Hermite interpolation -

Chapter 4

Hermite interpolation

Hermite interpolation -

(1) Hermite interpolation
(2) Hermite interpolation over n data points
(3) Cubic Hermite interpolation over 2 points
(4) Quintic Hermite interpolation over 2 points
(5) Hermite interpolating C^{1} cubic spline

Hermite interpolation - Objective

Objective

- Geometrically, Hermite interpolation consists in determining a curve (i.e., a function) that passes through predetermined positions $\left(x_{i}, y_{i}\right)$ with additional constraints on the derivatives at the interpolating points.

- Data: $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=0, \ldots, n$ Problem : find a function f (in a given space F) such that $f\left(x_{i}\right)=y_{i}$ and $f^{\prime}\left(x_{i}\right)=y_{i}^{\prime}$

Hermite interpolation - Objective

Objective

- Geometrically, Hermite interpolation consists in determining a curve (i.e., a function) that passes through predetermined positions $\left(x_{i}, y_{i}\right)$ with additional constraints on the derivatives at the interpolating points.

- Data : $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=0, \ldots, n$

Problem : find a function f (in a given space F) such that $f\left(x_{i}\right)=y_{i}$ and $f^{\prime}\left(x_{i}\right)=y_{i}^{\prime}$

Hermite interpolation - Objective

Objective

- Geometrically, Hermite interpolation consists in determining a curve (i.e., a function) that passes through predetermined positions $\left(x_{i}, y_{i}\right)$ with additional constraints on the derivatives at the interpolating points.

- Data: $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=0, \ldots, n$

Problem : find a function f (in a given space F) such that $f\left(x_{i}\right)=y_{i} \quad$ and $\quad f^{\prime}\left(x_{i}\right)=y_{i}^{\prime}$

Hermite interpolation - Objective

Objective

- Geometrically, Hermite interpolation consists in determining a curve (i.e., a function) that passes through predetermined positions $\left(x_{i}, y_{i}\right)$ with additional constraints on the derivatives at the interpolating points.

- Data: $\left(x_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=0, \ldots, n$

Problem : find a function f (in a given space F) such that $f\left(x_{i}\right)=y_{i} \quad$ and $\quad f^{\prime}\left(x_{i}\right)=y_{i}^{\prime}$

- Choice of an appropriate space F to achieve uniqueness

Hermite interpolation - Choice of space E

Choice of space \mathbf{E}

- Global solution : Hermite interpolation over $n+1$ data points space F : polynomials of degree $\leq 2 n+1$

Hermite interpolation - Choice of space E

Choice of space \mathbf{E}

- Global solution : Hermite interpolation over $n+1$ data points space F : polynomials of degree $\leq 2 n+1$

- Local solution : Hermite interpolation over 2 points space F : piecewise cubic, quintic (polynomials)

Hermite interpolation over n data points -

(1) Hermite interpolation

(2) Hermite interpolation over n data points

(3) Cubic Hermite interpolation over 2 points

(4) Quintic Hermite interpolation over 2 points

5 Hermite interpolating C^{1} cubic spline

Hermite interpolation over n data points - Statement of the problem

Statement of the problem

Given a set of $n+1$ distincts points $x_{0}, x_{1}, \ldots, x_{n}$ in an interval $[a, b]$ and two set of $n+1$ real values :

$$
y_{0}, y_{1}, \ldots, y_{n} \quad \text { and } \quad y_{0}^{\prime}, y_{1}^{\prime}, \ldots, y_{n}^{\prime}
$$

we look for a polynomial $p(x)$ satisfying

$$
\left\{\begin{array}{lll}
p\left(x_{i}\right) & =y_{i}, & i=0,1, \ldots, n \tag{1}\\
p^{\prime}\left(x_{i}\right) & =y_{i}^{\prime}, & i=0,1, \ldots, n
\end{array}\right.
$$

This Hermite interpolating polynomial will be denoted $P_{H}(f)$ or $P_{H}(x, f)$ if the data values y_{i} and y_{i}^{\prime} come from a function $f \in C^{1}[a, b]$:

$$
y_{i}:=f\left(x_{i}\right) \quad \text { and } \quad y_{i}^{\prime}:=f^{\prime}\left(x_{i}\right), \quad 0 \leq i \leq n .
$$

Observing the number of constraints (equal to $2 n+2$) induces us to search for a polynomial $p(x)$ of degree $2 n+1$.

