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Background on interpolation — Objective

Objective
Geometrically, Lagrange interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (xi, yi).

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

1.5

2.0

Data : (xi, yi), i = 0, . . . , n
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No uniqueness (in general)
⇒ choice of an appropriate space E to achieve uniqueness

Characterization & construction

Error analysis ...
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Background on interpolation —

Objective
Geometrically, Lagrange interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (xi, yi).

Parametric case :
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Background on interpolation —

Interpolating space E
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Background on interpolation —

Interpolating space E
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→ no solution
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Background on interpolation —

Interpolating space E

0.0 0.5 1.0 1.5 2.0 2.5 3.0
2

0

2

4

6

8

E : polynomials of degree 2
→ unique solution

• Data : 3 points
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Background on interpolation —

Interpolating space E
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Background on interpolation —

Interpolating space E
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Trigonometric functions
E = Vect

{
1, cos(πx), sin(πx), cos(π2 x), sin(π2 x)

}
→ infinity of solutions

• Data : 3 points
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Background on interpolation —

Interpolating space E
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Exponential functions
E = Vect

{
1, x, exp(x), exp(−x)

}
→ infinity of solutions

• Data : 3 points
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Background on interpolation —

Interpolating space E
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Background on interpolation —

Interpolating space E
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Choice of E :
→ Uniqueness
→ Solution easy to evaluate? Cost ?
→ Ability to fit data, etc...

• Data : 3 points
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Background on interpolation —

Interpolating data (1)
Interpolation data from constraints, measurements...
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unknown law

Interpolant Pn such that

Pn(xi) = yi

Interpolation data from a function f
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Background on interpolation —

Interpolating data (2)
Interpolation data from constraints, measurements...
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Background on interpolation —

Interpolating data (3)
Interpolation data from constraints, measurements...
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Assumptions on the underlying
unknown law are necessary for the
qualitative study of the
interpolation process

Interpolation data from a function f
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Properties of the function f allow
qualitative study of the
interpolation process

→ Pn(., f ) is an interpolant of
the function f at points xi
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Polynomial Lagrange interpolation —

Objective : Polynomial Lagrange interpolation consists in determining the
polynomial of the lowest possible degree passing through the points of the dataset.

Data : (xi, yi), 0 ≤ i ≤ n or (xi, f (xi)), 0 ≤ i ≤ n
→ n + 1 distinct interpolation points xi

Interpolating space E : Rn[x] =
{

polynomials of degree ≤ n
}

→ dimRn[x] = n + 1

Problem : find a polynomial

Pn(x) ∈ Rn[x] :
Pn(xi) = yi, 0 ≤ i ≤ n

or identically

Pn(x, f ) ∈ Rn[x] :
Pn(xi, f ) = f (xi), 0 ≤ i ≤ n
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Polynomial Lagrange interpolation —

Existence and uniqueness of a solution
Consider the linear map Φ :

Rn[x]
Φ−→ Rn+1

p −→ Φ(p) =
(
p(x0), p(x1), . . . , p(xn)

)
Proposition 3.1

If points x0, x1, . . . , xn are all distinct, the linear map Φ is bijective.

Proof
The kernel of Φ consists of polynomials of degree less than or equal to n which
cancel at each point xi, thus admitting n + 1 zeros. Consequently this kernel only
contains the zero polynomial and Φ is injective.
Finally, by the rank-nullity theorem

dim (Rn[x]) = dim Ker (Φ) + dim Im (Φ)

the linear map Φ is bijective.
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Polynomial Lagrange interpolation —

Existence and uniqueness of a solution

Proposition 3.2

For any family of n + 1 real numbers y0, y1, . . . , yn, there exists a unique
polynomial p ∈ Rn[x] satisfying the constraints

p(xi) = yi, i = 0, 1, . . . , n.

This polynomial is called the Lagrange interpolating polynomial (or simply, the
interpolating polynomial) of the data (xi, yi).

For example, there exists
– a unique straight line passing through 2 points with distinct abscissa,
– a unique parabola passing through 3 points with distinct abscissa, . . .

It is not required for the ordinates to be distinct : there exists a unique
polynomial in Rn[x] passing through the n + 1 points (xi, yi = 1) where all xi

are distinct.

The unique interpolating polynomial of n + 1 data can be of degree strictly
less than n.
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Implementation — Choice of a basis

Determination of the unique interpolating polynomial
→ depends on the basis selected to express this polynomial :
→ monomial basis : general basis
→ Lagrange basis : specifically dedicated to the Lagrange interpolation
→ Newton basis : specifically dedicated to the Lagrange interpolation

An example :
Monomial basis :

{
1, x
}

P1(x) = y0 x1−y1 x0
x1−x0

+ y1−y0
x1−x0

x
P1(x) = 4− x

Lagrange basis :
{ x−x1

x0−x1
, x−x0

x1−x0

}
P1(x) = y0

x−x1
x0−x1

+ y1
x−x0
x1−x0

P1(x) = 3 x−3
−2 + x−1

2

Newton basis :
{

1, x− x0
}

P1(x) = y0 + y1−y0
x1−x0

(x− x0)

P1(x) = 3− (x− 1)

0 1 2 3 4
0

1

2

3

4

x0 x1

y0

y1
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Monomial form —
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Monomial form — Identification of the interpolant

Let p(x) be a n-degree polynomial expressed in the monomial basis

p(x) = a0 + a1 x + a2 x2 + · · ·+ an xn

The n + 1 interpolation constraints p(xi) = yi lead to the (n + 1)× (n + 1) linear
system 

a0 + a1 x0 + a2 x2
0 + · · ·+ an xn

0 = y0
a0 + a1 x1 + a2 x2

1 + · · ·+ an xn
1 = y1

a0 + a1 x2 + a2 x2
2 + · · ·+ an xn

2 = y2
...

...
...

...
...

a0 + a1 xn + a2 x2
n + · · ·+ an xn

n = yn

which can be written in matrix form
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
1 x2 x2

2 · · · xn
2

...
...

...
...

1 xn x2
n · · · xn

n




a0
a1
a2
...

an

 =


y0
y1
y2
...

yn


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Monomial form — Identification of the interpolant

The matrix of this system is called the Vandermonde matrix. Its determinant (the
Vandermonde determinant) is ∏

0≤i<j≤n

(xj − xi)

which is obviously non zero if and only if the points xi are all distinct (which proves
again the existence and the uniqueness of a solution).

Unfortunately, the numerical resolution of this Vandermonde system is
intricate, costly and numerically unstable.
Indeed, this linear system is ill-conditioned, which means that a small error on
the coefficients or on the second member leads to a major error on the solution
of the system.

In conclusion, the monomial basis is not recommended for the calculation of
the interpolating polynomial.

Note that the evaluation of a polynomial expressed in the canonical basis has
to be performed by means of the Horner scheme.
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Monomial form — Horner scheme

Algorithms involving polynomials, and in particular plotting the graph of a
polynomial function over an interval [a, b], require the evaluation of p(ti) for many
values ti = a + i ∗ (b− a)/N, i = 0, 1, . . . ,N, which justify the interest of
developing efficient algorithms for such evaluations.

