## Introduction -

## Chapter 7

Approximation under equality constraints

## Introduction -

(1) Introduction

## (2) Lagrange multipliers

## (3) Solution to the initial Problem P

(4) Example

## Introduction

In this chapter we consider the following problem of least squares approximation under equality (linear) constraints.

Considering a $(n, p)$ matrix $F(p \leq n)$ of maximal rank $p$ and a vector $y$ in $\mathbb{R}^{n}$, we are looking for a vector $x \in \mathbb{R}^{p}$ that minimizes

$$
\begin{equation*}
f(x)=\|F x-y\|^{2} \tag{1}
\end{equation*}
$$

subject to $m$ linear constraints ( $m \leq p$ ) defined by the linear system

$$
\begin{equation*}
A x=b \tag{2}
\end{equation*}
$$

where $A$ is a $(m, p)$ matrix of maximal rank $m$ and $b$ a vector in $\mathbb{R}^{m}$.

That is, we consider the problem

$$
\begin{equation*}
\min _{A x=b}\|F x-y\|^{2} \tag{3}
\end{equation*}
$$

with $A=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq p}$ and $b=\left(b_{1}, \ldots, b_{m}\right)^{T}$.

## Introduction

Denoting by $v_{j}$ the column vectors of matrix $F$, we reformulate this problem as follows.

## Problem P

Given a vector $y \in \mathbb{R}^{n}$ and a subspace $U=$ $\operatorname{Vect}\left\{v_{1}, \ldots, v_{p}\right\}$ of $\mathbb{R}^{n}$ (where vectors $v_{j}$ are linearly independant) we consider the following problem :
find a vector $x=\sum_{j=1}^{p} x_{j} v_{j} \in U$ that minimizes

$$
\begin{equation*}
f(x)=\left\|\sum_{j=1}^{p} x_{j} v_{j}-y\right\|^{2} \tag{4}
\end{equation*}
$$



$$
\begin{equation*}
\sum_{j=1}^{p} a_{i j} x_{j}=b_{i} \quad \text { for } i=1, \ldots, m \tag{5}
\end{equation*}
$$

## Introduction

More generally, this optimization problem can be stated as follows.

## Problem G

Let $f: U \subset \mathbb{R}^{p} \longrightarrow \mathbb{R}$ and $g: U \subset \mathbb{R}^{p} \longrightarrow \mathbb{R}^{m}$ two $C^{1}$ functions defined on an open set $U$ of $\mathbb{R}^{p}$.
We consider the problem :

$$
\begin{equation*}
\min _{x \in U, g(x)=0} f(x) \quad \text { or } \quad \max _{x \in U, g(x)=0} f(x) \tag{6}
\end{equation*}
$$

In this statement, the constraints are not necessarily linear, but are equality constraints nonetheless.
$f$ is the objective function and $g=\left(g_{1}, \ldots, g_{m}\right)$ is the constraint function.

## Lagrange multipliers -

## (1) Introduction

(2) Lagrange multipliers

## (3) Solution to the initial Problem P

## 4. Example

## Lagrange multipliers

The method of Lagrange multipliers is a strategy for finding the local extrema of a function subject to equality constraints.
Preliminary example. Find extrema of the objective function $f(x, y)=x+y$ subject to the non linear equality constraint $g(x, y)=x^{2}+y^{2}-1=0$.

$$
\min _{(x, y) \in \Gamma} f(x, y) \quad \text { where } \Gamma \text { is the unit circle. }
$$




- 3D analysis : the objective function defines a plane and the constraint a circular cylinder, so that we are looking for the extrema of the 3D intersection curve of these two surfaces in the 3D space.
- However, in practice, the analysis of this optimization problem will be based on 2D tools, and essentially on the level sets of the objective function, which are here straight lines.


## Lagrange multipliers

The method of Lagrange multipliers is a strategy for finding the local extrema of a function subject to equality constraints.
Preliminary example. Find extrema of the objective function $f(x, y)=x+y$ subject to the non linear equality constraint $g(x, y)=x^{2}+y^{2}-1=0$.

$$
\min _{(x, y) \in \Gamma} f(x, y) \quad \text { where } \Gamma \text { is the unit circle. }
$$



## 2D Geometric analysis


$\rightarrow$ Situation at point $m=(x, y)$ shows that a small displacement $m \pm d m$ on the curve $\Gamma$ will increase or decrease the value of the objective function.
$\rightarrow$ Situation at point $m_{1}$ is different : any small displacement on the curve constraint $\Gamma$ can only decrease the value of the objective function which shows that the curve $\Gamma$ is tangent to the level set $\left\{(x, y), f(x, y)=f\left(m_{1}\right)\right\}$ at point $m_{1}$.

