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Hermite interpolation — Objective

Objective
Geometrically, Hermite interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (xi, yi) with additional
constraints on the derivatives at the interpolating points.
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f (xi) = yi and f ′(xi) = y′i
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Hermite interpolation — Objective

Objective
Geometrically, Hermite interpolation consists in determining a curve (i.e., a
function) that passes through predetermined positions (xi, yi) with additional
constraints on the derivatives at the interpolating points.
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Problem : find a function f (in a given space F) such that
f (xi) = yi and f ′(xi) = y′i
Choice of an appropriate space F to achieve uniqueness
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Hermite interpolation — Choice of space E

Choice of space E
Global solution : Hermite interpolation over n + 1 data points
space F : polynomials of degree ≤ 2n + 1
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Hermite interpolation — Choice of space E
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Hermite interpolation over n data points — Statement of the problem

Statement of the problem
Given a set of n + 1 distincts points x0, x1, . . . , xn in an interval [a, b] and two set of
n + 1 real values :

y0, y1, . . . , yn and y′0, y′1, . . . , y′n ,

we look for a polynomial p(x) satisfying{
p(xi) = yi , i = 0, 1, . . . , n,
p′(xi) = y′i , i = 0, 1, . . . , n. (1)

This Hermite interpolating polynomial will be denoted PH( f ) or PH(x, f ) if the
data values yi and y′i come from a function f ∈ C1[a, b] :

yi := f (xi) and y′i := f ′(xi) , 0 ≤ i ≤ n .

Observing the number of constraints (equal to 2n + 2 ) induces us to search for a
polynomial p(x) of degree 2n + 1 .

5/32



Hermite interpolation over n data points — Hermite basis

Construction of an Hermite basis
By analogy with the Lagrange approach we construct a polynomial basis{

hi(x), h̄i(x) ; i = 0, 1, ..., n
}

of R2n+1[x] satisfying the constraints{
hi(xj) = δij

h′
i(xj) = 0 and

{
h̄i(xj) = 0
h̄′i(xj) = δij

for
0 ≤ i ≤ n
0 ≤ j ≤ n (2)

Such a basis will then make it possible to write the Hermite interpolating
polynomial in the form

PH(x) =

n∑
i=0

yi hi(x) +

n∑
i=0

y′i h̄i(x).
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Hermite interpolation over n data points — Hermite basis

Construction of an Hermite basis
We make explicit constraints (2) in the following table where the constraints on each
polynomial hi(x) and h̄i(x) are specified on the associate column (i.e., labelled by hi or h̄i).

h0 h1 · · · hi · · · hn h̄0 h̄1 · · · h̄i · · · h̄n

value at x0 1 0 · · · 0 · · · 0 0 0 · · · 0 · · · 0
x1 0 1 · · · 0 · · · 0 0 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
...

xi 0 0 1 0 0 0 · · · 0 · · · 0
...

...
...

. . .
...

...
...

...
...

xn 0 0 · · · 0 · · · 1 0 0 · · · 0 · · · 0
derivative at x0 0 0 · · · 0 · · · 0 1 0 · · · 0 · · · 0

x1 0 0 · · · 0 · · · 0 0 1 · · · 0 · · · 0
...

...
...

...
...

...
...

. . .
...

xi 0 0 · · · 0 · · · 0 0 0 1 0
...

...
...

...
...

...
...

. . .
...

xn 0 0 · · · 0 · · · 0 0 0 · · · 0 · · · 1
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Hermite interpolation over n data points — Hermite basis

Construction of polynomials hi(x)
By relations (2) we have hi(xj) = h′i (xj) = 0 for 0 ≤ j ≤ n, j 6= i, so that polynomial hi(x)
admits a double root at each point xj 6= xi, and thus is on the form

hi(x) = L2
i (x) ri(x)

where ri(x) is a polynomial of degree less than or equal to 1.
The two additional constraints that must satisfy hi(x) leads to{

1 = hi(xi) = L2
i (xi) ri(xi) = ri(xi)

0 = h′i (xi) = L2
i (xi) r′i (xi) + 2 Li(xi) L′i (xi) ri(xi) = r′i (xi) + 2 L′i (xi)

so that
ri(x) = 1− 2 (x− xi) L′i (xi).

