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Introduction —

In this chapter we consider the following problem of least squares approximation under
equality (linear) constraints.

Considering a (n, p) matrix F (p < n) of maximal rank p and a vector y in R", we are looking
for a vector x € R” that minimizes

2
fO) = [[Fx =y M
subject to m linear constraints (m < p) defined by the linear system

Ax=b @

where A is a (m, p) matrix of maximal rank m and b a vector in R".

That is, we consider the problem

v, llF =P ©

with A = (a;) andb = (bi,...,bn)".

1<i<m, 1<j<p
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Introduction —

Denoting by v; the column vectors of matrix F, we reformulate this problem as follows.

Problem P
Given a vector y € R" and a subspace U =

Vect{vi, ..., v, } of R" (where vectors v; are li-
nearly independant) we consider the following
problem :

find a vector x = 377 x;v; € U that mini-
mizes

U = vect{vi,...,vp

P 2
F@ =] X 5v | ) |
=1 K<l

olution with constraints

subject to the m linear constraints (m < p)

4
Zai/’xj:bi fori=1,....,m (5
j=1
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Introduction —

More generally, this optimization problem can be stated as follows.

Problem G

Letf :UCR’ — Randg : U C R” — R" two C! functions defined on an open set U
of R”.

‘We consider the problem :

i 6
i Tt R v+ B ©

In this statement, the constraints are not necessarily linear, but are equality constraints none-
theless.
f is the objective function and g = (g1, . . ., gm) is the constraint function.
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Lagrange multipliers —

The method of Lagrange multipliers is a strategy for finding the local extrema of a function

subject to equality constraints.

Preliminary example. Find extrema of the objective function f(x,y) = x + y subject to the
non linear equality constraint g(x,y) = x* +y* — 1 =0.

« ryn)lré r flxy)

function f(x,y) = x+y

e 3D analysis : the objective function de-
fines a plane and the constraint a circular
cylinder, so that we are looking for the ex-
trema of the 3D intersection curve of these
two surfaces in the 3D space.

where I'is the unit circle.

Level sets

e However, in practice, the analysis of this
optimization problem will be based on 2D
tools , and essentially on the level sets of the
objective function , which are here straight

lines. 6/20



Lagrange multipliers —
The method of Lagrange multipliers is a strategy for finding the local extrema of a function
subject to equality constraints.

Preliminary example. Find extrema of the objective function f(x,y) = x + y subject to the
non linear equality constraint g(x,y) = x* +y* — 1 =0.

min _ f(x,y) where I is the unit circle.

(x,y) €T

function f(x,y) = x+y

Level sets

[
00

- 05

15 15 -10 xaxis

2D Geometric analysis
— Situation at point m = (x,y) shows that a small displacement m £ dm on the curve I" will
increase or decrease the value of the objective function.

— Situation at point m; is different : any small displacement on the curve constraint I can
only decrease the value of the objective function which shows that the curve I is tangent to

the level set {(x,y), f(x,y) =f(mi)} at point m; . 710



Lagrange multipliers — Main result

Notation :

Leth : R" - R, x= (x1,...,%:) ~ h(x1,...,%) bea C! function.

The derivative (or differential) of 4 at point a = (ai, . .., a,) is the linear form on R" defined
by the Jacobian matrix (equal to the transpose of the gradient of £ at point a)

Dh(a) = (%(a), %(a),...,gz (@) = Vh(@) € R’

Proposition 7.1 (Lagrange multipliers)

Let U be an open set of R” and functions f, g1, ..., gn € C'(U,R).

LetT = {x € U, gi(x) = g2(x) = - - - = gm(x) = 0} and let fr be the restriction of f to T
If the function fr has a local extremum at a point a € I, and if the differential
Dgi(a),...,Dgmn(a) are linearly independent, then there exist real numbers A\, . .., Ay,

called the Lagrange multipliers, such that
Df(@) = A Dgi(@) + -+ + An Dgu(@) @)

In other words, if gradient vectors Vgi(a) are linearly independent,

ael, fla) = minrf(x) = I, A, Vf(a):; \iVgi(a) (8)

P S

v
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Lagrange multipliers — Solution to Problem G

Solution to Problem G
With hypothesis of proposition 7.1, solutions of the optimization problems G
min f(x) or max f(x)
xeU,gx)=0 xeU,gx)=0

are solutions (but not necessarily all the solutions) of the following system in the variables
x=(x1,...,x)and A = (Ar, ..., An)
= 0
8(x)
Lagrangian — another formulation of the solution
Relation between the gradient of the objective function f and the gradients of the constraint
functions g; naturally leads to introduce a new function known as the Lagrangian function

L(x, ) ng, s A=) (10)

Therefore, solutions of the optimization problem G are stationary points of the Lagrangian
function L(x, \) and can be expressed as the vanishing of the differential of the Lagrangian :

oL m
a(xv )‘) = 0 Vf(x) = Z Ai Vi ()C)

DL(x,\) =0 & < i=1 an
L.\ — o
DY gx) = 0 9/20



Lagrange multipliers —

Example
Find extrema of the function f(x,y) = xy + 1 with the non linear equality constraint
gxy)=x"+y —1=0.

of _ 9 = A2x
8)6( y) - )\ax(x7y) y

of _ (% = x = A2y
ax(x7y) - )‘ax(x7y)

glxy) =0 ¥4y —1=0

which leads to A = :I:% and to four solutions :
— two maximum at (v/2/2,v/2/2) and (—v/2/2, —v/2/2) (the red points in the figure),
— two minimum at (v/2/2, —v/2/2) and (—v/2 /2 V2/2) (the blue pomts in the figure).