Hermite interpolation over n data points - Hermite basis

Construction of an Hermite basis

By analogy with the Lagrange approach we construct a polynomial basis

$$
\left\{h_{i}(x), \bar{h}_{i}(x) ; i=0,1, \ldots, n\right\}
$$

of $\mathbb{R}_{2 n+1}[x]$ satisfying the constraints

Such a basis will then make it possible to write the Hermite interpolating polynomial in the form

$$
P_{H}(x)=\sum_{i=0}^{n} y_{i} h_{i}(x)+\sum_{i=0}^{n} y_{i}^{\prime} \bar{h}_{i}(x)
$$

Hermite interpolation over n data points - Hermite basis

Construction of an Hermite basis

We make explicit constraints (2) in the following table where the constraints on each polynomial $h_{i}(x)$ and $\bar{h}_{i}(x)$ are specified on the associate column (i.e., labelled by h_{i} or \bar{h}_{i}).

		h_{0}	h_{1}	\cdots	h_{i}	\cdots	h_{n}	\bar{h}_{0}	\bar{h}_{1}	\cdots	\bar{h}_{i}	\cdots	\bar{h}_{n}
value at	x_{0}	1	0	\cdots	0	\cdots	0	0	0	\cdots	0	\cdots	0
	x_{1}	0	1	\cdots	0	\cdots	0	0	0	\cdots	0	\cdots	0
	\vdots	\vdots	\vdots	\ddots			\vdots	\vdots	\vdots		\vdots		\vdots
	x_{i}	0	0		1		0	0	0	\cdots	0	\cdots	0
	\vdots	\vdots	\vdots			\ddots	\vdots	\vdots	\vdots		\vdots		\vdots
	x_{n}	0	0	\cdots	0	\cdots	1	0	0	\cdots	0	\cdots	0
derivative at	x_{0}	0	0	\cdots	0	\cdots	0	1	0	\cdots	0	\cdots	0
	x_{1}	0	0	\cdots	0	\cdots	0	0	1	\cdots	0	\cdots	0
	\vdots	\vdots	\vdots		\vdots		\vdots	\vdots	\vdots	\ddots			\vdots
	x_{i}	0	0	\cdots	0	\cdots	0	0	0		1		0
	\vdots	\vdots	\vdots		\vdots		\vdots	\vdots	\vdots			\ddots	\vdots
	x_{n}	0	0	\cdots	0	\cdots	0	0	0	\cdots	0	\cdots	1

Hermite interpolation over n data points - Hermite basis

Construction of polynomials $h_{i}(x)$
By relations (2) we have $h_{i}\left(x_{j}\right)=h_{i}^{\prime}\left(x_{j}\right)=0$ for $0 \leq j \leq n, j \neq i$, so that polynomial $h_{i}(x)$ admits a double root at each point $x_{j} \neq x_{i}$, and thus is on the form

$$
h_{i}(x)=L_{i}^{2}(x) r_{i}(x)
$$

where $r_{i}(x)$ is a polynomial of degree less than or equal to 1 .
The two additional constraints that must satisfy $h_{i}(x)$ leads to

$$
\left\{\begin{aligned}
1=h_{i}\left(x_{i}\right)=L_{i}^{2}\left(x_{i}\right) r_{i}\left(x_{i}\right) & =r_{i}\left(x_{i}\right) \\
0=h_{i}^{\prime}\left(x_{i}\right)=L_{i}^{2}\left(x_{i}\right) r_{i}^{\prime}\left(x_{i}\right)+2 L_{i}\left(x_{i}\right) L_{i}^{\prime}\left(x_{i}\right) r_{i}\left(x_{i}\right) & =r_{i}^{\prime}\left(x_{i}\right)+2 L_{i}^{\prime}\left(x_{i}\right)
\end{aligned}\right.
$$

so that

$$
r_{i}(x)=1-2\left(x-x_{i}\right) L_{i}^{\prime}\left(x_{i}\right)
$$

Finally, with the formula of the derivative of $L_{i}(x)$ determined in section Lagrange form of chapter Lagrange interpolation, we get

$$
\begin{equation*}
h_{i}(x)=L_{i}^{2}(x)\left(1-2\left(x-x_{i}\right) \sum_{\substack{j=0 \\ j \neq i}}^{n} \frac{1}{x_{i}-x_{j}}\right) \tag{3}
\end{equation*}
$$

