylor expansion. As %∗ goes to 1, C2 grows

close to 1 and Rid tends to δ/4h. The dense intrusion interface becomes more unstable as

the density ratio increases. This is also in agreement with Benjamin’s stability analysis.7

Furthermore, the coherent structures move more and more with the dense front velocity

with increasing density ratios, with the tendency of the structures to move closer to the

front as seen in Figure 10.

Because of wall friction and interfacial instability the intrusions are strictly speaking

always dissipative. Nevertheless, Figure 11 indicates that when α is small (α ≤ 0.5),

both currents would be loss free in the sense of Benjamin and of Keller and Chyou; the

current depth is equal to h (half the channel height). At large values of α, the light

current continues to occupy close to half the channel depth (Figure 11b) and when the

Reynolds number is sufficiently large the loss-free Benjamin limit Fr∞` is approached; the

interfacial instability is inhibited and the friction in the boundary layer is negligible. On

the other hand, the dense current decreases in height and approaches the loss free Stoker

solution Fr = 2
√

2. This means that when the Reynolds number is large the losses due

to boundary layer friction and interfacial instability are also negligibly small in the dense

current.

Concerning the diffusion, it is of interest to point out that the assumption that F is a

constant (see section III) overestimates the diffusion of light fluid into the dense one, so

that the density gradient is reduced. This has, however, little effect on the value of the

Richardson number, hence the interfacial instability, because ∆i%/%i ∼ 1. Simulations

with F (Φ) = 1/(1 + αΦ) for the case α = 20.6 support this conclusion.
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Appendix. Numerical scheme

1. Discretisation in time

The method of characteristics consists in approximating the total derivative
(

∂
∂t

+ u · ∇
)

by a finite difference in time along the pathlines of the flow. First we define the pathlines

with a mapping X(x, t; t+ τ) between the fluid particles located at x in Ω at time t and

the position these reach when advected by the fluid velocity u over a time-span τ :

X(x, t; t+ τ) = x +

∫ t+τ

t

u(X(x, t; s), s)ds (A1)

Then it is easily shown that

(

∂

∂t
+ u · ∇

)

f(x, t+ ∆t) =
f(x, t+ ∆t) − f(X(x, t+ ∆t; t), t)

∆t
+O(∆t). (A2)

Thus, if we can calculate Xn an approximation of X(·, tn + ∆t; t), then we can define an

implicit Euler scheme between tn and tn+1 = tn + ∆t using this equality.

We cannot apply directly (A1) since we have used the unknown velocity u(x, t + τ)

for τ ∈ [0,∆t], while we only know u(x, t), but we can calculate

Xn = x −
∫ t+∆t

t

u(X(x, t; s), t)ds = X(x, t+ ∆t; t) +O(∆t2).

This does not affect the order of approximation in (A2). Using this, equation (4) yields a

Poisson-like, classical problem, and equations (5, 3) a Stokes-like problem.

2. Semi-discrete algorithm

We will restrict ourselves here to the case of closed boundaries (such that u|∂Ω = 0 and

∂Φ/∂n = 0), which is not very stringent since many variable-density problems occur in

such configurations. A slip condition would be a straightforward extension of this scheme,

but would make the notations superfluously complicated. Thus we will search the solution

(Φ,u, p) in V ×V0
d×Q, with V = H1(Ω), V0 = H1

0 (Ω) and Q =
{

q ∈ L2(Ω),
∫

Ω
qdx = 0

}

.
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χ is an intermediate variable in V which stands for −∇ · u.

The variational formulation is written in terms of the multilinear forms:

a(Φ,u, v) = 1
∆t

(u, (1 + αΦ)v) + 1
Re

(

2 (Du, λ(Φ)Dv) − 2
3
(∇ · u, λ(Φ)∇ · v)

)

b(v, q) = − (q,∇ · v)

c(Φ, ψ) = 1
∆t

(Φ, ψ) + 1
ReSc

(∇Φ,∇ψ)

Now we discretize the problem by choosing finite element spaces Vh and Qh for the

approximation of V and Q.