Naive algorithm : requires 2n multiplications for the evaluation of p(x).
Let

p(x) = a0 + a1 x + a2 x2 + · · ·+ an xn

#initialization data :
# x = a real number
# a = (a[0],a[1],...,a[n]) = vector of polynomial coeffs
xn = 1
p = a[0]
for i = 1 until n do # n steps

xn = xn * x # 1 multiplication
p = p + a[i] * xn # 1 multiplication

endfor
return p # p = p(x)
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Monomial form — Horner scheme

Algorithms involving polynomials, and in particular plotting the graph of a
polynomial function over an interval [a, b], require the evaluation of p(ti) for many
values ti = a + i ∗ (b− a)/N, i = 0, 1, . . . ,N, which justify the interest of
developing efficient algorithms for such evaluations.

Horner scheme : requires only n multiplications for the evaluation of p(x).
The Horner scheme (also named the Ruffini-Horner’s method) is based on the
following factorization, illustrated here with a polynomial of degree 4

p(x) = a0 + a1x + a2x2 + a3x3 + a4x4

= a0 + x
(

a1 + x
(

a2 + x
(
a3 + x (a4)

)))
#initialization data :
# x = a real number
# a = (a[0],a[1],...,a[n]) = vector of polynomial coeffs
p = a[n]
for i = n-1 until 0 with step = -1 do # n steps

p = a[i] + x * p # 1 multiplication
endfor
return p # p = p(x)
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Lagrange form —
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Lagrange form — Lagrange basis

Lagrange polynomials Li(x) associated with the n + 1 distinct points

x0, x1, x2, . . . , xn,

are defined by
Li(x) =

∏
0 ≤ j ≤ n

j 6= i

x− xj

xi − xj
, 0 ≤ i ≤ n.

For n = 0, the unique Lagrange polynomial is L0(x) = 1, x ∈ R.

2 1 0 1 2 3 4

0.5

0.0

0.5

1.0

k=0
k=1
k=2
k=3
k=4
k=5

The six Lagrange polynomials Lk(x) of degree 5, associated with 6 points uniformly
distributed in the interval [−2, 4].
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Lagrange form — Lagrange basis

Proposition 3.3

For 0 ≤ i, j ≤ n, we have
Li(xj) = δij.

Proposition 3.4 (Lagrange basis)

The n + 1 Lagrange polynomials Li(x), 0 ≤ i ≤ n, form a basis of Rn[x], referred
as the Lagrange basis (relative to points xi or associated with points xi).

Proof

Clearly Li(x) ∈ Rn[x] for each i.
Then, since dimRn[x] = n + 1, we just need to prove that the n + 1 polynomials Li(x) are
linearly independent. Consider thus a linear combination equal to zero :

n∑
i=0

αi Li(x) = 0, ∀ x ∈ R.

For x = xj , 0 ≤ j ≤ n, we have
∑n

i=0 αi Li(xj) =
∑n

i=0 αi δij = αj = 0. We thus deduce that
α0 = α1 = · · · = αn = 0, which proves that polynomials Li(x) are linearly independent and
thus form a basis of Rn[x].
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Lagrange form — Identification of the interpolant

Proposition 3.5

The interpolating polynomial p(x) associated with data (xi, yi) is expressed in the
Lagrange basis as follows

p(x) =

n∑
i=0

yi Li(x).

Proof

A straightforward inspection shows that p(x) ∈ Rn[x] and that p(xi) = yi for i = 0, . . . , n

This polynomial is named the interpolating polynomial in the Lagrange basis.

Despite the simple writing of the interpolating polynomial, the basis of Lagrange is not
always the best suited to calculations.

Indeed, each polynomial Lk(x) depends on the set of all interpolation points xi.

The use of Lagrange basis is relevant when several interpolations associated with the
same interpolation data set xi have to be performed (which means that only data yi

change).

If an interpolation point xi is added or modified, all calculations must be fully resumed.
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Lagrange form — Example

Consider the function f (x) = 4− x− 4 x2 + x3 and the following interpolation data set.

x0 = 1 x1 = 3 x2 = −1 x3 = 2
y0 = f (x0) = 0 y1 = f (x1) = −8 y2 = f (x2) = 0 y3 = f (x3) = −6

We first interpolate f at point x0. Then we successively add interpolation points x1, x2 and x3.
We thus get the three interpolating polynomials Pk(x, f ) (k = 0, 1, 2, 3), associated with data
(xi, f (xi)), 0 ≤ i ≤ k.

P0(x, f ) = y0 L0(x) = y0 = 0 = 0

P1(x, f ) = y0
x− x1

x0 − x1
+ y1

x− x0

x1 − x0

= 0
x− 3
1− 3

+ (−8)
x− 1
3− 1

= 4− 4x

P2(x, f ) = y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ y1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ y2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

= 0
(x− 3)(x + 1)

−4
+ (−8)

(x− 1)(x + 1)

8
+ 0

(x− 1)(x− 3)

8
= 1− x2

P3(x, f ) = y0
(x− x1)(x− x2)(x− x3)

(x0 − x1)(x0 − x2)(x0 − x3)
+ y1

(x− x0)(x− x2)(x− x3)

(x1 − x0)(x1 − x2)(x1 − x3)

+ y2
(x− x0)(x− x1)(x− x3)

(x2 − x0)(x2 − x1)(x2 − x3)
+ y3

(x− x0)(x− x1)(x− x2)

(x3 − x0)(x3 − x1)(x3 − x2)
= 4− x− 4x2 + x3
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Lagrange form — Example

Consider the function f (x) = 4− x− 4 x2 + x3 and the following interpolation data set.

x0 = 1 x1 = 3 x2 = −1 x3 = 2
y0 = f (x0) = 0 y1 = f (x1) = −8 y2 = f (x2) = 0 y3 = f (x3) = −6

We first interpolate f at point x0. Then we successively add interpolation points x1, x2 and x3.
We thus get the three interpolating polynomials Pk(x, f ) (k = 0, 1, 2, 3), associated with data
(xi, f (xi)), 0 ≤ i ≤ k.

Notice that P3(x, f ) = f (x), which is natural since these two polynomials of degree 3
coincide in 4 distinct values
There is no apparent link in polynomial expressions of Pk(x, f ) and Pk+1(x, f ) in
Lagrange basis
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function f

P1(x, f ) = 4− 4x P2(x, f ) = 1− x2 P3(x, f ) = 4− x− 4 x2 + x3
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Lagrange form — Additional properties

Proposition 3.6 (Additional properties of Lagrange polynomials)

1. Partition of unity :
n∑

i=0

Li(x) = 1

2. For 1 ≤ j ≤ n :
n∑

i=0

xj
i Li(x) = xj

3. For 1 ≤ j ≤ n :
n∑

i=0

(x− xi)
j Li(x) = 0

4. Derivatives for 0 ≤ i ≤ n :

L′i (x) = Li(x)

n∑
j = 0
j 6= i

1
x− xj

=
1

n∏
j = 0, j 6= i

(xi − xj)

n∑
j = 0
j 6= i

(
n∏

k = 0
k 6= i, j

(x− xk)

)

(1)
Specify the values of the derivatives L′i (xi) and L′i (xj), j 6= i.