Hermite interpolation over n data points - Hermite basis

Construction of polynomials $\bar{h}_{i}(x)$
By relations (2) we have $\bar{h}_{i}\left(x_{j}\right)=\bar{h}_{i}^{\prime}\left(x_{j}\right)=0$ for $0 \leq j \leq n, j \neq i$, so that polynomial $\bar{h}_{i}(x)$ admits a double root at each point $x_{j} \neq x_{i}$, and thus is on the form

$$
\bar{h}_{i}(x)=L_{i}^{2}(x) s_{i}(x)
$$

where $s_{i}(x)$ is a polynomial of degree less than or equal to 1 .
The two additional constraints that must satisfy $\bar{h}_{i}(x)$ leads to

$$
\left\{\begin{aligned}
0 & =\bar{h}_{i}\left(x_{i}\right) & =L_{i}^{2}\left(x_{i}\right) s_{i}\left(x_{i}\right) & =s_{i}\left(x_{i}\right) \\
1 & =\bar{h}_{i}^{\prime}\left(x_{i}\right) & =L_{i}^{2}\left(x_{i}\right) s_{i}^{\prime}\left(x_{i}\right)+2 L_{i}\left(x_{i}\right) L_{i}^{\prime}\left(x_{i}\right) s_{i}\left(x_{i}\right) & =s_{i}^{\prime}\left(x_{i}\right)
\end{aligned}\right.
$$

so that

$$
s_{i}(x)=x-x_{i}
$$

and finally

$$
\begin{equation*}
\bar{h}_{i}(x)=\left(x-x_{i}\right) L_{i}^{2}(x) \tag{4}
\end{equation*}
$$

Hermite interpolation over n data points - Hermite basis

Proposition 4.1 (Hermite basis)
The set of polynomials $\left\{h_{i}(x), \bar{h}_{i}(x) ; i=0,1, \ldots, n\right\}$ form a basis of the vector space $\mathbb{R}_{2 n+1}[x]$.
This basis is called the polynomial Hermite interpolation basis relative to data points x_{i}. Polynomials $h_{i}(x)$ and $\bar{h}_{i}(x)$ are named Hermite interpolation basis polynomials.

Proof

This family contains $2 n+2$ polynomials, each of them being of degree $2 n+1$ by construction, so that we just need to verify that this family is linearly independent. So, consider real values α_{i} and $\bar{\alpha}_{i}, i=0,1, \ldots, n$, such that

$$
\alpha_{0} h_{0}(x)+\cdots+\alpha_{n} h_{n}(x)+\bar{\alpha}_{0} \bar{h}_{0}(x)+\cdots+\bar{\alpha}_{n} \bar{h}_{n}(x)=0
$$

for any real number x.
This relation and its derivative applied to each of the data point x_{i} lead to the nullity of each of the coefficients α_{i} and $\bar{\alpha}_{i}$, from which we deduce the result.

Hermite interpolation over n data points - Solution

Proposition 4.2 (Hermite interpolating polynomial)
There exists a unique polynomial in $\mathbb{R}_{2 n+1}[x]$ satisfying the Hermite constraints (1) defined as follows

$$
\begin{align*}
P_{H}(x) & =\sum_{i=0}^{n} y_{i} h_{i}(x)+\sum_{i=0}^{n} y_{i}^{\prime} \bar{h}_{i}(x) \\
& =\sum_{i=0}^{n} y_{i} L_{i}^{2}(x)\left(1-2\left(x-x_{i}\right) \sum_{\substack{j=0 \\
j \neq i}}^{n} \frac{1}{x_{i}-x_{j}}\right)+\sum_{i=0}^{n} y_{i}^{\prime}\left(x-x_{i}\right) L_{i}^{2}(x) \tag{5}
\end{align*}
$$

This polynomial is the Hermite interpolating polynomial of the data $\left(x_{i}, y_{i}, y_{i}^{\prime}\right)$.

Proof
One can easily check that the polynomial defined by (5) satisfy all the constraints (1). Now, assume there exist two polynomials $p_{2 n+1}(x)$ and $q_{2 n+1}(x)$ in $\mathbb{R}_{2 n+1}[x]$ satisfying these constraints. Then, polynomial $p_{2 n+1}(x)-q_{2 n+1}(x) \in \mathbb{R}_{2 n+1}[x]$ admits $n+1$ distinct double roots and is thus zero, which gives the result.