Algorithm

Initialization: n = 0. Choose Φ0
h some arbitrary function in Vh, with Φ0

h(x) ∈

[0, 1], a.e. x ∈ Ω and ∇Φ0
h · n∂Ω = 0, a.e. x ∈ ∂Ω, and u0

h in V d
0,h.

Loop: n ≥ 0, assuming (Φn,un) are given.

• Step 1: Calculate Xn(·) with:

Xn(x) = x − ∆tun
h

(

x − ∆t

2
un

h(x)

)

(A3)

• Step 2: Find Φn+1
h in Vh such that, for all ψh ∈ Vh,

c(Φn+1
h , ψh) =

(

Φn
hχ

n +
1

∆t
Φn

h ◦ Xn, ψh

)

. (A4)

• Step 3: Calculate Γn+1
h ∈ Vh, such that, for all ψh ∈ Vh,

(

Γn+1
h , ψh

)

=

(

α

1 + αΦn
h

Φn+1
h − Φn

h ◦ Xn

∆t
, ψh

)

(A5)

• Step 4: Calculate χn+1
h = Γn+1

h − 1
|Ω|
(∫

Ω
Γn+1

h dx
) �

.
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• Step 5: Find (un+1
h , ph) in V d

0,h ×Qh such that,

a(Φn+1
h ,un+1

h , vh) + b(vh, ph)

=
1

∆t
(un

h ◦ Xn, vh) −
(

1 + αΦn+1
h

α
ez, v

)

∀v ∈ V d
0,h (A6a)

b(un+1
h , qh) =

(

χn+1
h , qh

)

∀qh ∈ Qh (A6b)

Step 1 of the algorithm is more complicated than it appears if one considers that we

use unstructured meshes with strong local refinements. This means that the knowledge

of the coordinates of Xn(x) does not give directly the element K of the mesh it belongs

to, and an efficient search algorithm is necessary to determine it. Indeed, if N denotes

the number of elements in our mesh, the search algorithm will be used for each degree

of freedom in the mesh, that is O(N) times per time-step. We propose an algorithm

which allows to keep the overall cost of a time-step in O(N lnN), and consists for a given

mesh in sorting its elements in a localization tree of depth lnN , which allows a O(lnN)

localization for each degree of freedom.

Step 2 is then a classical elliptic equation to solve, a multifrontal LU -type factorization

is used.

Step 3 is straightforward, but as shown in section IV, it does not yield an element of Q,

and thus in general the equation (A6b) has no solution if χn
h = Γn

h. Thus Step 4 performs

an orthogonal projection of Γn
h onto Q. If the Babuška–Brezzi inf-sup condition holds,

this is enough to ensure that equation (A6b) admits solutions. Moreover, this projection

preserves the error because Γn
h can be shown a good approximation of χ(·, tn) which is an

element of Q.

In Step 5 remains a Stokes-like problem, with the difference that the right hand side

of equation (A6b) is not zero. We use an augmented Lagrangian technique with a Uzawa

iterative algorithm for problem (A6) as done in Ref. 26.

In Ref. 16 we prove that this scheme yields optimal error bounds ‖u − uh‖V + ‖Φ −

Φh‖V ≤ C(h2 + ∆t) and that for any ε ≥ 0, for a sufficiently fine mesh and time step we
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have −ε ≤ Φn
h(x) ≤ 1 + ε for any x ∈ Ω and tn ∈ [0, T ]. We also explain the difficulty of

alternatives to the projection step 4.
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17F. Boyer. Écoulements diphasiques de type Cahn-Hilliard. PhD thesis, Université Bor-
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α %∗ U Re ν`
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20.6 0.955 5.51m · s−1 7.49 · 103 R22 and Helium 1.10 · 10−4

