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Hermite interpolation — Objective

Objective

@ Geometrically, Hermite interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (x;, y;) with additional
constraints on the derivatives at the interpolating points.
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@ Data: (x;,y;,y}), i=0,...,n
Problem : find a function f (in a given space F) such that
fxi) =y and f'(x;) =y
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Hermite interpolation — Objective

Objective

@ Geometrically, Hermite interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (x;, y;) with additional
constraints on the derivatives at the interpolating points.
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@ Data: (x;,y;,y}), i=0,...,n
Problem : find a function f (in a given space F) such that
fx)=y; and f'(x;) =y

@ Choice of an appropriate space F' to achieve uniqueness
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Hermite interpolation — Choice of space E

Choice of space E

@ Global solution : Hermite interpolation over n + 1 data points
space F : polynomials of degree < 2n + 1

-~ initial function -~ initial function
—— Uniform Hermite interpolant o~ —— Chebyshev Hermite interpolant
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Hermite interpolation — Choice of space E

Choice of space E

@ Global solution : Hermite interpolation over n + 1 data points
space F : polynomials of degree < 2n + 1

-~ initial function -~ initial function
—— Uniform Hermite interpolant

—— Chebyshev Hermite interpolant
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@ Local solution : Hermite interpolation over 2 points
space F : piecewise cubic, quintic (polynomials)

- cubic interpolant
quintic
== cubic interpolant
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Hermite interpolation over n data points —

@ Hermite interpolation over n data points
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Hermite interpolation over n data points — Statement of the problem

Statement of the problem
Given a set of n + 1 distincts points xg, x1, . . ., X, in an interval [a, b] and two set of
n + 1 real values :

Yo, Yi5+-++5 Yn and y(/)7y,]7"'7y;/17

we look for a polynomial p(x) satisfying

P(xi) = Y, l:Oa
i=0

P = ¥, M

This Hermite interpolating polynomial will be denoted Py (f) or Py(x,f) if the
data values y; and y; come from a functionf € C'[a,b] :

yi :i=f(x) and y = f(x), 0<i<n.

Observing the number of constraints (equal to 2n + 2 ) induces us to search for a
polynomial p(x) of degree 2n + 1 .
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Hermite interpolation over n data points — Hermite basis

Construction of an Hermite basis
By analogy with the Lagrange approach we construct a polynomial basis

{hi(x), hi(x); i=0,1, ,n}

of Ry, 41 [x] satisfying the constraints

h,-(xj) = 6’] h,-(xj) =0 0 § i S n
{ B = 0o M Ve = & O o<j<a @

l

Such a basis will then make it possible to write the Hermite interpolating
polynomial in the form

PH<)C) = Z Vi hi(X) + Z yf E,’(X).
i=0 i=0
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Hermite interpolation over n data points — Hermite basis

Construction of an Hermite basis
We make explicit constraints (2) in the following table where the constraints on each
polynomial /;(x) and h;(x) are specified on the associate column (i.e., labelled by &; or h;).

ho  h hi he | ho  hy hi T

value at xo | 1 0 0]0 O 0 0
x| 0 1 0 0]0 O 0 0

x| 0 0 1 0]0 O 0 0

x, | 0 O 0 110 O 0 0

derivativeat xo | 0 O 0 0 1 0 0 0
x| 0 O 0 00 1 0 0

x| 0 0 0 0|0 O 1 0

x| 0 0 0 0]0 O 0 1
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Hermite interpolation over n data points — Hermite basis

Construction of polynomials /;(x)
By relations (2) we have I;(x;) = hi(x;) = 0 for 0 <j < n, j # i, so that polynomial /;(x)
admits a double root at each point x; # x;, and thus is on the form

hi(x) = Li (x) ri(x)

where r;(x) is a polynomial of degree less than or equal to 1.
The two additional constraints that must satisfy /;(x) leads to

{ 1 h(x) = Li(x) ri(x) = ri(x)
0 = hi(x) LI (x) ri(x) 4 2Li(x) Li(x) ri(x) = ri(x) + 2L (x)

so that

r(x) =1-2(x —x) Li(x).