Hermite interpolation over n data points - Examples

Example : uniform \& Chebyshev Hermite interpolation

Hermite : Uniform distribution of points

Hermite : Chebyshev distribution of points

Hermite interpolation over n data points - Examples

Example : comparison with Lagrange interpolation

Cubic Hermite interpolation over 2 points -

(1) Hermite interpolation

2 Hermite interpolation over n data points
(3) Cubic Hermite interpolation over 2 points

(4) Quintic Hermite interpolation over 2 points

5 Hermite interpolating C^{1} cubic spline

Cubic Hermite interpolation over 2 points - Objective

Objective

We consider the simple case of two interpolation data points α and $\beta(\alpha<\beta)$.
Precisely, given the two Hermite data $\left(\alpha, y_{\alpha}, y_{\alpha}^{\prime}\right)$ and $\left(\beta, y_{\beta}, y_{\beta}^{\prime}\right)$, we know by the previous section that there exists a unique cubic polynomial $p(x)$ interpolating these data, that is satisfying

$$
p(\alpha)=y_{\alpha}, \quad p^{\prime}(\alpha)=y_{\alpha}^{\prime}, \quad p^{\prime}(\beta)=y_{\beta}^{\prime}, \quad p(\beta)=y_{\beta}
$$

This cubic Hermite interpolating polynomial can be written as follows

$$
p(x)=y_{\alpha} h_{\alpha}(x)+y_{\beta} h_{\beta}(x)+y_{\alpha}^{\prime} \bar{h}_{\alpha}(x)+y_{\beta}^{\prime} \bar{h}_{\beta}(x)
$$

with the cubic Hermite interpolation basis $h_{\alpha}, h_{\beta}, \bar{h}_{\alpha}, \bar{h}_{\beta}$ relative to data points α, β.

- We will reduce this Hermite interpolation process to a standard Hermite process relative to the two points 0 and 1 . This will then make it possible to apply this process simply to n points taken 2 by 2 in the situation of cubic splines. Note that Hermite process can also be reduced relative to the two points -1 and 1 .
- Hermite interpolation on any interval $[\alpha, \beta]$ is then deduced from the Hermite interpolation on $[0,1]$ by the affine transformation

$$
x \in[\alpha, \beta] \longmapsto t=\frac{x-\alpha}{\beta-\alpha} \in[0,1]
$$

Cubic Hermite interpolation over 2 points - Basis over $[0,1]$

Cubic Hermite basis on [0, 1]
The previous cubic Hermite interpolating polynomial $p(x)$ can be rewritten as follows $p(x)=y_{\alpha} H_{0}\left(\frac{x-\alpha}{\beta-\alpha}\right)+y_{\alpha}^{\prime}(\beta-\alpha) H_{1}\left(\frac{x-\alpha}{\beta-\alpha}\right)+y_{\beta}^{\prime}(\beta-\alpha) H_{2}\left(\frac{x-\alpha}{\beta-\alpha}\right)+y_{\beta} H_{3}\left(\frac{x-\alpha}{\beta-\alpha}\right)$
where $H_{0}, H_{1}, H_{2}, H_{3}$ are four cubic polynomials forming the standard cubic Hermite basis over $[0,1]$ and characterized by the following table.

	H_{0}	H_{1}	H_{2}	H_{3}
$H_{i}(0)$	1	0	0	0
$H_{i}^{\prime}(0)$	0	1	0	0
$H_{i}^{\prime}(1)$	0	0	1	0
$H_{i}(1)$	0	0	0	1

$$
\begin{aligned}
& H_{0}(t)=1-3 t^{2}+2 t^{3} \\
& H_{1}(t)=t-2 t^{2}+t^{3} \\
& H_{2}(t)=-t^{2}+t^{3} \\
& H_{3}(t)=3 t^{2}-2 t^{3}
\end{aligned}
$$

Cubic Hermite interpolation over 2 points - Example

Exercise 4.1 - Consider the three following functions which are plotted below respectively in blue, green and red.

$$
\begin{array}{ll}
f_{1}(x)=\frac{\exp (x)}{2}-1, & x \in[-1,0.5], \\
f_{2}(x)=\sin \left(x^{2}\right)-1, & x \in[2,3], \\
f_{3}(x)=-1+2 \frac{\sin (2 x)}{x}, & x \in[5,8] .
\end{array}
$$

Determine two functions p_{1} and p_{2} respectively defined on intervals [$\left.0.5,2\right]$ and $[3,5]$, and plot all these functions, such that the concatenation of the five functions $f_{1}, p_{1}, f_{2}, p_{2}, f_{3}$ provides a C^{1} function over the interval $[-1,8]$.

Cubic Hermite interpolation over 2 points - A useful result ...

The following technical result will be essential for the construction of C^{2} cubic interpolation splines in the next chapter.