Finally, with the formula of the derivative of Li(x) determined in section Lagrange form of
chapter Lagrange interpolation, we get

hi(x) = L2
i (x)

(
1− 2 (x− xi)

n∑
j = 0
j 6= i

1
xi − xj

)
(3)
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Hermite interpolation over n data points — Hermite basis

Construction of polynomials h̄i(x)
By relations (2) we have h̄i(xj) = h̄′i (xj) = 0 for 0 ≤ j ≤ n, j 6= i, so that polynomial h̄i(x)
admits a double root at each point xj 6= xi, and thus is on the form

h̄i(x) = L2
i (x) si(x)

where si(x) is a polynomial of degree less than or equal to 1.
The two additional constraints that must satisfy h̄i(x) leads to{

0 = h̄i(xi) = L2
i (xi) si(xi) = si(xi)

1 = h̄′i (xi) = L2
i (xi) s′i (xi) + 2 Li(xi) L′i (xi) si(xi) = s′i (xi)

so that
si(x) = x− xi

and finally
h̄i(x) = (x− xi) L2

i (x) (4)
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Hermite interpolation over n data points — Hermite basis

Proposition 4.1 (Hermite basis)

The set of polynomials
{

hi(x), h̄i(x); i = 0, 1, . . . , n
}

form a basis of the vector space
R2n+1[x].
This basis is called the polynomial Hermite interpolation basis relative to data points xi.
Polynomials hi(x) and h̄i(x) are named Hermite interpolation basis polynomials.

Proof
This family contains 2n + 2 polynomials, each of them being of degree 2n + 1 by
construction, so that we just need to verify that this family is linearly independent.
So, consider real values αi and ᾱi, i = 0, 1, . . . , n, such that

α0 h0(x) + · · ·+ αn hn(x) + ᾱ0 h̄0(x) + · · ·+ ᾱn h̄n(x) = 0

for any real number x.
This relation and its derivative applied to each of the data point xi lead to the nullity of each
of the coefficients αi and ᾱi , from which we deduce the result.
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Hermite interpolation over n data points — Solution

Proposition 4.2 (Hermite interpolating polynomial)

There exists a unique polynomial in R2n+1[x] satisfying the Hermite constraints (1) defined
as follows

PH(x) =
n∑

i=0

yi hi(x) +
n∑

i=0

y′i h̄i(x)

=
n∑

i=0

yi L2
i (x)

(
1− 2 (x− xi)

n∑
j = 0
j 6= i

1
xi − xj

)
+

n∑
i=0

y′i (x− xi) L2
i (x) (5)

This polynomial is the Hermite interpolating polynomial of the data (xi, yi, y′i ).

Proof
One can easily check that the polynomial defined by (5) satisfy all the constraints (1).
Now, assume there exist two polynomials p2n+1(x) and q2n+1(x) in R2n+1[x] satisfying these
constraints. Then, polynomial p2n+1(x)− q2n+1(x) ∈ R2n+1[x] admits n + 1 distinct double
roots and is thus zero, which gives the result.
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Hermite interpolation over n data points — Examples

Example : uniform & Chebyshev Hermite interpolation
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Hermite interpolation over n data points — Examples

Example : comparison with Lagrange interpolation
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Cubic Hermite interpolation over 2 points —
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Cubic Hermite interpolation over 2 points — Objective

Objective
We consider the simple case of two interpolation data points α and β (α < β).
Precisely, given the two Hermite data (α, yα, y′α) and (β, yβ , y′β), we know by the previous
section that there exists a unique cubic polynomial p(x) interpolating these data, that is
satisfying

p(α) = yα , p′(α) = y′α , p′(β) = y′β , p(β) = yβ .