## Lagrange multipliers - Main result

Notation :
Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}, x=\left(x_{1}, \ldots, x_{n}\right) \mapsto h\left(x_{1}, \ldots, x_{n}\right)$ be a $C^{1}$ function.
The derivative (or differential) of $h$ at point $a=\left(a_{1}, \ldots, a_{n}\right)$ is the linear form on $\mathbb{R}^{n}$ defined by the Jacobian matrix (equal to the transpose of the gradient of $h$ at point $a$ )

$$
D h(a)=\left(\frac{\partial h}{\partial x_{1}}(a), \frac{\partial h}{\partial x_{2}}(a), \ldots, \frac{\partial h}{\partial x_{n}}(a)\right)=\nabla h(a)^{T} \quad \in \mathbb{R}^{n}
$$

## Proposition 7.1 (Lagrange multipliers)

Let $U$ be an open set of $\mathbb{R}^{p}$ and functions $f, g_{1}, \ldots, g_{m} \in C^{1}(U, \mathbb{R})$.
Let $\Gamma=\left\{x \in U, g_{1}(x)=g_{2}(x)=\cdots=g_{m}(x)=0\right\}$ and let $f_{\Gamma}$ be the restriction of $f$ to $\Gamma$.
If the function $f_{\Gamma}$ has a local extremum at a point $a \in \Gamma$, and if the differential
$D g_{1}(a), \ldots, D g_{m}(a)$ are linearly independent, then there exist real numbers $\lambda_{1}, \ldots, \lambda_{m}$, called the Lagrange multipliers, such that

$$
\begin{equation*}
D f(a)=\lambda_{1} D g_{1}(a)+\cdots+\lambda_{m} D g_{m}(a) \tag{7}
\end{equation*}
$$

In other words, if gradient vectors $\nabla g_{i}(a)$ are linearly independent,

$$
\begin{equation*}
a \in \Gamma, f(a)=\min _{x \in \Gamma} f(x) \quad \Rightarrow \quad \exists \lambda_{1}, \ldots, \lambda_{m}, \quad \nabla f(a)=\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(a) \tag{8}
\end{equation*}
$$

## Lagrange multipliers - Solution to Problem G

## Solution to Problem G

With hypothesis of proposition 7.1, solutions of the optimization problems G

$$
\min _{x \in U, g(x)=0} f(x) \quad \text { or } \quad \max _{x \in U, g(x)=0} f(x)
$$

are solutions (but not necessarily all the solutions) of the following system in the variables $x=\left(x_{1}, \ldots, x_{p}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$

$$
\left\{\begin{align*}
\nabla f(x) & =\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(x)  \tag{9}\\
g(x) & =0
\end{align*}\right.
$$

## Lagrangian - another formulation of the solution

Relation between the gradient of the objective function $f$ and the gradients of the constraint functions $g_{i}$ naturally leads to introduce a new function known as the Lagrangian function

$$
\begin{equation*}
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} g_{i}(x), \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right) \tag{10}
\end{equation*}
$$

Therefore, solutions of the optimization problem G are stationary points of the Lagrangian function $L(x, \lambda)$ and can be expressed as the vanishing of the differential of the Lagrangian :

$$
D L(x, \lambda)=0 \Leftrightarrow\left\{\begin{array} { r l } 
{ \frac { \partial L } { \partial x } ( x , \lambda ) } & { = 0 }  \tag{11}\\
{ \frac { \partial L } { \partial \lambda } ( x , \lambda ) } & { = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\nabla f(x) & =\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(x) \\
g(x) & =0
\end{array}\right.\right.
$$

## Lagrange multipliers

## Example

Find extrema of the function $f(x, y)=x y+1$ with the non linear equality constraint $g(x, y)=x^{2}+y^{2}-1=0$.

$$
\left\{\begin{array} { l } 
{ \frac { \partial f } { \partial x } ( x , y ) = \lambda \frac { \partial g } { \partial x } ( x , y ) } \\
{ \frac { \partial f } { \partial x } ( x , y ) = \lambda \frac { \partial g } { \partial x } ( x , y ) } \\
{ g ( x , y ) = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left\{\begin{array}{l}
y=\lambda 2 x \\
x=\lambda 2 y \\
x^{2}+y^{2}-1=0
\end{array}\right.
\end{array}\right.\right.
$$

which leads to $\lambda= \pm \frac{1}{2}$ and to four solutions :

- two maximum at $(\sqrt{2} / 2, \sqrt{2} / 2)$ and $(-\sqrt{2} / 2,-\sqrt{2} / 2)$ (the red points in the figure),
- two minimum at $(\sqrt{2} / 2,-\sqrt{2} / 2)$ and $(-\sqrt{2} / 2, \sqrt{2} / 2)$ (the blue points in the figure).