25/77



Newton form —

1 Background on interpolation

2 Polynomial Lagrange interpolation

3 Implementation

4 Monomial form

5 Lagrange form

6 Newton form

7 Error bounds in Lagrange interpolation

8 Chebyshev points

9 Convergence

10 Parametric interpolation

26/77



Newton form — Newton basis

Newton polynomials associated with the n + 1 distincts points x0, x1, x2, . . . , xn, are
defined as follows :

N0(x) = 1,
N1(x) = x− x0,

N2(x) = (x− x0)(x− x1),

...
Nn(x) = (x− x0)(x− x1) · · · (x− xn−1).

These polynomials are thus determined by the first polynomial N0(x) and the
recurrence relation

Nk+1(x) = (x− xk) Nk(x), k = 0, 1, . . . , n− 1.

Note that the definition of each polynomial Nk(x) does not involve the
interpolation point xk.

In particular, point xn does not participate in the definition of the whole base.
But of course, the point xn will contribute to the computation of the
interpolation polynomial with respect to the Newton base.
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Newton form — Newton basis

Proposition 3.7 (Newton basis)

Newton polynomials
Ni(x) , 0 ≤ i ≤ n,

form a basis of Rn[x], referred as the Newton basis relative to (or associated with)
points xi.

Proof

Since dimRn[x] = n + 1, we just need to prove that the n + 1 polynomials Ni(x) are linearly
independent. Consider thus a linear combination equal to zero for all x

n∑
i=0

αi Ni(x) = 0, ∀ x ∈ R.

For x = x0, we get
∑n

i=0 αi Ni(x0) = α0 = 0.
Then, considering successively values x1, x2, . . . , xn, we deduce that
α1 = α2 = · · · = αn = 0, which proves that the family of polynomials Ni(x) is linearly
independent and thus is a basis of Rn[x].
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Newton form — Identification of the interpolant

Objective : determination of the coefficients δ0, δ1,. . .,δn such that the polynomial

Pn(x) = δ0 N0(x) + δ1 N1(x) + δ2 N2(x) + · · ·+ δn Nn(x)

satisfies Pn(xi) = yi, i = 0, 1, . . . , n.

Determination of the first coefficients δ0, δ1, δ2 :

Interpolating polynomial constraints coefficients δk

P0(x) = δ0
0 N0(x)

= δ0
0

P0(x0) = y0 δ0
0 = y0

P1(x) = δ1
0 N0(x) + δ1

1 N1(x)
= δ1

0 + δ1
1 (x− x0)

P1(x0) = y0
P1(x1) = y1

δ1
0 = δ0

0
δ1

1 = y1−y0
x1−x0

P2(x) = δ2
0 N0(x) + δ2

1 N1(x) + δ2
2 N2(x)

= δ2
0 + δ2

1 (x− x0) + δ2
2 (x− x0)(x− x1)

P2(x0) = y0
P2(x1) = y1
P2(x2) = y2

δ2
0 = δ0

0
δ2

1 = δ1
1

δ2
2 =

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
• Calculation detail :

P2(x2) = y2 ⇒ y0 +
y1−y0
x1−x0

(x2 − x0) + δ2
2 (x2 − x0)(x2 − x1) = y2

⇒ δ2
2 (x2 − x0)(x2 − x1)(x1 − x0) = (y2 −y1 + y1 − y0)(x1 − x0)− (y1 − y0)(x2 −x1 + x1 − x0)

= (y2 − y1)(x1 − x0)− (y1 − y0)(x2 − x1)
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Newton form — Identification of the interpolant

Objective : determination of the coefficients δ0, δ1,. . .,δn such that the polynomial

Pn(x) = δ0 N0(x) + δ1 N1(x) + δ2 N2(x) + · · ·+ δn Nn(x)

satisfies Pn(xi) = yi, i = 0, 1, . . . , n.

Determination of the first coefficients δ0, δ1, δ2 (summary) :

order 0 order 1 order 2
x0 y0 = δ0

x1 y1
y1−y0
x1−x0

= δ1

x2 y2
y2−y1
x2−x1

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
= δ2

P2(x) = δ0 .

N0(x)︷︸︸︷
1︸ ︷︷ ︸

P0(x)

+ δ1

N1(x)︷ ︸︸ ︷
(x− x0)

︸ ︷︷ ︸
P1(x)

+ δ2

N2(x)︷ ︸︸ ︷
(x− x0)(x− x1)

︸ ︷︷ ︸
P2(x)
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Newton form — Identification of the interpolant

Objective : determination of the coefficients δ0, δ1,. . .,δn such that the polynomial

Pn(x) = δ0 N0(x) + δ1 N1(x) + δ2 N2(x) + · · ·+ δn Nn(x)

satisfies Pn(xi) = yi, i = 0, 1, . . . , n.

Determination of the first coefficients δ0, δ1, δ2 (summary & notation) :

order 0 order 1 order 2
x0 y0 = δ[x0]

x1 y1 = δ[x1] y1−y0
x1−x0

= δ[x0, x1]

x2 y2 = δ[x2] y2−y1
x2−x1

= δ[x1, x2]

y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
= δ[x0, x1, x2]

P2(x) = δ[x0] .

N0(x)︷︸︸︷
1︸ ︷︷ ︸

P0(x)

+ δ[x0, x1]

N1(x)︷ ︸︸ ︷
(x− x0)

︸ ︷︷ ︸
P1(x)

+ δ[x0, x1, x2]

N2(x)︷ ︸︸ ︷
(x− x0)(x− x1)

︸ ︷︷ ︸
P2(x)
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Newton form — Identification of the interpolant

Interpolation in Newton basis : coefficients determination
� Interpolating data (xi, yi), i = 0, 1, . . .
� Pk(x) is the interpolating polynomial of data (xi, yi), i = 0, . . . , k

Proposition 3.8 (Newton formula)
For any k ≥ 1, we have

Pk(x) = Pk−1(x) + δ[x0, . . . , xk] Nk(x) (2)

= δ[x0] N0(x) + δ[x0, x1] N1(x) + · · ·+ δ[x0, . . . , xk−1] Nk−1(x)︸ ︷︷ ︸
Pk−1(x)

+ δ[x0, . . . , xk] Nk(x)

with coefficients δ[x0, . . . , xj] of the main diagonal of the table of divided differences (of order k) defined
as follows

order 0 order 1 order 2 · · · order k
x0 y0 = δ[x0]
x1 y1 = δ[x1] δ[x0, x1]
x2 y2 = δ[x2] δ[x1, x2] δ[x0, x1, x2]
x3 y3 = δ[x3] δ[x2, x3] δ[x1, x2, x3] δ[x0, x1, x2, x3]
· · · · · · · · ·
xk−1 δ[x0, . . . , xk−1]
xk yk = δ[xk] δ[xk−1, xk] · · · · · · δ[x1, . . . , xk] δ[x0, . . . , xk]

with δ[xj, xj+1, . . . , xj+p] :=
δ[xj+1, . . . , xj+p]− δ[xj, . . . , xj+p−1]

xj+p − xj
, 1 ≤ p ≤ k, 0 ≤ j ≤ k − p
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Newton form — Identification of the interpolant

Proof of Newton formula
Step 1.
Proposition 3.9 (Neville formula)

Let Pi,p(x) be the interpolating polynomial at points xi, xi+1, . . . , xi+p

Pi,p(x) =
x− xi

xi+p − xi
Pi+1,p−1(x) +

xi+p − x
xi+p − xi

Pi,p−1(x) for 1 ≤ p ≤ n
0 ≤ i ≤ n− p

Proof (of Neville formula)

Both sides of Neville formula are of degree p and agree for the p + 1 points xi, xi+1, . . . , xi+p,
which proves the result by uniqueness of the interpolating polynomial.