This cubic Hermite interpolating polynomial can be written as follows

p(x) = yα hα(x) + yβ hβ(x) + y′α h̄α(x) + y′β h̄β(x)

with the cubic Hermite interpolation basis hα, hβ , h̄α, h̄β relative to data points α, β.

We will reduce this Hermite interpolation process to a standard Hermite process
relative to the two points 0 and 1. This will then make it possible to apply this process
simply to n points taken 2 by 2 in the situation of cubic splines.
Note that Hermite process can also be reduced relative to the two points −1 and 1.

Hermite interpolation on any interval [α, β] is then deduced from the Hermite
interpolation on [0, 1] by the affine transformation

x ∈ [α, β] 7−→ t =
x− α
β − α ∈ [0, 1]
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Cubic Hermite interpolation over 2 points — Basis over [0, 1]

Cubic Hermite basis on [0, 1]
The previous cubic Hermite interpolating polynomial p(x) can be rewritten as follows

p(x) = yα H0

( x− α
β − α

)
+ y′α (β−α)H1

( x− α
β − α

)
+ y′β (β−α)H2

( x− α
β − α

)
+ yβ H3

( x− α
β − α

)
(6)

where H0, H1, H2, H3 are four cubic polynomials forming the standard cubic Hermite basis
over [0, 1] and characterized by the following table.

H0 H1 H2 H3
Hi(0) 1 0 0 0

H′i (0) 0 1 0 0

H′i (1) 0 0 1 0

Hi(1) 0 0 0 1
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H0(t) = 1− 3 t2 + 2 t3

H1(t) = t − 2 t2 + t3

H2(t) = −t2 + t3

H3(t) = 3 t2 − 2 t3
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Cubic Hermite interpolation over 2 points — Example

Exercise 4.1 — Consider the three following functions which are plotted below
respectively in blue, green and red.

f1(x) =
exp(x)

2
− 1, x ∈ [−1, 0.5],

f2(x) = sin(x2)− 1, x ∈ [2, 3],

f3(x) = −1 + 2
sin(2 x)

x
, x ∈ [5, 8].
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Determine two functions p1 and p2 respectively defined on intervals [0.5, 2] and [3, 5], and
plot all these functions, such that the concatenation of the five functions f1, p1, f2, p2, f3

provides a C1 function over the interval [−1, 8].
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Cubic Hermite interpolation over 2 points — A useful result ...

The following technical result will be essential for the construction of C2 cubic interpolation
splines in the next chapter.

Proposition 4.3 (second derivatives at extremities)

Let p(x) be the cubic Hermite interpolating polynomial relative to data
(
α, yα, y′α

)
and(

β, yβ , y′β
)

and let h = β − α.
Then, the second derivatives of p(x) at points α and β can be expressed with respect to the
interpolation data as follows.

p′′(α) =
2
h2

(
3 yβ−3 yα−2 h y′α−h y′β

)
and p′′(β) =

2
h2

(
3 yα−3 yβ + 2 h y′β + h y′α

)
(7)
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Cubic Hermite interpolation over 2 points — A useful result ...

The following technical result will be essential for the construction of C2 cubic interpolation
splines in the next chapter.

Proof
The two formulas are identical up to a data permutation and by replacing h with −h.
So we just need to prove the first one. Then, since the Hermite interpolating polynomial p(x)
and its derivative p′(x) are respectively of degree 3 and 2, they coincide with their Taylor
expansion respectively of order 3 and 2 at point α.

p(x) = yα + (x− α) y′α +
(x− α)2

2
p′′(α) +

(x− α)3

6
p′′′(α),

p′(x) = y′α + (x− α) p′′(α) +
(x− α)2

2
p′′′(α).