Level sets

function f(x,y) = xy + 1

:
7
“
e

10
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@ Solution to the initial Problem P

11/20



Solution to the initial Problem P — (1)

As stated in the introduction in (4) & (5) we consider the problem P

P 2
min H E xjvj—yH
Ax=1b "3

which leads to find the stationary points of the following Lagrangian function

14 m 14
Lix,\) = % Hzxjvjfsz + 3 (Za,-,-xj - b,-) (12)
=1 i=1 =1

where matrix A = (a,-j) and vector b = (by, ... ,bm)T represent the constraints

1<i<m, 1<j<p
and where y, vy, ..., v, are given vectors in R” that characterize the objective function.

e We thus need to solve the following system

OL oL
a7 = —(xA) = 0, k=12,...
ax(x7>‘) 0 axk(x? ) ’ ) £y P
OL = OL
a = —(xA) = 0 i=1,2,...
aA ('x7 A) O aAl (x7 ) ) i b b b m
14 m
<ij"j_)’»vk> +Z)\iaik = 0 k=1,2,...,p
j=1 i=1
PN j )
Zazjxj*bi = 0, i=12,...,m
J=1 12/20



Solution to the initial Problem P — (2)

<y7 Vk>, k:1727"’7p

14 m
E X;j <Vj, Vk> + E i dik
=1 i=1

P
Zaijxj = b, i=12,....m
j=1
which leads to solve the (p + m, p + m) linear system

<V1, V1> ce <VI7 Vp> ap e am1 X1 <y7 V1>

<v,,7 V1> <VP’ v,,) Aip - Omp Xp <y, Vp>
an aip Al b
0
ami cee Amp Am b
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Solution to the initial Problem P — (3)

P m
Soxlviowey + Y Naw = (yw),  k=12...p
j=1 i=1

P
E ajj Xj = b, i=12,....m
=1

which leads to solve the (p + m, p + m) linear system

<vj’ vk> At X; <y7 Vk>
M| b; o
A 0
or, more simply
(51) 6)-(5) s
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Example — Approximation under integral constraint
Problem
Consider a strictly increasing sequence of n points

a=Hn<h< << <t =0,

a given function f € C°[c, /], as well as a family of p linearly independant functions
v € Clo, Bl,j=1,2,...,p.

‘We consider the following problem.

i=1

B
constraint / x(t) dt = b, where b is a prescribed value.
«@

P n 5
Find a function x(r) = Z x; v;(¢) which minimizes Z [x(t,-)—f(t,-)} subject to the integral
=1
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Example — Approximation under integral constraint

Lagrangian modeling
The constraint can be written as follows

8 B P » 8 »
/ x(t)dt:/ ZXjVj(t) dt = xj/ vi(t)ydt = Z axi = b
«a a o : o =1

J=1 < ~
a;

So that our problem is as follows

2
min E [Ex,v,t,f ,-]
P
=1 j=1
E anj:b
=1

and we introduce the Lagrangian as in the previous section

L(x,A) = Z[ijv,t, —f(%) }2+/\(iajxj—b)

i=1 j=1
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Example — Approximation under integral constraint

Lagrangian equations
Then, with the notations

y=(f(n).f(),. . f@)" & V= (un)ovi(n),. ), j=1,p

stationary points of the Lagrangian are obtained by solving the linear equations

<y7 Vk>a k:1727"’7p

p
ij <Vk7 Vj> + Xax
j=1

Il
S

P
E aj Xj
Jj=1

which leads to solve the (p + 1,p + 1) linear system

Vi, viy - (Vi V) | X1 (v, V1)
Vo Vi) o (Vo Vi) | 4 Xp Vo)
a ap 0 A b
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Example — Approximation under integral constraint

2.0

Polynomial least squares approximation
of the function f(f) = sin(f* — 2t + 1) +
cos’(t + 1) (the blue curve) at 9 evenly
spaced points.

— Dotted curves : least squares approxi-
mation by polynomials of degree 5.

— Solid curves : least squares approxima-
tion by polynomials of degree 5 subject to
satisfy the integral of the initial function f.

15

1.0

0.5

0.0

-0.5

2.0

Trigonometric least squares approxima-
tion of the function f(f) = sin(f* — 21 +
1) + cos’(t + 7°) (the blue curve) at 11
evenly spaced points, by a function of
the space {1,cos(21), sin(2¢), cos(31),
sin(31)} subject to satisfy the integral of
the initial function f.

1.01
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