Step 2.
Proof of relation Pk(x) = Pk−1(x) + δk Nk(x) :

By definition we have Pk(xj) = Pk−1(xj) = yj for j = 0, . . . , k − 1,
which proves that Pk(x)− Pk−1(x) is a multiple of (x− x0) · · · (x− xk−1) = Nk(x).
Finally, by degree analysis we get

Pk(x)− Pk−1(x) = δk Nk(x) with δk ∈ R
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Newton form — Identification of the interpolant

Step 3. Proof of Newton formula by induction on the degree k
� Newton formula has already been verified for k = 0, k = 1, k = 2
� Assume that the formula holds for any interpolating polynomial of degree k − 1, with k − 1 ≥ 0,

which allows to write
P0,k−1(x) = P0,k−2(x) + δ[x0, . . . , xk−1] (x− x0) · · · (x− xk−2)
P1,k−1(x) = P1,k−2(x) + δ[x1, . . . , xk] (x− x1) · · · (x− xk−1)

Then, by Neville’s formula, we get

Pk(x) = P0,k(x) =
x− x0

xk − x0
P1,k−1(x) +

xk − x
xk − x0

P0,k−1(x)

=
x− x0

xk − x0

(
P1,k−2(x) + δ[x1, . . . , xk] (x− x1) · · · (x− xk−1)

)
+

xk − x
xk − x0

(
P0,k−2(x) + δ[x0, . . . , xk−1] (x− x0) · · · (x− xk−2)

)
=

(x− x0)P1,k−2(x) + (xk − x)P0,k−2(x)

xk − x0

+
δ[x1, . . . , xk] (x− x0)(x− x1) · · · (x− xk−1)

xk − x0

+
δ[x0, . . . , xk−1] (x− x0) · · · (x− xk−2)(xk−xk−1 + xk−1 − x)

xk − x0

= · · · · · ·︸ ︷︷ ︸
degreek−1

+
δ[x1, . . . , xk]− δ[x0, . . . , xk−1]

xk − x0︸ ︷︷ ︸
δ[x0,...,xk]

Nk(x) which concludes the proof
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Newton form — Example

Example
Consider the function f (x) = 4− x− 4 x2 + x3 and the following interpolation data set.

x0 = 1 x1 = 3 x2 = −1 x3 = 2
y0 = f (x0) = 0 y1 = f (x1) = −8 y2 = f (x2) = 0 y3 = f (x3) = −6

We determine interpolating polynomials Pk(x, f ) for k = 0, 1, 2, 3, associated with data
(xi, f (xi)), 0 ≤ i ≤ k.

We first calculate the associated divided differences that are noted in that case f [xj, . . . , xj+p]
instead of δ[xj, . . . , xj+p]

order 0 order 1 order 2 order 3
x0 = 1 y0 = 0 = f [x0]

x1 = 3 y1 = −8 = f [x1] −8−0
3−1 = −4 = f [x0, x1]

x2 = −1 y2 = 0 = f [x2]
0−(−8)
−1−3 = −2 = f [x1, x2]

−2−(−4)
−1−1 = −1 = f [x0, x1, x2]

x3 = 2 y3 = −6 = f [x3] −6−0
2−(−1) = −2 = f [x2, x3]

−2−(−2)
2−3 = 0 = f [x1, x2, x3]

0−(−1)
2−1 = 1

= f [x0, . . . , x3]

P0(x, f ) = f [x0] N0(x) = 0
P1(x, f ) = P0(x, f ) + f [x0, x1] N1(x) = 0 + (−4) (x− 1)
P2(x, f ) = P1(x, f ) + f [x0, x1, x2] N2(x) = 0 + (−4) (x− 1) + (−1) (x− 1)(x− 3)
P3(x, f ) = P2(x, f ) + f [x0, x1, x2, x3] N3(x) = 0 + (−4) (x− 1) + (−1) (x− 1)(x− 3) + 1 (x− 1)(x− 3)(x + 1)
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Newton form — Additional properties

Proposition 3.10 (Additional properties of DD)

1. Expanded form :

δ[x0, x1, . . . , xk] =
k∑

j=0

yj

k∏
i=0,i6=j

(xj − xi)

, 0 ≤ k ≤ n.

2. Symmetry : divided differences do not depend on the order of the data, that is

δ[xσ(0), xσ(1), . . . , xσ(k)] = δ[x0, x1, . . . , xk]

for all permutation σ of the set {0, 1, . . . , k}, 0 ≤ k ≤ n.

3. Linearity : if f = λ g + µ h, where g and h are two functions defined on an interval [a, b]
which contains all the points xi, then

f [x0, x1, . . . , xk] = λ g[x0, x1, . . . , xk] + µ h[x0, x1, . . . , xk] , 0 ≤ k ≤ n.

4. Derivatives and mean value theorem.
Assuming that the function f is sufficiently smooth, we have

f [x0, x1, . . . , xk] =
f (k)(ξ)

k!
where ξ ∈ (min(xi),max(xi)) , 0 ≤ k ≤ n.
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Newton form — Exercises

Horner scheme for Newton basis

Exercise 3.1 — Write the Horner scheme for a polynomial expressed in Newton basis.
For this purpose, consider the following factorization of a polynomial expressed in Newton
basis (relative to interpolation points xi)

P3(x) = δ0 N0(x) + δ1 N1(x) + δ2 N2(x) + δ3 N3(x)

= δ0 . 1 + δ1 (x− x0) + δ2 (x− x0)(x− x1) + δ3 (x− x0)(x− x1)(x− x2)

= δ0 + (x− x0)

(
δ1 + (x− x1)

(
δ2 + (x− x2)

(
δ3
)))

#initialization data :
# x = a real number
# d = (d[0],d[1],...,d[n]) = vector of polynomial coeffs (DD)
# xi = (xi[0],xi[1],...,xi[n]) = vector of interpolating points
p = ... # initialization
for ...

...
endfor
return p # p = p(x)
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Newton form — Exercises

Calculation of divided differences

Exercise 3.2 —
1) Write a Python function diffdiv(xi,yi) enabling the computation of divided
differences with a one-dimensional vector delta.
Input data : (xi,yi), i = 0, 1, . . . , n
Output data : delta = (δ[x0], δ[x0, x1], . . . , δ[x0, x1, . . . , xn]︸ ︷︷ ︸

divided differences

, . . . , δ[xn−1, xn], δ[xn]︸ ︷︷ ︸
for later updates

)

2) Write a Python function updateDD(xi,yi,delta,xnew,ynew) enabling the
update of the vector delta of divided differences in case of a new data (xnew,ynew).
Hints : (a) Duplicate the vector yi into the vector delta by inserting a zero between each consecutive
element yi and yi+1, so as to get a vector of size 2n + 1. (b) Take inspiration from the table below, where
each calculated divided difference is stored at its line index.

delta

y0 = δ[x0]
0 ← δ[x0, x1]

y1 = δ[x1] ← δ[x0, x1, x2]
0 ← δ[x1, x2] ...

y2 = δ[x2] ← δ[x1, x2, x3]
0 ← δ[x2, x3] ...

y3 = δ[x3] ← δ[x2, x3, x4]
0 ← δ[x3, x4] ...
.
.
.