Finally, with the formula of the derivative of L;(x) determined in section Lagrange form of
chapter Lagrange interpolation, we get

hi(x) = L} (x) (1_2(x_xi) Z : ) 3)

=0 x,-—xj

J#i
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Hermite interpolation over n data points — Hermite basis

Construction of polynomials ﬁ,» (x) B
By relations (2) we have &;(x;) = hi(x;) = 0 for 0 <j < n, j # i, so that polynomial /;(x)
admits a double root at each point x; # x;, and thus is on the form

hi(x) = Li (x) si(x)

where s;(x) is a polynomial of degree less than or equal to 1.
The two additional constraints that must satisfy /4;(x) leads to

0 = E,-(x,») = L,-z (xi) s,»(x,-) = Si ()C,‘)
L= him) = L) si(x) +2Li(x) Li(x) sita) = si(x)
so that
si(x) =x—x;
and finally

hi(x) = (x — xi) Lf (x) @
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Hermite interpolation over n data points — Hermite basis

Proposition 4.1 (Hermite basis)

The set of polynomials {hi(x), hi(x); i =0,1,...,n} form a basis of the vector space
Rzn+1 [x]

This basis is called the polynomial Hermite interpolation basis relative to data points x;.
Polynomials h;(x) and h;(x) are named Hermite interpolation basis polynomials.

Proof

This family contains 2n + 2 polynomials, each of them being of degree 2n + 1 by
construction, so that we just need to verify that this family is linearly independent.
So, consider real values o and &, i = 0,1,...,n, such that

a0 ho(x) + -+ 4 an b (x) +o_zoﬁ0(x) 4+ .. —|—6¢,Lﬁ,,(x) =0

for any real number x.
This relation and its derivative applied to each of the data point x; lead to the nullity of each
of the coefficients o and &, from which we deduce the result.
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Hermite interpolation over n data points — Solution

Proposition 4.2 (Hermite interpolating polynomial)

There exists a unique polynomial in Ry, [x] satisfying the Hermite constraints (1) defined
as follows

PH(.X)

D ovihi(x) + Y Vi)
i=0 i=0

Zy,-L%(x) (1—2(xfx,-) > x,.ix,-) +Zy£(xfxi)L%(x) )

j=0
JjFi

This polynomial is the Hermite interpolating polynomial of the data (x;, yi, y}).

Proof

One can easily check that the polynomial defined by (5) satisfy all the constraints (1).

Now, assume there exist two polynomials prnt1(x) and qont1(x) in Roui1[x] satisfying these
constraints. Then, polynomial prn41(x) — qunt1(x) € Roy1[x] admits n + 1 distinct double
roots and is thus zero, which gives the result.

11/32



Hermite interpolation over n data points — Examples

Example : uniform & Chebyshev Hermite interpolation

— initial function — initial function
— Hermite interpolant — Hermite interpolant

— initial function
— Hermite interpolant

6 points 8 points 10 points
Hermite : Uniform distribution of points

— initial function — initial function
— Chebyshev Hermite interpolant —  Chebyshev Hermite interpolant

— initial function
— Chebyshev Hermite interpolant

-05

6 points 8 points 10 points
Hermite : Chebyshev distribution of points
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Hermite interpolation over n data points — Examples

Example : comparison with Lagrange interpolation

1 1 1

== test function =~ test function =~ test function

— _uniform interpolant — uniform interpolant — uniform interpolant
10 Ve 10 10
0s 0s 0s
00 00 00 - -
05 -0 -0
-10] -10 -10

-1 -1
2 3 a 0 T B 3 0

12 points 16 points 20 points
Lagrange : Uniform distribution of points

1 1 1
-~ testfunction =~ test function =~ test function
~ — Chebyshev interpolant — Chebyshev interpolant — Chebyshev interpolant

.
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12 points 16 points 20 points
Lagrange : Chebyshev distribution of points
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Cubic Hermite interpolation over 2 points —

© Cubic Hermite interpolation over 2 points
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Cubic Hermite interpolation over 2 points — Objective

Objective
We consider the simple case of two interpolation data points o and 8 (« < S3).
Precisely, given the two Hermite data (v, ya, s ) and (8, yg, yg) we know by the previous
section that there exists a unique cubic polynomial p(x) interpolating these data, that is
satisfying

p(@) =ya, pP(@)=yo, P'(B) =5, p(B)=0ys
This cubic Hermite interpolating polynomial can be written as follows

P(x) = ya ha(x) +y5 hs(X) + Yo ha(x) + y5 hp(x)

with the cubic Hermite interpolation basis &q, hg, ha, hg relative to data points a, 3.