Proposition 4.3 (second derivatives at extremities)
Let $p(x)$ be the cubic Hermite interpolating polynomial relative to data $\left(\alpha, y_{\alpha}, y_{\alpha}^{\prime}\right)$ and $\left(\beta, y_{\beta}, y_{\beta}^{\prime}\right)$ and let $h=\beta-\alpha$.
Then, the second derivatives of $p(x)$ at points α and β can be expressed with respect to the interpolation data as follows.
$p^{\prime \prime}(\alpha)=\frac{2}{h^{2}}\left(3 y_{\beta}-3 y_{\alpha}-2 h y_{\alpha}^{\prime}-h y_{\beta}^{\prime}\right) \quad$ and $\quad p^{\prime \prime}(\beta)=\frac{2}{h^{2}}\left(3 y_{\alpha}-3 y_{\beta}+2 h y_{\beta}^{\prime}+h y_{\alpha}^{\prime}\right)$

Cubic Hermite interpolation over 2 points - A useful result ...

The following technical result will be essential for the construction of C^{2} cubic interpolation splines in the next chapter.

Proof

The two formulas are identical up to a data permutation and by replacing h with $-h$.
So we just need to prove the first one. Then, since the Hermite interpolating polynomial $p(x)$ and its derivative $p^{\prime}(x)$ are respectively of degree 3 and 2, they coincide with their Taylor expansion respectively of order 3 and 2 at point α.

$$
\begin{aligned}
p(x) & =y_{\alpha}+(x-\alpha) y_{\alpha}^{\prime}+\frac{(x-\alpha)^{2}}{2} p^{\prime \prime}(\alpha)+\frac{(x-\alpha)^{3}}{6} p^{\prime \prime \prime}(\alpha) \\
p^{\prime}(x) & =y_{\alpha}^{\prime}+(x-\alpha) p^{\prime \prime}(\alpha)+\frac{(x-\alpha)^{2}}{2} p^{\prime \prime \prime}(\alpha)
\end{aligned}
$$

For $x=\beta$, we get
$p(\beta)=y_{\alpha}+h y_{\alpha}^{\prime}+\frac{h^{2}}{2} p^{\prime \prime}(\alpha)+\frac{h^{3}}{6} p^{\prime \prime \prime}(\alpha) \quad$ and $\quad p^{\prime}(\beta)=y_{\alpha}^{\prime}+h p^{\prime \prime}(\alpha)+\frac{h^{2}}{2} p^{\prime \prime \prime}(\alpha)$, from which we deduce the result after eliminating the term $p^{\prime \prime \prime}(\alpha)$

$$
p^{\prime \prime}(\alpha)=\frac{2}{h^{2}}\left(3 y_{\beta}-3 y_{\alpha}-2 h y_{\alpha}^{\prime}-h y_{\beta}^{\prime}\right)
$$

Cubic Hermite interpolation over 2 points - Error bound

Error bound

We propose to estimate the error associated with the cubic Hermite interpolation over two points in the form of a problem. - Let $f \in C^{4}[\alpha, \beta]$ and let $p(x)=P_{H}(x, f)$ be the cubic Hermite interpolating polynomial of the function f at points α and β.
Considering a fixed value x in $] \alpha, \beta[$, we introduce the function ϕ defined by

$$
u \in[\alpha, \beta] \quad \longmapsto \quad \phi(u)=f(u)-p(u)-\frac{(u-\alpha)^{2}(u-\beta)^{2}}{(x-\alpha)^{2}(x-\beta)^{2}}(f(x)-p(x)) .
$$

1. Prove that ϕ cancels at points α, β and x. Deduce that ϕ^{\prime} cancels at two distinct points in $] \alpha, \beta[$.
2. Prove that $\phi^{\prime}(\alpha)=\phi^{\prime}(\beta)=0$.
3. Deduce that there exists $\left.\zeta_{x} \in\right] \alpha, \beta\left[\right.$ such that $\phi^{(4)}\left(\zeta_{x}\right)=0$.
4. Prove that

$$
f(x)-p(x)=\frac{(x-\alpha)^{2}(x-\beta)^{2}}{24} f^{(4)}\left(\zeta_{x}\right) \quad \text { and that } \quad|(x-\alpha)(x-\beta)| \leq \frac{(\beta-\alpha)^{2}}{4}
$$

5. Finally, deduce that for all $x \in[\alpha, \beta]$ we have

$$
|f(x)-p(x)| \leq \frac{(\beta-\alpha)^{4}}{384} \max _{\zeta \in[\alpha, \beta]}\left|f^{(4)}(\zeta)\right|
$$

from which we get the upper bound for the error

$$
\left\|f-P_{H}(\cdot, f)\right\| \leq \frac{(\beta-\alpha)^{4}}{384}\left\|f^{(4)}\right\|
$$