.

.

.
0 ...

yn−1 = δ[xn−1] ← δ[xn−2, xn−1, xn]
0 ← δ[xn−1, xn]

yn = δ[xn] 38/77
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Error bounds in Lagrange interpolation — Objective

Error :

En = max
x∈[a,b]

∣∣Pn(x, f )− f (x)
∣∣

a = min xi , b = max xi

Choice of interpolation data :
n ∈ N , min

xi ∈[a,b]

(
En
)

= min
xi ∈[a,b]

(
max

x∈[a,b]

∣∣Pn(x, f )− f (x)
∣∣)

Optimal distribution : Chebyshev points

Convergence :
lim

n→∞
En ?
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Error bounds in Lagrange interpolation — Main result

Proposition 3.11 (error bounds in Lagrange interpolation)

Let f ∈ Cn+1[a, b], n + 1 distinct points x0, x1, . . . , xn in [a, b] and Pn(x, f ) the
interpolating polynomial of f associated with these data points. Then,

∀ x ∈ [a, b], ∃ ξx ∈ ]a, b[, f (x)− Pn(x, f ) =

∏i=n
i=0(x− xi)

(n + 1)!
f (n+1)(ξx)

Thus,

∀ x ∈ [a, b] ,
∣∣ f (x)− Pn(x, f )

∣∣ ≤ ∣∣∏i=n
i=0 (x− xi)

∣∣
(n + 1)!

max
a≤ξ≤b

∣∣ f (n+1)(ξ)
∣∣ (3)

Finally, with Πn+1(x) =
i=n∏
i=0

(x− xi), we get

∣∣∣∣ f − Pn(., f )
∣∣∣∣ := max

x∈[a,b]

∣∣∣ f (x)− Pn(x, f )
∣∣∣ ≤ ∣∣∣∣Πn+1

∣∣∣∣
(n + 1)!

∣∣∣∣ f (n+1)∣∣∣∣ (4)
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Error bounds in Lagrange interpolation — Main result

Proof (error bounds in Lagrange interpolation)

Let x ∈ [a, b] be a real value different from each of the points xi, and consider the function

φx(u) = f (u)− Pn(u, f )−
(

f (x)− Pn(x, f )
) ∏i=n

i=0(u− xi)∏i=n
i=0(x− xi)

, u ∈ [a, b],

which is clearly of class Cn+1 on [a, b].
Function φx vanishes at each point xi and at point x, and thus admits n + 2 zeros in the
interval [a, b]. Therefore, with Rolle’s theorem we deduce by induction that the function
φ(n+1) vanishes at one point ξ in ]a, b[, that is ∃ ξ ∈ ]a, b[ , φ

(n+1)
x (ξ) = 0.

The (n + 1)-th derivative of the polynomial Pn(u, f ) is identically zero and the (n + 1)-th
derivative of the (n + 1)-degree polynomial

∏i=n
i=0(u− xi) is constant and equal to (n + 1)! ,

so that

φ(n+1)
x (ξ) = f (n+1)(ξ)−

(
f (x)− Pn(x, f )

) (n + 1)!∏i=n
i=0(x− xi)

= 0 ,

which leads to

f (x)− Pn(x, f ) =

∏i=n
i=0(x− xi)

(n + 1)!
f (n+1)(ξ).

This relation is also valid for x = xi , i = 0, 1, . . . , n, which concludes the proof.
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Error bounds in Lagrange interpolation — Main result

Formula ∣∣∣∣ f − Pn(., f )
∣∣∣∣ := max

x∈[a,b]

∣∣∣ f (x)− Pn(x, f )
∣∣∣ ≤ ∣∣∣∣Πn+1

∣∣∣∣
(n + 1)!

∣∣∣∣ f (n+1)∣∣∣∣
shows that the error depends on the function f and on the norm

∣∣∣∣Πn+1
∣∣∣∣ which is related to

the repartition of the interpolation points xi in the interval [a, b].
If we have no information on the distribution of points xi, the best estimation is∣∣∣∣Πn+1

∣∣∣∣ ≤ (b− a)n+1.

In case of evenly spaced points xi in [a, b], one can prove that∣∣∣∣Πn+1
∣∣∣∣ ≤ (b− a

e

)n+1
.

The best possible distribution of the interpolation points consists in the Chebyshev
points (that will be introduced later) and leads to the optimal estimation∣∣∣∣Πn+1

∣∣∣∣ ≤ 2
(b− a

4

)n+1
,

which represents a substantial gain.
For example, for n = 20 the ratio 2 ( b−a

4 )n+1 / ( b−a
e )n+1 < 6.10−4, so that interpolation at

Chebyshev points significantly improves the accuracy compared with interpolation at evenly spaced
points.
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Chebyshev points — Objective

Error :

En = max
x∈[a,b]

∣∣Pn(x, f )− f (x)
∣∣

a = min xi , b = max xi

Choice of interpolation data :
n ∈ N , min

xi ∈[a,b]

(
En
)

= min
xi ∈[a,b]

(
max

x∈[a,b]

∣∣ f (x)− Pn(x, f )
∣∣)

≤ min
xi ∈[a,b]

∣∣∣∣Πn+1
∣∣∣∣

(n + 1)!

∣∣∣∣ f (n+1)
∣∣∣∣

≤
∣∣∣∣ f (n+1)

∣∣∣∣
(n + 1)!

min
xi ∈[a,b]

∣∣∣∣Πn+1
∣∣∣∣

Convergence :
lim

n→∞
En ?
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Chebyshev points — Objective

Objective : determine the best distribution of interpolation points xi in the interval [a, b] so
as to minimize the norm

∣∣∣∣Πn+1
∣∣∣∣.

We first study the problem on the symmetric interval [−1, 1], from which we then
deduce the solution over any interval [a, b] by an affine transformation.

Statement of the problem :
determine a strictly increasing sequence of n + 1 points xi :

−1 ≤ x0 < x1 < · · · < xn−1 < xn ≤ 1

so as to minimize the norm
∣∣∣∣Πn+1

∣∣∣∣, that is

min
xi

−1 ≤ x0 < · · · < xn ≤ 1

(
max

x∈[−1,1]

∣∣∣(x− x0)(x− x1) · · · (x− xn)
∣∣∣︸ ︷︷ ︸

||Πn+1 ||

)

We will first look at some basic examples (n = 0, n = 1, n = 2). The general solution is
based on Chebyshev 1 polynomials.