For x = β, we get

p(β) = yα+h y′α+
h2

2
p′′(α)+

h3

6
p′′′(α) and p′(β) = y′α+h p′′(α)+

h2

2
p′′′(α),

from which we deduce the result after eliminating the term p′′′(α)

p′′(α) =
2
h2

(
3 yβ − 3 yα − 2 h y′α − h y′β

)
.
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Cubic Hermite interpolation over 2 points — Error bound

Error bound
We propose to estimate the error associated with the cubic Hermite interpolation over two points in the
form of a problem. — Let f ∈ C4[α, β] and let p(x) = PH(x, f ) be the cubic Hermite interpolating
polynomial of the function f at points α and β.
Considering a fixed value x in ]α, β[, we introduce the function φ defined by

u ∈ [α, β] 7−→ φ(u) = f (u)− p(u)−
(u− α)2 (u− β)2

(x− α)2 (x− β)2

(
f (x)− p(x)

)
.

1. Prove that φ cancels at points α, β and x. Deduce that φ′ cancels at two distinct points in ]α, β[.

2. Prove that φ′(α) = φ′(β) = 0.

3. Deduce that there exists ζx ∈ ]α, β[ such that φ(4)(ζx) = 0.

4. Prove that

f (x)− p(x) =
(x− α)2 (x− β)2

24
f (4)(ζx) and that |(x− α)(x− β)| ≤

(β − α)2

4
.

5. Finally, deduce that for all x ∈ [α, β] we have∣∣ f (x)− p(x)
∣∣ ≤ (β − α)4

384
max
ζ∈[α,β]

∣∣ f (4)(ζ)
∣∣ ,

from which we get the upper bound for the error∣∣∣∣∣∣ f − PH(., f )
∣∣∣∣∣∣ ≤ (β − α)4

384

∣∣∣∣∣∣ f (4)
∣∣∣∣∣∣.
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Quintic Hermite interpolation over 2 points —
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Quintic Hermite interpolation over 2 points — Objective

Objective
We now consider Hermite interpolation of order two — which means that constraints involve
the value together with the first and second derivatives at the data points — over two points
α and β.
Precisely, we look for a polynomial p(x) such that

p(α) = yα p′(α) = y′α p′′(α) = y′′α
p(β) = yβ p′(β) = y′β p′′(β) = y′′β

where yα, y′α, y′′α and yβ , y′β , y′′β are prescribed real numbers.

The approach is similar to that in the previous section (for Cubic Hermite interpolation over
2 points).

We construct a standard quintic Hermite basis relative to the two points 0 and 1.

Hermite interpolation on any interval [α, β] is then deduced from the quintic Hermite
interpolation on [0, 1] by the affine transformation

x ∈ [α, β] 7−→ t =
x− α
β − α ∈ [0, 1]

This Hermite interpolation process is developed in the form of a problem.
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Quintic Hermite interpolation over 2 points — The process

Existence and uniqueness
1. Hermite interpolation of order 2 on [0, 1]

Prove that there exists a unique quintic polynomial q(x) such that

q(0) = y0 q′(0) = y′0 q′′(0) = y′′0
q(1) = y1 q′(1) = y′1 q′′(1) = y′′1

where y0, y′0, y′′0 and y1, y′1, y′′1 are prescribed real numbers.

2. Hermite interpolation of order 2 on [α, β]
Deduce that there exists a unique quintic polynomial p(x) such that

p(α) = yα p′(α) = y′α p′′(α) = y′′α
p(β) = yβ p′(β) = y′β p′′(β) = y′′β

where yα, y′α, y′′α and yβ , y′β , y′′β are prescribed real numbers.
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Quintic Hermite interpolation over 2 points — The process

Quintic Hermite basis
3. Quintic Hermite basis on [0, 1]. Consider the following quintic polynomials.