Quintic Hermite interpolation over 2 points -

(1) Hermite interpolation

2 Hermite interpolation over n data points
(3) Cubic Hermite interpolation over 2 points
(4) Quintic Hermite interpolation over 2 points

55 Hermite interpolating C^{1} cubic spline

Quintic Hermite interpolation over 2 points - Objective

Objective

We now consider Hermite interpolation of order two - which means that constraints involve the value together with the first and second derivatives at the data points - over two points α and β.
Precisely, we look for a polynomial $p(x)$ such that

$$
\begin{array}{lll}
p(\alpha)=y_{\alpha} & p^{\prime}(\alpha)=y_{\alpha}^{\prime} & p^{\prime \prime}(\alpha)=y_{\alpha}^{\prime \prime} \\
p(\beta)=y_{\beta} & p^{\prime}(\beta)=y_{\beta}^{\prime} & p^{\prime \prime}(\beta)=y_{\beta}^{\prime \prime}
\end{array}
$$

where $y_{\alpha}, y_{\alpha}^{\prime}, y_{\alpha}^{\prime \prime}$ and $y_{\beta}, y_{\beta}^{\prime}, y_{\beta}^{\prime \prime}$ are prescribed real numbers.
The approach is similar to that in the previous section (for Cubic Hermite interpolation over 2 points).

- We construct a standard quintic Hermite basis relative to the two points 0 and 1.
- Hermite interpolation on any interval $[\alpha, \beta]$ is then deduced from the quintic Hermite interpolation on $[0,1]$ by the affine transformation

$$
x \in[\alpha, \beta] \longmapsto t=\frac{x-\alpha}{\beta-\alpha} \in[0,1]
$$

This Hermite interpolation process is developed in the form of a problem.

Quintic Hermite interpolation over 2 points - The process

Existence and uniqueness

1. Hermite interpolation of order 2 on $[0,1]$

Prove that there exists a unique quintic polynomial $q(x)$ such that

$$
\begin{array}{lll}
q(0)=y_{0} & q^{\prime}(0)=y_{0}^{\prime} & q^{\prime \prime}(0)=y_{0}^{\prime \prime} \\
q(1)=y_{1} & q^{\prime}(1)=y_{1}^{\prime} & q^{\prime \prime}(1)=y_{1}^{\prime \prime}
\end{array}
$$

where $y_{0}, y_{0}^{\prime}, y_{0}^{\prime \prime}$ and $y_{1}, y_{1}^{\prime}, y_{1}^{\prime \prime}$ are prescribed real numbers.
2. Hermite interpolation of order 2 on $[\alpha, \beta]$

Deduce that there exists a unique quintic polynomial $p(x)$ such that

$$
\begin{array}{lll}
p(\alpha)=y_{\alpha} & p^{\prime}(\alpha)=y_{\alpha}^{\prime} & p^{\prime \prime}(\alpha)=y_{\alpha}^{\prime \prime} \\
p(\beta)=y_{\beta} & p^{\prime}(\beta)=y_{\beta}^{\prime} & p^{\prime \prime}(\beta)=y_{\beta}^{\prime \prime}
\end{array}
$$

where $y_{\alpha}, y_{\alpha}^{\prime}, y_{\alpha}^{\prime \prime}$ and $y_{\beta}, y_{\beta}^{\prime}, y_{\beta}^{\prime \prime}$ are prescribed real numbers.

Quintic Hermite interpolation over 2 points - The process

Quintic Hermite basis

3. Quintic Hermite basis on $[0,1]$. Consider the following quintic polynomials.

$$
\begin{array}{ll}
Q_{0}(x)=-6 x^{5}+15 x^{4}-10 x^{3}+1 & Q_{1}(x)=-3 x^{5}+8 x^{4}-6 x^{3}+x \\
Q_{2}(x)=\frac{1}{2}\left(-x^{5}+3 x^{4}-3 x^{3}+x^{2}\right) & Q_{3}(x)=\frac{1}{2}\left(x^{5}-2 x^{4}+x^{3}\right) \\
Q_{4}(x)=-3 x^{5}+7 x^{4}-4 x^{3}
\end{array}
$$

Quintic Hermite polynomials $Q_{i}(x)$ on the interval $[0,1] \&$ zoom on the right figure.
Calculate the following matrix which gathers the values of the polynomials $Q_{i}(x), Q_{i}^{\prime}(x)$, $Q_{i}^{\prime \prime}(x)$ at points 0 and 1.