## Solution to the initial Problem P-

## (1) Introduction

(2) Lagrange multipliers
(3) Solution to the initial Problem P

## 4 Example

## Solution to the initial Problem P

As stated in the introduction in (4) \& (5) we consider the problem P

$$
\min _{A x=b}\left\|\sum_{j=1}^{p} x_{j} v_{j}-y\right\|^{2}
$$

which leads to find the stationary points of the following Lagrangian function

$$
\begin{equation*}
L(x, \lambda)=\frac{1}{2}\left\|\sum_{j=1}^{p} x_{j} v_{j}-y\right\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left(\sum_{j=1}^{p} a_{i j} x_{j}-b_{i}\right) \tag{12}
\end{equation*}
$$

where matrix $A=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq p}$ and vector $b=\left(b_{1}, \ldots, b_{m}\right)^{T}$ represent the constraints and where $y, v_{1}, \ldots, v_{p}$ are given vectors in $\mathbb{R}^{n}$ that characterize the objective function.

- We thus need to solve the following system

$$
\begin{aligned}
& \left\{\begin{array} { l } 
{ \frac { \partial L } { \partial x } ( x , \lambda ) = 0 } \\
{ \frac { \partial L } { \partial \lambda } ( x , \lambda ) = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{rl}
\frac{\partial L}{\partial x_{k}}(x, \lambda) & =0, \quad k=1,2, \ldots, p \\
\frac{\partial L}{\partial \lambda_{i}}(x, \lambda) & =0, \\
i=1,2, \ldots, m
\end{array}\right.\right. \\
& \Leftrightarrow\left\{\begin{aligned}
\left\langle\sum_{j=1}^{p} x_{j} v_{j}-y, v_{k}\right\rangle+\sum_{i=1}^{m} \lambda_{i} a_{i k} & =0, \\
\sum_{j=1}^{p} a_{i j} x_{j}-b_{i} & =0, \quad i=1,2, \ldots, p
\end{aligned}\right.
\end{aligned}
$$

$$
\Leftrightarrow\left\{\begin{array}{lll}
\sum_{j=1}^{p} x_{j}\left\langle v_{j}, v_{k}\right\rangle+\sum_{i=1}^{m} \lambda_{i} a_{i k} & =\left\langle y, v_{k}\right\rangle, & k=1,2, \ldots, p \\
\sum_{j=1}^{p} a_{i j} x_{j} & =b_{i}, & i=1,2, \ldots, m
\end{array}\right.
$$

which leads to solve the $(p+m, p+m)$ linear system

$$
\left(\begin{array}{ccc|ccc}
\left\langle v_{1}, v_{1}\right\rangle & \cdots & \left\langle v_{1}, v_{p}\right\rangle & a_{11} & \cdots & a_{m 1} \\
\vdots & & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & & \vdots \\
\left\langle v_{p}, v_{1}\right\rangle & \cdots & \left\langle v_{p}, v_{p}\right\rangle & a_{1 p} & \cdots & a_{m p} \\
\hline a_{11} & \cdots & a_{1 p} & & & \\
\vdots & & \vdots & & 0 & \\
a_{m 1} & \cdots & a_{m p} & & &
\end{array}\right) \quad\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
\vdots \\
x_{p} \\
\lambda_{1} \\
\vdots \\
\lambda_{m}
\end{array}\right)=\left(\begin{array}{c}
\left\langle y, v_{1}\right\rangle \\
\vdots \\
\vdots \\
\vdots \\
\left\langle y, v_{p}\right\rangle \\
b_{1} \\
\vdots \\
b_{m}
\end{array}\right)
$$

$$
\Leftrightarrow\left\{\begin{array}{lll}
\sum_{j=1}^{p} x_{j}\left\langle v_{j}, v_{k}\right\rangle+\sum_{i=1}^{m} \lambda_{i} a_{i k} & =\left\langle y, v_{k}\right\rangle, & k=1,2, \ldots, p \\
\sum_{j=1}^{p} a_{i j} x_{j} & =b_{i}, & i=1,2, \ldots, m
\end{array}\right.
$$

which leads to solve the $(p+m, p+m)$ linear system

$$
\left(\begin{array}{c|c}
\left\langle v_{j}, v_{k}\right\rangle & A^{T}  \tag{13}\\
\hline A & 0
\end{array}\right)\binom{x_{j}}{\lambda_{i}}=\binom{\left\langle y, v_{k}\right\rangle}{ b_{i}}
$$

or, more simply

$$
\left(\begin{array}{c|c}
F^{T} F & A^{T}  \tag{14}\\
\hline A & 0
\end{array}\right)\binom{x}{\lambda}=\binom{F^{T} y}{b}
$$

## Example -

## (1) Introduction

## 2 Lagrange multipliers

## 3 Solution to the initial Problem P

(4) Example

## Example - Approximation under integral constraint

## Problem

Consider a strictly increasing sequence of $n$ points

$$
\alpha=t_{1}<t_{2}<\cdots<t_{i}<\cdots<t_{n}=\beta
$$

a given function $f \in C^{0}[\alpha, \beta]$, as well as a family of $p$ linearly independant functions $v_{j} \in C^{0}[\alpha, \beta], j=1,2, \ldots, p$.