@ We will reduce this Hermite interpolation process to a standard Hermite process
relative to the two points O and 1. This will then make it possible to apply this process
simply to n points taken 2 by 2 in the situation of cubic splines.

Note that Hermite process can also be reduced relative to the two points —1 and 1.

@ Hermite interpolation on any interval [«, 8] is then deduced from the Hermite
interpolation on [0, 1] by the affine transformation

X—«

x € [a, ] Ht:ﬁ—a € [0,1]
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Cubic Hermite interpolation over 2 points — Basis over [0, 1]

Cubic Hermite basis on [0, 1]
The previous cubic Hermite interpolating polynomial p(x) can be rewritten as follows

) +ya B-a)H (5==) + 35 (B Ha(

X —«

= ) (5
(©)

where Hy, Hi, H>, H3 are four cubic polynomials forming the standard cubic Hermite basis
over [0, 1] and characterized by the following table.

X—«

B -«

p(x) = ya Ho(

Hy Hy H, H;
HO) |1 0 0 0

H@O |0 1 0 0 .

Ho() =1—-37+2¢
H()=t—2F+7¢
Hy(t) = - + 1
H3(r) =37 -2¢
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Cubic Hermite interpolation over 2 points — Example

Exercise 4.1 — Consider the three following functions which are plotted below
respectively in blue, green and red.
filx) = ex};(x) —1, x € [-1,0.5],
f(x) =sin(x*) — 1, x € [2,3],
3] 2
flx)=—1+2 bmiix) x€[5,8].

Determine two functions p; and p respectively defined on intervals [0.5, 2] and [3, 5], and
plot all these functions, such that the concatenation of the five functions fi, p1, /2, p2, 5

provides a C' function over the interval [—1, 8].
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Cubic Hermite interpolation over 2 points — A useful result ...

The following technical result will be essential for the construction of C* cubic interpolation
splines in the next chapter.

Proposition 4.3 (second derivatives at extremities)

Let p(x) be the cubic Hermite interpolating polynomial relative to data (a, Vo y’a) and
(,B,yg,y'ﬁ) andleth = — a.
Then, the second derivatives of p(x) at points o and 3 can be expressed with respect to the
interpolation data as follows.
" _ 2 / / " _ 2 / /
P(0) = 55 (335 =3va—2h¥e—hys) and p"(8) = 13 (3ya =35 +2hyfs+hyl)
@)
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Cubic Hermite interpolation over 2 points — A useful result ...

The following technical result will be essential for the construction of C* cubic interpolation
splines in the next chapter.

Proof

The two formulas are identical up to a data permutation and by replacing h with —h.

So we just need to prove the first one. Then, since the Hermite interpolating polynomial p(x)
and its derivative p’ (x) are respectively of degree 3 and 2, they coincide with their Taylor
expansion respectively of order 3 and 2 at point o.

B0l () + B2 (),

P ) = v+ (= 0)p () + E (),

p(x) =ya+ (x—a)ys +

For x = (3, we get

n n n
P(B) =ya+hyat 5 p'(@)+=p (@) and  p'(B) =yathp"(a)+ 75 p" (),
from which we deduce the result after eliminating the term p'"’ (a)

2
p(a) = 77 (38 = 3ya — 2hy, — hyj).
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Cubic Hermite interpolation over 2 points — Error bound

Error bound

We propose to estimate the error associated with the cubic Hermite interpolation over two points in the
form of a problem. — Letf € C*[a, 8] and let p(x) = Py (x,f) be the cubic Hermite interpolating
polynomial of the function f at points v and 3.

Considering a fixed value x in ], B[, we introduce the function ¢ defined by

Rl A

(= @) (u— B)?
welafl — 6w =/ —p) — T (10 - p()

Prove that ¢ cancels at points «, 8 and x. Deduce that ¢’ cancels at two distinct points in ]a, 3].
Prove that ¢/ (o) = ¢/(8) = 0.

Deduce that there exists ¢ € Jo, 8] such that ¢*) (¢;) = 0.