$$
\left[\begin{array}{llllll}
Q_{0}(0) & Q_{0}^{\prime}(0) & Q_{0}^{\prime \prime}(0) & Q_{0}^{\prime \prime}(1) & Q_{0}^{\prime}(1) & Q_{0}(1) \\
Q_{1}(0) & Q_{1}^{\prime}(0) & Q_{1}^{\prime}(0) & Q_{1}^{\prime}(1) & Q_{1}^{\prime}(1) & Q_{1}(1) \\
Q_{2}(0) & Q_{3}^{\prime}(0) & Q_{1}^{\prime \prime}(0) & Q_{1}^{\prime}(1) & Q_{2}^{\prime}(1) & Q_{2}(1) \\
Q_{3}(0) & Q_{3}^{\prime}(0) & Q_{3}^{\prime}(0) & Q_{3}^{\prime}(1) & Q_{3}^{\prime}(1) & Q_{3}(1) \\
Q_{4}(0) & Q_{4}^{\prime(0)} & Q_{4}^{\prime}(0) & Q_{4}^{\prime}(1) & Q_{4}^{3}(1) & Q_{4}(1) \\
Q_{5}(0) & Q_{5}^{\prime}(0) & Q_{5}^{\prime}(0) & Q_{5}^{\prime \prime}(1) & Q_{5}^{\prime}(1) & Q_{5}(1)
\end{array}\right]
$$

Quintic Hermite interpolation over 2 points - The process

The solution

4. Determine the unique solution $q(x)$ to the Hermite interpolation problem of order 2 on the interval $[0,1]$, as a combination of the polynomials $Q_{i}(x)$.
5. Determine the unique solution $p(x)$ to the Hermite interpolation problem of order 2 on the interval $[\alpha, \beta]$, as a combination of the polynomials $Q_{i}(x)$.

Hint : consider the following combination of polynomials $Q_{i}(x)$:

$$
p(x)=\left(Q_{0}(t), Q_{1}(t), Q_{2}(t), Q_{3}(t), Q_{4}(t), Q_{5}(t)\right)\left(\begin{array}{cc}
y_{\alpha} & \\
(\beta-\alpha) & y_{\alpha}^{\prime} \\
(\beta-\alpha)^{2} & y_{\alpha}^{\prime \prime} \\
(\beta-\alpha)^{2} & y_{\beta}^{\prime \prime} \\
(\beta-\alpha) & y_{\beta}^{\prime} \\
y_{\beta}
\end{array}\right)
$$

with $t=\frac{x-\alpha}{\beta-\alpha}$

Quintic Hermite interpolation over 2 points - Example

Exercise 4.2 - Comparison with the cubic Hermite interpolation.
Consider again the three following functions which are plotted below respectively in blue, green and red.

$$
\begin{array}{ll}
f_{1}(x)=\frac{\exp (x)}{2}-1, & x \in[-1,0.5], \\
f_{2}(x)=\sin \left(x^{2}\right)-1, & x \in[2,3], \\
f_{3}(x)=-1+2 \frac{\sin (2 x)}{x}, & x \in[5,8] .
\end{array}
$$

Determine the two quintic polynomials $q_{1}(x)$ and $q_{2}(x)$ respectively defined on intervals $[0.5,2]$ and $[3,5]$, such that the concatenation of the five functions $f_{1}, q_{1}, f_{2}, q_{2}, f_{3}$ provides a C^{2} function over the interval $[-1,8]$.

Quintic Hermite interpolation over 2 points - Exercises

Exercise 4.3 - Hermite interpolation of order n at one point Let $n \in \mathbb{N}$, a a fixed real number as well as $n+1$ real numbers

$$
y_{0}, y_{1}, \ldots, y_{n} .
$$

Prove that there exists a unique polynomial $p(x)$ of degree n such that

$$
p^{(k)}(a)=y_{k}, \quad k=0,1, \ldots, n
$$

Exercise 4.4 - An instructive example
Let $y_{0}, y_{1}^{\prime}, y_{2}$ three real numbers. Determine the set of polynomials $p(x)=a_{0}+a_{1} x+a_{2} x^{2} \in \mathbb{R}_{2}[x]$ satisfying the constraints

$$
p(0)=y_{0}, \quad p^{\prime}(1)=y_{1}^{\prime}, \quad p(2)=y_{2},
$$

according values of parameters y_{0}, y_{1}^{\prime} and y_{2}.

Quintic Hermite interpolation over 2 points - Exercises

Exercise 4.5 - From Lagrange to Hermite

Let $h \in] 0,1[$.