5.47 · 104 no experiment 1.51 · 10−5

8.93 0.904 3.63m · s−1 4.93 · 103 Argon and Helium 1.10 · 10−4

2.92 · 104 no experiment 1.51 · 10−5

6.23 0.870 3.03m · s−1 4.12 · 103 Air and Helium 1.10 · 10−4

2.44 · 104 no experiment 1.51 · 10−5

1.99 0.706 1.71m · s−1 1.70 · 104 R22 and Air 1.51 · 10−5

1.18 0.609 1.32m · s−1 1.57 · 104 R22 and Argon 1.26 · 10−5

1.31 · 104 no experiment 1.51 · 10−5

0.38 0.400 0.75m · s−1 7.42 · 103 Argon and Air 1.51 · 10−5

0.11 0.228 0.40m · s−1 4.80 · 103 CO2 and Argon 1.26 · 10−5

Table 1: Values of the density parameter %∗ and Reynolds numbers in the experiments of
Gröbelbauer et al.5 and in the numerical simulations presented here. α = (%d − %`)/%`,
%∗ =

√

(%d − %`)/(%d + %`), U =
√
αgh, Re = %`Uh/µ`, ν` = µ`/%`.
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Figure 6: Froude number of the light front Fr` versus %∗ in experiments and numer-
ical simulations for both viscosity models. +, experimental values; ◦, numerical sim-
ulations with constant dynamic viscosity model (λ = 1) and Re = %airh

√
αgh/µair;

�, numerical simulations with constant kinematic viscosity model (λ = 1 + αΦ) and
Re = %airh

√
αgh/µair; 4, numerical simulations with constant dynamic viscosity model

(λ = 1) and Re = %Heh
√
αgh/µHe. Error bars for the experimental values represent the

discrepancies found between Figures 2 and 6 in the article by Gröbelbauer et al.5 − · −,
joins the theoretical limits for %∗ = 0 and %∗ = 1 according to Fr` = %∗√

2
.
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Figure 7: Froude number of the dense front Frd versus %∗ in experiments and nu-
merical simulations for both viscosity models. For symbols see Figure 6; − · −,
2
√

2 (1 − (1 − %∗)0.3); - - -, 1.8
√

2 (1 − (1 − %∗)0.3).
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Figure 8: Correlation law between Froude number of the dense front Frd and 1 − %∗.
(a), ◦, numerical simulations with constant dynamic viscosity model (λ = 1) and
Re = %airh

√
αgh/µair; − · −, 2

√
2 (1 − (1 − %∗)0.3). (b), +, experimental values; �,

numerical simulations with constant kinematic viscosity model (λ = 1 + αΦ) and
Re = %airh

√
αgh/µair; 4, numerical simulations with constant dynamic viscosity model

(λ = 1) and Re = %Heh
√
αgh/µHe. - - -, 1.8

√
2 (1 − (1 − %∗)0.3).
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Figure 9: Non-dimensional velocities of the dense and light fronts respectively Ud and
U` as functions of the non-dimensional dense front position xd for α = 20.6 and Re =
%airh

√
αgh/µair. Velocity Ud (upper curves): -- --, no-slip boundary condition and λ =

1+αΦ (constant kinematic viscosity); −−, no-slip condition and λ = 1 (constant dynamic
viscosity); − · −, free slip condition and λ = 1 + αΦ; —, free slip condition and λ = 1.
Velocity U` (lower curves): −×−, no-slip condition and λ = 1; —×, free slip condition and
λ = 1.

Figure 9



α
=

0.
11

α
=

1.
99

α
=

20
.6

α
=

39
.0

Figure 10: Non-dimensional vorticity maps for different density ratios and at different
stages in the flow development for the constant dynamic viscosity model λ(Φ) = 1. The
dense front positions are taken the same for the three density ratios.
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Figure 11: (a) and (b), non-dimensional vorticity maps for the steady flow (long times).
(a), α = 0.11, Re = 4.80 · 103 at non-dimensional time t = 8 (t̃ = 3 s); (b), α = 20.6,
Re = 5.47 ·104 at non-dimensional time t = 46 (t̃ = 1.3 s). See Figure 10 for the grayscale
legend. (c), non-dimensional density iso-lines, α = 20.6, Re = 5.47·104 at non-dimensional
time t = 46 (t̃ = 1.3 s).
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