Q0(x) = −6 x5
+ 15 x4 − 10 x3

+ 1 Q1(x) = −3 x5
+ 8 x4 − 6 x3

+ x

Q2(x) =
1

2
(−x5

+ 3 x4 − 3 x3
+ x2

) Q3(x) =
1

2
(x5 − 2 x4

+ x3
)

Q4(x) = −3 x5
+ 7 x4 − 4 x3 Q5(x) = 6 x5 − 15 x4

+ 10 x3
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0.04
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Quintic Hermite polynomials Qi(x) on the interval [0, 1] & zoom on the right figure.

Calculate the following matrix which gathers the values of the polynomials Qi(x), Q′i (x),
Q′′i (x) at points 0 and 1.

Q0(0) Q′
0(0) Q′′

0 (0) Q′′
0 (1) Q′

0(1) Q0(1)
Q1(0) Q′

1(0) Q′′
1 (0) Q′′

1 (1) Q′
1(1) Q1(1)

Q2(0) Q′
2(0) Q′′

2 (0) Q′′
2 (1) Q′

2(1) Q2(1)
Q3(0) Q′

3(0) Q′′
3 (0) Q′′

3 (1) Q′
3(1) Q3(1)

Q4(0) Q′
4(0) Q′′

4 (0) Q′′
4 (1) Q′

4(1) Q4(1)
Q5(0) Q′

5(0) Q′′
5 (0) Q′′

5 (1) Q′
5(1) Q5(1)


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Quintic Hermite interpolation over 2 points — The process

The solution
4. Determine the unique solution q(x) to the Hermite interpolation problem of order 2 on

the interval [0, 1], as a combination of the polynomials Qi(x).

5. Determine the unique solution p(x) to the Hermite interpolation problem of order 2 on
the interval [α, β], as a combination of the polynomials Qi(x).

Hint : consider the following combination of polynomials Qi(x) :

p(x) =
(

Q0(t),Q1(t),Q2(t),Q3(t),Q4(t),Q5(t)
)


yα
(β − α) y′α
(β − α)2 y′′α
(β − α)2 y′′β
(β − α) y′β

yβ


with t =

x− α
β − α
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Quintic Hermite interpolation over 2 points — Example

Exercise 4.2 — Comparison with the cubic Hermite interpolation.
Consider again the three following functions which are plotted below respectively in blue,
green and red.

f1(x) =
exp(x)

2
− 1, x ∈ [−1, 0.5],

f2(x) = sin(x2)− 1, x ∈ [2, 3],

f3(x) = −1 + 2
sin(2 x)

x
, x ∈ [5, 8].

Determine the two quintic polynomials q1(x) and q2(x) respectively defined on intervals
[0.5, 2] and [3, 5], such that the concatenation of the five functions f1, q1, f2, q2, f3 provides a
C2 function over the interval [−1, 8].

1 0 1 2 3 4 5 6 7 8
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

cubic interpolant
quintic
cubic interpolant
quintic

26/32



Quintic Hermite interpolation over 2 points — Exercises

Exercise 4.3 — Hermite interpolation of order n at one point
Let n ∈ N, a a fixed real number as well as n + 1 real numbers

y0, y1, . . . , yn.

Prove that there exists a unique polynomial p(x) of degree n such that

p(k)(a) = yk, k = 0, 1, . . . , n.

Exercise 4.4 — An instructive example
Let y0, y′1, y2 three real numbers. Determine the set of polynomials
p(x) = a0 + a1 x + a2 x2 ∈ R2[x] satisfying the constraints

p(0) = y0, p′(1) = y′1, p(2) = y2 ,

according values of parameters y0, y′1 and y2.
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Quintic Hermite interpolation over 2 points — Exercises

Exercise 4.5 — From Lagrange to Hermite
Let h ∈]0, 1[.

1. Write the quadratic Lagrange polynomials relative to data points x0 = 0, x1 = h, x2 = 1.

2. Given real values y0, α, y2, determine the unique polynomial p(x) of degree less than or
equal 2 satisfying the constraints

p(x0) = y0, p(x1) = y0 + αh, p(x2) = y2.