1. Write the quadratic Lagrange polynomials relative to data points $x_{0}=0, x_{1}=h, x_{2}=1$.
2. Given real values y_{0}, α, y_{2}, determine the unique polynomial $p(x)$ of degree less than or equal 2 satisfying the constraints

$$
p\left(x_{0}\right)=y_{0}, p\left(x_{1}\right)=y_{0}+\alpha h, p\left(x_{2}\right)=y_{2} .
$$

3. Write the previous polynomial $p(x)$ on the form

$$
p(x)=y_{0} p_{0}^{h}(x)+\alpha p_{1}^{h}(x)+y_{2} p_{2}^{h}(x)
$$

and specify the polynomials $p_{0}^{h}(x), p_{1}^{h}(x), p_{2}^{h}(x)$.
4. Prove that polynomials $p_{0}^{h}(x), p_{1}^{h}(x), p_{2}^{h}(x)$ converge, when h tends to 0 , to three polynomials $p_{0}(x), p_{1}(x), p_{2}(x)$ which satisfy

$$
\begin{array}{lll}
p_{0}(0)=1, & p_{0}{ }^{\prime}(0)=0, & p_{0}(1)=0, \\
p_{1}(0)=0, & p_{1}{ }^{\prime}(0)=1, & p_{1}(1)=0, \\
p_{2}(0)=0, & p_{2}{ }^{\prime}(0)=0, & p_{2}(1)=1 .
\end{array}
$$

5. Comment the result of the previous question and develop a similar process leading to the standard cubic Hermite basis on $[0,1]$.

(1) Hermite interpolation

(2) Hermite interpolation over n data points

3 Cubic Hermite interpolation over 2 points
(4) Quintic Hermite interpolation over 2 points
(5) Hermite interpolating C^{1} cubic spline

Hermite interpolating C^{1} cubic spline - Construction

Construction

Hermite interpolation process over two points naturally allows to interpolate Hermite data

$$
\left(x_{i}, y_{i}, y_{i}^{\prime}\right), \quad i=1, \ldots, n \quad \text { with } \quad x_{1}<x_{2}<\cdots<x_{n}
$$

by a C^{1} piecewise cubic function h.
Precisely, the restriction h_{i} of h on each interval $\left[x_{i}, x_{i+1}\right]$ is the unique cubic Hermite interpolating polynomial of data $\left(x_{i}, y_{i}, y_{i}^{\prime}\right)$ and $\left(x_{i+1}, y_{i+1}, y_{i+1}^{\prime}\right)$.

- The C^{1} piecewise cubic function h constructed in that way verifies

$$
h\left(x_{i}\right)=y_{i} \quad \text { and } \quad h^{\prime}\left(x_{i}\right)=y_{i}^{\prime} \quad \text { for } \quad i=1, \ldots, n,
$$

and is called the Hermite interpolating C^{1} cubic spline associated with the Hermite data $\left(x_{i}, y_{i}, y_{i}^{\prime}\right)$ and is denoted $s_{H}:=h$

Hermite interpolating C^{1} cubic spline - Construction

Case of Hermite data from a function

Given a function $f \in C^{1}[a, b]$, as well as a sequence of n points x_{i} such that

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b
$$

the Hermite interpolating C^{1} cubic spline $s_{H}(., f)$ of the function f at points x_{i} is the Hermite interpolating C^{1} cubic spline associated with Hermite data $\left(x_{i}, f\left(x_{i}\right), f^{\prime}\left(x_{i}\right)\right)$.

Hermite interpolating C^{1} cubic spline - Error bound

Error bound

Exercise 4.6 - Consider a function $f \in C^{4}[a, b]$ as well as its Hermite interpolating C^{1} cubic spline $s_{H, n}(., f)$ over a uniform distribution of n points x_{i}

$$
a=x_{1}<x_{2}<\cdots<x_{n}=b \quad \text { with } \quad x_{i+1}-x_{i}=\frac{b-a}{n-1}
$$

1. Determine the error bound of this C^{1} cubic spline Hermite interpolation process, i.e., determine an upper bound of the error

$$
\left\|s_{H, n}(., f)-f\right\|=\max _{x \in[a, b]}\left|s_{H, n}(x, f)-f(x)\right|
$$

2. Prove that this Hermite interpolating process converges to f when the number n of data points x_{i} tends to $+\infty$
3. Does this result hold for any sequence of n data points at each step?
4. Consider the case of n data points x_{i} randomly chosen at each step (with $\left.a=x_{1}<x_{2}<\cdots<x_{n}=b\right)$.
5. Consider the case of the Runge function (convergence or not?).