1. Pafnuty Lvovich Chebyshev (1821–1894), Russian mathematician.
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Chebyshev points — Basic examples

Basic examples :
Case n = 0 : Π0+1(x) = (x− x0) with x0 ∈ [−1, 1]
Solution : x0 = 0 and Π0+1(x) = x− 0 = x
Case n = 1 : Π1+1(x) = (x− x0)(x− x1) with −1 ≤ x0 < x1 ≤ 1
Solution : x0 = − 1√

2
, x1 = 1√

2
and Π1+1(x) = (x + 1√

2
)(x− 1√

2
) = x2 − 1

2

Case n = 2 : Π2+1(x) = (x− x0)(x− x1)(x− x2) with −1 ≤ x0 < x1 < x2 ≤ 1
Solution : x0 = −

√
3

2 , x1 = 0, x2 =
√

3
2

and Π2+1(x) = (x +
√

3
2 ) x (x−

√
3

2 ) = x3 − 3
4 x
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Π0+1(x)
= x− 0
= x− cos π

2

Π1+1(x)
= (x− 1√

2
)(x + 1√

2
)

= (x− cos π
4 )(x− cos 3π

4 )

Π2+1(x)

= (x−
√

3
2 )(x− 0)(x +

√
3

2 )

= (x− cos π
6 )(x− cos 3π

6 )

(x− cos 5π
6 )

Note that for each optimal solution Πn+1(x), (n = 0, 1, 2), the maximum is reached exactly n + 2 times
over the interval [−1, 1].

47/77



Chebyshev points — Chebyshev polynomials

Chebyshev polynomials : The study of Chebyshev polynomials is presented in the form
of a problem. The Chebyshev polynomial of degree n is defined by

Tn(x) = cos
(
n arccos(x)

)
, x ∈ [−1, 1].

1. Determine T0(x) and T1(x).
2. Compute Tn+1(x) + Tn−1(x) and derive the following recursive relation

Tn+1(x) = 2 x Tn(x)− Tn−1(x), n ≥ 1.

3. Compute the Chebyshev polynomials Tn(x) for n ≤ 5.
4. Deduce that Tn(x) is a polynomial of degree n whose leading term is 2n−1xn for n ≥ 1.
5. Show that Tn(x) is even if n is even and is odd if n is odd.
6. Prove that Tn(x) has n simple roots rk in the interval [−1, 1] and specify these roots as

functions of n and k (the Chebyshev points of order n relative to the interval [−1, 1]).
7. Check that for all x in [−1, 1], |Tn(x)| ≤ 1 , and show that |Tn(x)| = 1 for n + 1 distinct

values of x in [−1, 1]. Specify these values.
8. Demonstrate that Chebyshev polynomials are orthogonal relative to the following scalar product :∫ 1

−1
Tn(x) Tp(x)

1√
1− x2

dx =

 0 if n 6= p
π if n = p = 0
π/2 if n = p 6= 0

Use the change of variable x = cos(u) and we recall that arccos′(x) = −1√
1−x2
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Chebyshev points — Chebyshev polynomials

Chebyshev polynomials : The study of Chebyshev polynomials is presented in the form
of a problem. The Chebyshev polynomial of degree n is defined by

Tn(x) = cos
(
n arccos(x)

)
, x ∈ [−1, 1].

3. Compute the Chebyshev polynomials Tn(x) for n ≤ 5.
6. Prove that Tn(x) has n simple roots rk in the interval [−1, 1] and specify these roots as

functions of n and k (the Chebyshev points of order n relative to the interval [−1, 1]).
7. Check that for all x in [−1, 1], |Tn(x)| ≤ 1 , and show that |Tn(x)| = 1 for n + 1 distinct

values of x in [−1, 1]. Specify these values.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
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0.50

0.75

1.00

n=0
n=1
n=2
n=3
n=4
n=5
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Chebyshev points — Property of minimum norm

Property of minimum norm :
From, the previous study of Chebyshev polynomials we have

Tn(x) = 2n−1
n−1∏
k=0

(x− rk) with rk = cos
(

(2k + 1)
π

2n

)
, 0 ≤ k ≤ n− 1 ,

and ∣∣Tn(x)
∣∣ = 1 ⇐⇒ x = mk = cos

(
k
π

n
)
, 0 ≤ k ≤ n ,

with
Tn(mk) = cos(kπ) = (−1)k .

As already mentioned, the roots rk are called the Chebyshev points of order n relative to the
interval [−1, 1].

Proposition 3.12 (property of minimum norm)

Let h(x) be an n-degree polynomial with leading term equal to 2n−1 xn.
Assuming that h(x) 6= Tn(x), we have

max
x∈[−1,1]

∣∣h(x)
∣∣ > max

x∈[−1,1]

∣∣Tn(x)
∣∣ = 1
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Chebyshev points — Property of minimum norm

Proof (of property of minimum norm)

We proceed by contradiction.

Assume that maxx∈[−1,1]

∣∣h(x)
∣∣ ≤ 1, and consider the polynomial

γ(x) = h(x)− Tn(x) which is of degree n− 1 as the leading terms of h(x) and Tn(x)
are identical.
We then prove that γ(x) admits n roots in [−1, 1], precisely one root in each interval
[mk+1,mk], from which we will deduce the result.

If k is an even integer, we have by our assumption :

γ(mk+1) = h(mk+1)− Tn(mk+1) = h(mk+1)− (−1)k+1 = h(mk+1) + 1 ≥ 0

γ(mk) = h(mk)− Tn(mk) = h(mk)− (−1)k = h(mk+1)− 1 ≤ 0

The result is symmetric if k is an odd integer.
Thus, γ(x) admits (at least) one root ξk in each close interval [mk+1,mk],
0 ≤ k ≤ n− 1.

Assume now that this root ξk is at an edge of the interval [mk+1,mk], let say mk, (with
k 6= 0 and k 6= n). Then, h(mk) = Tn(mk) and mk is an extremum of the polynomial
h(x) and of course of Tn(x), so that γ′(mk) = h′(mk)− T ′n(mk) = 0. Consequently, the
polynomial γ(x) admits a double root in ξk = mk.
The end of the proof consists in a technical counting (with multiplicity) of the distinct
roots. 51/77



Chebyshev points — Main result

Proposition 3.13 (Chebyshev points on [−1, 1])

The best distribution of n + 1 points on the interval [−1, 1] is the sequence of Chebyshev
points of order n + 1 over the interval [−1, 1] :

rk = cos
(

(2k + 1)
π

2n + 2

)
, 0 ≤ k ≤ n ,

and the minimum norm is
∣∣∣∣Πn+1(x)

∣∣∣∣ =
∣∣∣∣∏n

k=0 (x− rk)
∣∣∣∣ =

∣∣∣∣ 1
2n

Tn+1(x)
∣∣∣∣ =

1
2n
.

Proposition 3.14 (Chebyshev points on [a, b])

The best distribution of n + 1 points on the interval [a, b] is the sequence of Chebyshev points
of order n + 1 over the interval [a, b] :

r̂k =
a + b

2
+

b− a
2

cos
(

(2k + 1)
π

2n + 2

)
, 0 ≤ k ≤ n , (5)

and the minimum norm is∣∣∣∣∣∣ n∏
k=0

(x− r̂k)
∣∣∣∣∣∣ =

(b− a
2

)n+1 1
2n

= 2
(b− a

4

)n+1
(6)
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Chebyshev points — Main result

Proof (Chebyshev points on [−1, 1] and [a, b])

By the property of minimum norm, the optimal solution on [−1, 1] is

Πn+1(x) =
1
2n Tn+1(x) =

n∏
k=0

(x− rk) and
∣∣∣∣Πn+1

∣∣∣∣ =
1
2n

The solution over a general interval [a, b] is derived from the affine transformation

[−1, 1] −→ [a, b]
x 7−→ u = ϕ(x)

with ϕ(x) =
a + b

2
+

b− a
2

x.