3. Write the previous polynomial p(x) on the form

p(x) = y0 ph
0(x) + α ph

1(x) + y2 ph
2(x),

and specify the polynomials ph
0(x), ph

1(x), ph
2(x).

4. Prove that polynomials ph
0(x), ph

1(x), ph
2(x) converge, when h tends to 0, to three

polynomials p0(x), p1(x), p2(x) which satisfy

p0(0) = 1, p0
′(0) = 0, p0(1) = 0,

p1(0) = 0, p1
′(0) = 1, p1(1) = 0,

p2(0) = 0, p2
′(0) = 0, p2(1) = 1.

5. Comment the result of the previous question and develop a similar process leading to the
standard cubic Hermite basis on [0, 1].
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Hermite interpolating C1 cubic spline —

1 Hermite interpolation

2 Hermite interpolation over n data points

3 Cubic Hermite interpolation over 2 points

4 Quintic Hermite interpolation over 2 points

5 Hermite interpolating C1 cubic spline
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Hermite interpolating C1 cubic spline — Construction

Construction
Hermite interpolation process over two points naturally allows to interpolate Hermite data

(xi, yi, y′i ), i = 1, . . . , n with x1 < x2 < · · · < xn

by a C1 piecewise cubic function h.

Precisely, the restriction hi of h on each interval [xi, xi+1] is the unique cubic Hermite
interpolating polynomial of data (xi, yi, y′i ) and (xi+1, yi+1, y′i+1).
— The C1 piecewise cubic function h constructed in that way verifies

h(xi) = yi and h′(xi) = y′i for i = 1, . . . , n,

and is called the Hermite interpolating C1 cubic spline associated with the Hermite data
(xi, yi, y′i ) and is denoted sH := h

xi 

 

xn xi+1 xi-1 

 

 

 

 
 

 

hi-1 hi hi+1 

x1 x2 

 

h1 

xn-1 

hn-1 

  

yi 

yi+1 

y'

y'
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Hermite interpolating C1 cubic spline — Construction

Case of Hermite data from a function
Given a function f ∈ C1[a, b], as well as a sequence of n points xi such that

a = x1 < x2 < · · · < xn = b

the Hermite interpolating C1 cubic spline sH(., f ) of the function f at points xi is the Hermite
interpolating C1 cubic spline associated with Hermite data

(
xi, f (xi), f ′(xi)

)
.

0 1 2 3 4 5 6 7 8

2

1

0

1

2

3
initial function

0 1 2 3 4 5 6 7 8

2

1

0

1

2

3
initial function

0 1 2 3 4 5 6 7 8

2

1

0

1

2

3
initial function

Hermite interpolating C1 cubic spline of the blue function f : x 7→ f (x) = −1 + 2
sin(2 x)

x
at 4, 6 and 8 Hermite data points.
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Hermite interpolating C1 cubic spline — Error bound

Error bound
Exercise 4.6 — Consider a function f ∈ C4[a, b] as well as its Hermite interpolating C1

cubic spline sH,n(., f ) over a uniform distribution of n points xi

a = x1 < x2 < · · · < xn = b with xi+1 − xi =
b− a
n− 1

1. Determine the error bound of this C1 cubic spline Hermite interpolation process, i.e.,
determine an upper bound of the error∣∣∣∣ sH,n(., f )− f

∣∣∣∣ = max
x∈[a,b]

∣∣∣sH,n(x, f )− f (x)
∣∣∣

2. Prove that this Hermite interpolating process converges to f when the number n of data
points xi tends to +∞

3. Does this result hold for any sequence of n data points at each step?

4. Consider the case of n data points xi randomly chosen at each step (with
a = x1 < x2 < · · · < xn = b).

5. Consider the case of the Runge function (convergence or not ?).
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