Prove that

x—a)?(x— B)?
() — pl) = S =)

24

(B-ay

@) andthat |(x—a)(x— B)| < 1

. Finally, deduce that for all x € [«, 3] we have

(B—a)*

@) = p0)] < T

(4)
(ax A2,

from which we get the upper bound for the error

Jr-patorl] < S|l
20132



Quintic Hermite interpolation over 2 points —

© Quintic Hermite interpolation over 2 points
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Quintic Hermite interpolation over 2 points — Objective

Objective

We now consider Hermite interpolation of order two — which means that constraints involve
the value together with the first and second derivatives at the data points — over two points
« and B.

Precisely, we look for a polynomial p(x) such that

p(a) =ya p'(a) =ya
p(B) =vp P'(B) =5

where yo, Yo, Yo and yg, ¥, y4 are prescribed real numbers.

The approach is similar to that in the previous section (for Cubic Hermite interpolation over
2 points).

@ We construct a standard quintic Hermite basis relative to the two points 0 and 1.

@ Hermite interpolation on any interval [, 5] is then deduced from the quintic Hermite
interpolation on [0, 1] by the affine transformation

—
€ 0,1
[ ’ ]

x € ol — 1=

B8 —
This Hermite interpolation process is developed in the form of a problem.
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Quintic Hermite interpolation over 2 points — The process

Existence and uniqueness

1.

Hermite interpolation of order 2 on [0, 1]
Prove that there exists a unique quintic polynomial g(x) such that

0) =y

q(0) = yo q'(0) =y
=y (1) =y

q(1) q'(1) =y

where yo, yo, ¥ and y1, yi, ¥} are prescribed real numbers.

'
q

i
q

. Hermite interpolation of order 2 on [, f3]

Deduce that there exists a unique quintic polynomial p(x) such that

p(a) =ya p(a) =y, p'(a) =ya
p(B) =ys P'(B) =5 P'(B) =5

where Yo, Yo, Yo and yg, ¥, ¥ are prescribed real numbers.
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Quintic Hermite interpolation over 2 points — The process

Quintic Hermite basis
3. Quintic Hermite basis on [0, 1]. Consider the following quintic polynomials.

Qo(x) = —6x° + 152 — 1027 +1 01(x) = =35 +8x* —64° +x
1 1

0200 = S (=" + 35" 30T+ 0s() = S (7 =2 )

04(x) = =35 + 7" — 4 0s(x) = 6x° — 15x* + 104

45 07 [ 3 08 To o

Quintic Hermite polynomials Q;(x) on the interval [0, 1] & zoom on the right figure.

Calculate the following matrix which gathers the values of the polynomials Q;i(x), O} (x),
0/ (x) at points 0 and 1.

00(0) Q(, (0) Qé/(O) Q(;)'(l) Q(,(l) Qo (1)
21(0)  Q(0)  )(0) () 0j(1)  &i(D)
2000 05(0)  Y(0) QY1) Q1) 0x(1)
2;(0)  05(0) Q9’<0> Q;'(l) () 05(1)
04(0)  Q4(0)  0F(0)  Q)(D)  03(1)  Qa(D)
0s5(0)  05(0) 05(0) o5 (1) o5(1) 0os(1)
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Quintic Hermite interpolation over 2 points — The process

The solution

4. Determine the unique solution g(x) to the Hermite interpolation problem of order 2 on
the interval [0, 1], as a combination of the polynomials Q;(x).

5. Determine the unique solution p(x) to the Hermite interpolation problem of order 2 on
the interval [«, 3], as a combination of the polynomials Q;(x).

Hint : consider the following combination of polynomials Q;(x) :

y(X
(F-a) ya
) = (000 010, 02(0.050). (0. 05()) | (37 %
(B—a) ¥
ys
with £ = = :Z
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Quintic Hermite interpolation over 2 points — Example

Exercise 4.2 — Comparison with the cubic Hermite interpolation.
Consider again the three following functions which are plotted below respectively in blue,
green and red.

filx) = ex‘;(x) —1, x€[-1,0.5],
f(x) =sin(x?) — 1, x € [2,3],
B =—1+2 M, x € [5,8].