Given a set of n + 1 distinct values ui in the interval [a, b], associated with n + 1
distinct values xi = ϕ−1(ui) in [−1, 1], we have

n∏
i=0

(u− ui) =

n∏
i=0

(
ϕ(x)−ϕ(xi)

)
=

n∏
i=0

(b− a
2

(x− xi)
)

=
(b− a

2

)n+1 n∏
i=0

(x− xi)

which concludes the proof.
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Chebyshev points — Equioscillation property

Proposition 3.15 (Alternation/equioscillation property)

The optimal solution Πn+1(x) =
1
2n Tn+1(x) = (x− r0)(x− r1) · · · (x− rn) is characterized

by the fact that the norm
∣∣∣∣Πn+1

∣∣∣∣ is reached at exactly n + 2 distinct points in the interval
[−1, 1] : once between each point rk and rk+1 and once at each edge of the interval.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.5

1.0

0.5

0.0

0.5

1.0

1.5
with Chebyshev points over [-1,1]
with disrupted Chebyshev points over [-1,1]

Graphs of Tn+1(x) and of a close polynomial (with disrupted roots)
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Chebyshev points — Example

Example :
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Convergence —

1 Background on interpolation

2 Polynomial Lagrange interpolation

3 Implementation

4 Monomial form

5 Lagrange form

6 Newton form

7 Error bounds in Lagrange interpolation

8 Chebyshev points

9 Convergence

10 Parametric interpolation
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Convergence — Objective

Error :

En = max
x∈[a,b]

∣∣Pn(x, f )− f (x)
∣∣

a = min xi , b = max xi

Choice of interpolation data :

n ∈ N , min
xi ∈[a,b]

(
En
)
≤
∣∣∣∣ f (n+1)

∣∣∣∣
(n + 1)!

min
xi ∈[a,b]

∣∣∣∣Πn+1
∣∣∣∣

Optimal distribution → Chebyshev points

Convergence :

lim
n→∞

En ...
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Convergence — Objective

Objective : Given a function f ∈ Cp[a, b] (p ≥ 0), and considering for each n ∈ N∗ a
sequence of n + 1 distinct points xn,i :

a ≤ xn,0 < xn,1 < · · · < xn,n ≤ b

and the associated interpolating polynomial Pn(., f ) of f at these n + 1 points xn,i, we
consider the question of the convergence of the sequence of the interpolating polynomials
Pn(., f ) to f when n tends to +∞

Convergence may be understood pointwise or uniform

Convergence can only be achieved on a subset of the interval [a, b]

We essentially consider here the following two distributions of interpolation data :

Chebyshev distibution → Chebyshev interpolation
→ Chebyshev interpolating polynomial

Uniform distribution → Uniform interpolation
→ Uniform interpolating polynomial

References : Jean-Pierre Demailly, Analyse numérique et équations différentielles,
Presses universitaires de Grenoble, 2006
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Convergence — Runge’s phenomenon (1)

Runge’s phenomenon
Runge’s phenomenon 2 is a problem of oscillations that occurs (for certain functions) with
uniform interpolation when the degree increases.
Carl Runge noticed the behaviour of polynomial interpolation in 1901 when studying the approximation
of certain rational functions by polynomials. This discovery was surprising at this time because of the
Weierstrass theorem (see chapter on Approximation) it was thought that going to higher degrees would
improve accuracy.

Precisely, the classical example of this Runge phenomenon is provided by the rational
function

fR (x) =
1

1 + 25 x2

defined on the interval [−1, 1], that we interpolate at uniformly distributed data points in the
interval [−1, 1].

2. Carl David Tolmé Runge, 1856-1927, German mathematician
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Convergence — Runge’s phenomenon (2)

Runge’s phenomenon
Runge’s phenomenon is a problem of oscillations that occurs (for certain functions) with
uniform interpolation when the degree increases.
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Uniform interpolation : study of convergence when n→∞
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Convergence — Runge’s phenomenon (3)

Runge’s phenomenon
Runge’s phenomenon is a problem of oscillations that occurs (for certain functions) with
uniform interpolation when the degree increases.

Brief analysis of this phenomenon :

Considering more generally the function fα(x) = 1
α2+x2 , x ∈ [−1, 1] where α > 0 is a parameter, and

denoting by Pn(x, fα) its uniform interpolating polynomial of degree n, we have the following result.

α > α0 ' 0.526 : the sequence Pn(x, fα) converges uniformly to fα on [−1, 1].

α < α0 : the sequence Pn(x, fα) converges uniformly to fα on any close interval contained in the
open interval ]− x̄, x̄[ and diverges in [−1,−x̄[ ∪ ]x̄, 1], where x̄ is solution of the following
equation

(1 + x)
1+x

2 (1− x)
1−x

2 =
√

1 + α2 exp
(
α arctan

( 1
α

))
The classical function fR studied by C. Runge corresponds to parameter α = 1/5 < α0, which allows to
compute the value x̄ ' 0.7266768. The interval (−x̄, x̄) has been plotted in bold green in the previous
figures.
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Convergence — Runge’s phenomenon (4)

Runge’s phenomenon
Runge’s phenomenon is a problem of oscillations that occurs (for certain functions) with
uniform interpolation when the degree increases.

Uniform vs Chebyshev interpolation :
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Convergence — Strong convergence

Strong convergence

Proposition 3.16 (strong convergence)

Let f ∈ C∞[a, b], such that

∃M ∈ R+, ∀ k ∈ N,
∣∣∣∣ f (k)∣∣∣∣ = max

x∈[a,b]

∣∣ f (k)(x)
∣∣ ≤ M .

Then, for any sequence (xn,i) of interpolation points in [a, b], the sequence of the associated
interpolating polynomials Pn(., f ) converges uniformly to f on the interval [a, b] when n
tends to +∞.

Proof
By inequality (4) given in section “ Error bounds in Lagrange interpolation ”, we have for any
n ∈ N∗ :∣∣∣∣ f − Pn(., f )

∣∣∣∣ = max
x∈[a,b]

∣∣∣ f (x)− Pn(x, f )
∣∣∣ ≤ ∣∣∣∣Πn+1

∣∣∣∣
(n + 1)!