We consider the following problem.

Find a function $x(t)=\sum_{j=1}^{p} x_{j} v_{j}(t)$ which minimizes $\sum_{i=1}^{n}\left[x\left(t_{i}\right)-f\left(t_{i}\right)\right]^{2}$ subject to the integral constraint $\int_{\alpha}^{\beta} x(t) d t=b$, where $b$ is a prescribed value.

## Example - Approximation under integral constraint

## Lagrangian modeling

The constraint can be written as follows

$$
\int_{\alpha}^{\beta} x(t) d t=\int_{\alpha}^{\beta} \sum_{j=1}^{p} x_{j} v_{j}(t) d t=\sum_{j=1}^{p} x_{j} \underbrace{\int_{\alpha}^{\beta} v_{j}(t) d t}_{a_{j}}=\sum_{j=1}^{p} a_{j} x_{j}=b
$$

So that our problem is as follows

$$
\sum_{j=1}^{p} a_{j} a_{j}=b \quad \sum_{i=1}^{n}\left[\sum_{j=1}^{p} x_{j} v_{j}\left(t_{i}\right)-f\left(t_{i}\right)\right]^{2}
$$

and we introduce the Lagrangian as in the previous section

$$
L(x, \lambda)=\frac{1}{2} \sum_{i=1}^{n}\left[\sum_{j=1}^{p} x_{j} v_{j}\left(t_{i}\right)-f\left(t_{i}\right)\right]^{2}+\lambda\left(\sum_{j=1}^{p} a_{j} x_{j}-b\right)
$$

## Example - Approximation under integral constraint

## Lagrangian equations

Then, with the notations

$$
y=\left(f\left(t_{1}\right), f\left(t_{2}\right), \ldots, f\left(t_{n}\right)\right)^{T} \quad \& \quad V_{j}=\left(v_{j}\left(t_{1}\right), v_{j}\left(t_{2}\right), \ldots, v_{j}\left(t_{n}\right)\right)^{T}, \quad j=1, \ldots, p
$$

stationary points of the Lagrangian are obtained by solving the linear equations

$$
\left\{\begin{aligned}
\sum_{j=1}^{p} x_{j}\left\langle V_{k}, V_{j}\right\rangle+\lambda a_{k} & =\left\langle y, V_{k}\right\rangle, \quad k=1,2, \ldots, p \\
\sum_{j=1}^{p} a_{j} x_{j} & =b
\end{aligned}\right.
$$

which leads to solve the $(p+1, p+1)$ linear system

$$
\left(\begin{array}{ccc|c}
\left\langle V_{1}, V_{1}\right\rangle & \cdots & \left\langle V_{1}, V_{p}\right\rangle & a_{1} \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & \vdots \\
\vdots & & \vdots & \vdots \\
\left\langle V_{p}, V_{1}\right\rangle & \cdots & \left\langle V_{p}, V_{p}\right\rangle & a_{p} \\
\hline a_{1} & \cdots & a_{p} & 0
\end{array}\right) \quad\left(\begin{array}{c}
x_{1} \\
\vdots \\
\vdots \\
\vdots \\
x_{p} \\
\lambda
\end{array}\right)=\left(\begin{array}{c}
\left\langle y, V_{1}\right\rangle \\
\vdots \\
\vdots \\
\vdots \\
\left\langle y, V_{p}\right\rangle \\
b
\end{array}\right)
$$

Example - Approximation under integral constraint



Polynomial least squares approximation of the function $f(t)=\sin \left(t^{2}-2 t+1\right)+$ $\cos ^{2}\left(t+t^{3}\right)$ (the blue curve) at 9 evenly spaced points.

- Dotted curves : least squares approximation by polynomials of degree 5 .
- Solid curves : least squares approximation by polynomials of degree 5 subject to satisfy the integral of the initial function $f$.

Trigonometric least squares approximation of the function $f(t)=\sin \left(t^{2}-2 t+\right.$ 1) $+\cos ^{2}\left(t+t^{3}\right)$ (the blue curve) at 11 evenly spaced points, by a function of the space $\{1, \cos (2 t), \sin (2 t), \cos (3 t)$, $\sin (3 t)\}$ subject to satisfy the integral of the initial function $f$.
(2) Lagrange multipliers
(3) Solution to the initial Problem P
(4) Example