Determine the two quintic polynomials g (x) and g2 (x) respectively defined on intervals
[0.5,2] and [3, 5], such that the concatenation of the five functions fi, g1, /2, g2, f3 provides
C? function over the interval [—1, 8].

0.5

_30[ -~ cubicinterpolant
quintic
—35}| == cubic interpolant
quintic

-1 0 1 2 3 4 5 6 7

a
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Quintic Hermite interpolation over 2 points — Exercises

Exercise 4.3 — Hermite interpolation of order n at one point
Letn € N, a a fixed real number as well as n + 1 real numbers

Yo, Y1y -+ Yn-
Prove that there exists a unique polynomial p(x) of degree n such that
p(k)(a):yk, k=0,1,...,n.

Exercise 4.4 — An instructive example
Let yo, y1, y» three real numbers. Determine the set of polynomials
p(x) = ao + a1 x + a2 ¥* € Ry[x] satisfying the constraints

p(0)=yo, p'(1)=y1, p2) =,

according values of parameters yo, ¥} and y».
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Quintic Hermite interpolation over 2 points — Exercises

Exercise 4.5 — From Lagrange to Hermite
Let h €]0, 1.
1. Write the quadratic Lagrange polynomials relative to data points xo = 0, x; = h, x» = 1.

2.

Given real values yo, o, y2, determine the unique polynomial p(x) of degree less than or
equal 2 satistying the constraints

p(x0) = yo, p(x1) = yo + ah, p(x2) = y2.

. Write the previous polynomial p(x) on the form

p(x) = yopo(x) + api(x) + y2p3(x),
and specify the polynomials pj(x), p’(x), pi(x).

Prove that polynomials pj(x), p{(x), p%(x) converge, when / tends to 0, to three
polynomials po(x), pi1(x), p2(x) which satisfy

p(0) = 1, po'(0) = 0, po(l) = 0,
]71(0) = 07 pl,(o) = ]a pl(l) = 07
p2(0) = 0, p(0) = 0, m(1) = 1

. Comment the result of the previous question and develop a similar process leading to the

standard cubic Hermite basis on [0, 1].
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Hermite interpolating C' cubic spline —

© Hermite interpolating C' cubic spline
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Hermite interpolating C' cubic spline — Construction

Construction

Hermite interpolation process over two points naturally allows to interpolate Hermite data

(e, yi,yi), i=1,...,n with X <Xy < e < Xy

by a C' piecewise cubic function /.

Precisely, the restriction 4; of & on each interval [x;, x;+1] is the unique cubic Hermite
interpolating polynomial of data (x;,yi,y;) and (Xi+1, Yit1, Yiy1)-
— The C' piecewise cubic function /4 constructed in that way verifies

h(x) =y and h'(x) =i for i=1,...,n,

and is called the Hermite interpolating C* cubic spline associated with the Hermite data
(xi,vi,v!) and is denoted sy := h

Yit1
Yis1
'.
y| yl
hy hi_1 i hiyq hy1
| | | | | | | |
X1 X X1 X Xiy1 Xp-1 Xn
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Hermite interpolating C' cubic spline — Construction

Case of Hermite data from a function

Given a function f € C'[a, b], as well as a sequence of n points x; such that
a=x1 <0< - <x=b

the Hermite interpolating C' cubic spline su(.,f) of the function f at points x; is the Hermite
interpolating C' cubic spline associated with Hermite data (x;,f(x;),f" (x:)).

— initial function

— initial function

— initial function
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Hermite interpolating C' cubic spline — Error bound

Error bound
Exercise 4.6 — Consider a function f € C*[a, b] as well as its Hermite interpolating C'
cubic spline sy ,(.,f) over a uniform distribution of n points x;

b—a
n—1

a=x1<xn<---<x,=b with Xy —x =

1. Determine the error bound of this C' cubic spline Hermite interpolation process, i.e.,
determine an upper bound of the error

smaCaf) = || = mas [snae.f) =)

xE€la,b
2. Prove that this Hermite interpolating process converges to f when the number 7 of data
points x; tends to 400
3. Does this result hold for any sequence of n data points at each step ?

4. Consider the case of n data points x; randomly chosen at each step (with
a=x1<x<---<x,=0>b).

5. Consider the case of the Runge function (convergence or not ?).
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