∣∣∣∣ f (n+1)∣∣∣∣ ≤ (b− a)n+1

(n + 1)!
M

which gives the result.
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Convergence — Strong convergence

Example 1

Uniform interpolation on the interval [a, b]
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f (x) = 10 cos(x/2), x ∈ [−10, 10]

|| f (k)|| ≤ 10, ∀ k ∈ N
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Convergence — Strong convergence

Example 2

Uniform interpolation on a sub-interval of [a, b]
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Cosine function
uniform interpolant

f (x) = cos(x), x ∈ [−2π, 3π]

|| f (k)|| ≤ 1, ∀ k ∈ N
Uniform data points are sampled in the sub-interval [0, π]

for degrees 4, 8, 12, 16
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Convergence — Strong convergence and analytic functions

Example 2

Uniform interpolation on a sub-interval of [a, b]

Connection with Taylor expansion

6 4 2 0 2 4 6

4

3

2

1

0

1

2

3

4

5
y = cos(x)
y = 1
y = 1 - (x^2)/2
y = 1 - (x^2)/2 + (x^4)/24
y = 1 - (x^2)/2 + (x^4)/24 - (x^6)/720
y = 1 - (x^2)/2 + (x^4)/24 - (x^6)/720 + (x^8)/40320

Radius of convergence R = +∞
f (x) = cos(x), x ∈ [−2π, 3π]
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Convergence — Analytic functions

Example 3

Uniform interpolation on a sub-interval of [a, b]
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Runge function fR (x) = 1
1+25 x2 , x ∈ [−1, 1]

Uniform data points are sampled in the sub-interval [−0.08, 0.08]
for degrees 4, 8, 12, 16, 20
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Convergence — Analytic functions

Example 3
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Convergence — Analytic functions
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Convergence — Analytic functions

Example 3

Uniform interpolation on a sub-interval of [a, b]

0.2 0.1 0.0 0.1 0.2

0.0

0.2

0.4

0.6

0.8

1.0

Runge function fR (x) = 1
1+25 x2 , x ∈ [−1, 1]

Uniform data points are sampled in the sub-interval [−0.08, 0.08]
for degrees 4, 8, 12, 16, 20

ZOOM

67/77



Convergence — Analytic functions

Example 3

Uniform interpolation on a sub-interval of [a, b]

Connection with Taylor expansion
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y = 1 / (1 + 25x^2
y = 1
y = 1 - (5x)^2
y = 1 - (5x)^2 + (5x)^4
y = 1 - (5x)^2 + (5x)^4 - (5x)^6
y = 1 - (5x)^2 + (5x)^4 - (5x)^6 + (5x)^8
y = 1 - (5x)^2 + (5x)^4 - (5x)^6 + (5x)^8 - (5x)^(10)

Radius of convergence R = 0.2

Runge function fR (x) = 1
1+25 x2 , x ∈ [−1, 1]
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Convergence — K-Lipschitz functions

Proposition 3.17 (K-Lipschitz functions)

Assume that the function f is K-Lipschitz, which means that for all x, y ∈ [a, b], we have
|f (x)− f (y)| ≤ K |x− y|. Then, the sequence of Chebyshev interpolating polynomials
converges uniformly to f on [a, b].

Example : we consider the absolute function. Since
∣∣|x| − |y|∣∣ ≤ |x− y| for all x, y ∈ R,

we deduce that the absolute function is 1-Lipschitz, so that the previous proposition applies.
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degree 6 degree 10

Notice the behaviour of the interpolating polynomials at the non differentiable point
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Notice the behaviour of the interpolating polynomials at the non differentiable point
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Convergence — Theoretical results...

The following results provide an interesting insight into the interpolation and
convergence process, but their practical relevance is limited.

Proposition 3.18 (Marcinkiewicz)

For any function f ∈ C[a, b], there exists a triangular sequence of points xn,i ∈ [a, b],
n = 0, 1, 2, . . . and 0 ≤ i ≤ n, so that the associated sequence of interpolating polynomials
Pn(x, f ) converges uniformly to f on [a, b].

In contrast, we have the following theorem.

Proposition 3.19 (Faber & Bernstein)

For any triangular sequence of points xn,i ∈ [a, b], n = 0, 1, 2, . . . and 0 ≤ i ≤ n, there
exists a continuous function f ∈ C[a, b] so that the associated sequence of interpolating
polynomials Pn(x, f ) does not converge uniformly to f on [a, b].
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Convergence — Theoretical results...

Proof (of Marcinkiewicz proposition)

The proof is a direct consequence of the Weierstrass approximation theorem which states that
there exists a sequence of polynomials pn(x) of best approximation (see chapter related to
approximation) which converges uniformly to f .
Then, due to the equioscillation property, the graph of each polynomial of best
approximation pn(x) intersects the graph of f at n + 1 distinct values xn,i.
Consequently, by uniqueness, the interpolating polynomial Pn(x, f ) at these values coincides
with pn(x), which gives the result.

Some quotes... (from Nick Trefethen)
Faber (1914) : “No matter what the grids are, polynomial interpolants diverge for some f”
Stewart (1996), p 153 : “Unfortunately, there are functions for which interpolation at the Chebyshev
points fails to converge.”
Polynomial interpolation in Chebyshev points is equivalent to trigonometric interpolation of periodic
functions in equispaced points, whose convergence nobody worries about.
Parlett (2010), SIAM Review book review : “You do not want to meet a polynomial of degree 1000 on a
dark night.”
Forsythe, Malcolm & Moler (1977), p 68 : “Polynomial interpolation has drawbacks in addition to those
of global convergence. The determination and evaluation of interpolating polynomials of high degree can
be too time-consuming for certain applications. Polynomials of high degree can also lead to difficult
problems associated with roundoff error.”
Froberg (1985), p 234 : “Although Lagrangian interpolation is sometimes useful in theoretical
investigations, it is rarely used in practical computations.” 71/77
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Parametric interpolation — Objective

Objective
Given a sequence of points Mi = (xi, yi), 0 ≤ i ≤ n, we look for a polynomial parametric
curve of degree n which interpolates these data points, that is which goes through each point
(xi, yi) for some parameter ti .
The main question consists in the choice of the interpolation parameters ti, which are also
called the interpolation nodes or simply the nodes.

Essentially, we consider three choices for the interpolation parameters.

The first one is the uniform parametrization : parameters ti are evenly spaced in the
parameter domain.

The second one is the Chebyshev parametrization.

The last one is the chordal parametrization : parameters are chosen in such a way that
distances between successive parameters ti are proportional to the distances between
associate successive data points Mi. The chordal parametrization is more reliable and
faithful with respect to the geometry of the initial data.
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Parametric interpolation — Problem statement

Modelling
Precisely, we look for a n-degree polynomial parametric curve

m :
[a, b] ∈ R −→ R2

t 7−→ m(t) =

(
mx(t)
my(t)

)
such that

m(ti) = Mi ⇔
{

mx(ti) = xi

my(ti) = yi
, 0 ≤ i ≤ n

with a sequence of interpolation nodes a ≤ t0 < t1 < · · · < tn ≤ b, and where mx(t) and
my(t) are polynomials of degree n. As a result, we are reduced to solving two separate
polynomial interpolation problems.

Considering the parameters domain [a, b] = [0, 1] (that does not affect the method), the
choices for the interpolation nodes ti are the following.

Uniform parameterization : ti+1 − ti = 1/n

Chebyshev parameterization : t̂i =
a + b

2
+

b− a
2

cos
(

(2i + 1)
π

2n + 2

)
Chordal parameterization : ti+1 − ti =

di∑n−1
k=0 dk

with dk = dist(Mk,Mk+1)
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Parametric interpolation — Examples
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Parametric interpolation — Examples
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Parametric interpolation of the Lissajous curve : t 7→ (x = sin(2 t), y = sin(3 t)), t ∈ [0, 2π].
We first choose n + 1 points on the curve through a uniform sampling in the parameter domain. We then
interpolate this sampling by polynomial parametric curves of different degrees with the same (uniform)
parameters. As the sine function is analytic, the convergence is insured.
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