Chapter 6

Least squares approximation

Introduction —

- Minimization of a positive definite quadratic form
- Numerical implementation and QR factorization
- Curve fitting

Introduction — Least squares approximation

- *Method of least squares* \rightarrow standard approach to approximate solution of over-determined systems (systems of equations in which there are more equations than unknowns).
- "Least squares" \rightarrow means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation.
- A major application consists in data fitting.

Introduction —

What is a good approximation?

As an example, assume we want to approximate the function $f(x) = x^2$ over the interval [0, 1] by a simple function, e.g. by a polynomial of degree one : p(x) = ax + b. Of course we need a tool to measure this approximation, i.e. the distance (the error) between *f* and *p* on [0, 1]. Consider the following three cases.

• Continuous least squares — The minimization of

$$\int_0^1 (f(x) - p(x))^2 dx = \int_0^1 (x^2 - (ax + b))^2 dx \qquad \text{leads to} \quad p(x) = x - \frac{1}{6}$$

• *Discrete least squares* — Considering the 3 points $x_0 = 0, x_1 = 1/2, x_2 = 1$, the minimization of

$$\sum_{i=0}^{2} \left(f(x_i) - p(x_i) \right)^2 = \sum_{i=0}^{2} \left(x_i^2 - (ax_i + b) \right)^2 \qquad \text{leads to} \quad p(x) = x - \frac{1}{12}$$

• Absolute values — Considering the 3 points $x_0 = 0, x_1 = 1/2, x_2 = 1$, the minimization of

$$\sum_{i=0}^{2} |f(x_i) - p(x_i)| = \sum_{i=0}^{2} |x_i^2 - (ax_i + b)| \quad \text{leads to} \quad p(x) = x$$

Consequently, one can see that the choice of the tool (the norm) for measuring the error (the approximation level) is therefore essential.

Introduction —

Analysis & implementation

Then, after choosing an approximation criterion, we must consider the following questions.

- Is there a solution? i.e., does such a polynomial p exist?
- Uniqueness?
- How can we characterize this solution *p*?
- How can we calculate this solution *p*?

Introduction — An example

Problem 1 : <u>Linear system.</u>

Consider the linear system

$$\begin{pmatrix} 1 & 1 \\ 4 & 1 \\ 7 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 5 \end{pmatrix}$$

that can be written in the matrix form Ax = b. This linear system does not admit an exact solution.

We propose to minimize the quantity $||A x - b||^2$ which can be written as the quadratic form

$$x^{T}(A^{T}A)x-2(A^{T}b)^{T}x+b^{T}b.$$

Problem 2 : <u>Projection in an</u> P Euclidean space.

Consider the vector $v = (2,2,5) \in \mathbb{R}^3$ and the 2D linear space Π of \mathbb{R}^3 spanned by the two vectors $u_1 = (1,4,7)$ and $u_2 = (1,1,1)$.

We are looking for a vector $\hat{v} = \alpha u_1 + \beta u_2 \in \Pi$ which minimizes the distance between *v* and Π .

The solution consists in the orthogonal projection of v in the plane Π characterized by $v - \hat{v} \perp u_1$ and $v - \hat{v} \perp u_2$, i.e., $\langle v - \hat{v}, u_1 \rangle = 0$ and $\langle v - \hat{v}, u_2 \rangle = 0$. Problem 3 : Curve fitting.

Given the three points (1, 2), (4, 2), (7, 5),

we are looking for a straight line $Y = \alpha X + \beta$ which passes (as close as possible) through these 3 points.

For this purpose, we minimize the sum of the square of the errors ϵ_i , i.e., the quantity $\sum \epsilon_i^2$.

- Introduction
- The best approximation problem
- 3 Minimization of a positive definite quadratic form
- 4 Over-determined linear systems
- 5 Numerical implementation and QR factorization
- 6 Curve fitting
- D Linear regression
- 8 Parametric approximation

In a normed vector space

Let (V, ||.||) a normed vector space and $T \subset V$ an arbitrary subset. Given an element $v \in V$ we look for an element $u \in T$ which is as close as possible of *v*. Precisely, $\hat{u} \in T$ is called a *best approximation* of *v* in *T* if

$$||v - \hat{u}|| = \inf_{u \in T} ||v - u||$$

Proposition 6.1

Let $T \subset V$ be a compact subset, then for every $v \in V$ there exists a best approximation $\hat{u} \in T$ of v.

Proposition 6.2 (Uniqueness)

Let $T \subset V$ be a compact and strictly convex subset of a normed vector space V. Then for every $v \in V$, there exists a unique best approximation $\hat{u} \in T$ of v.

Proposition 6.3

Let U be a finite dimensional vector subspace of a normed vector space V. Then for every $v \in V$, there exists at least one best approximation $\hat{u} \in U$ of v.

In a pre-Hilbert space

Let V be a vector space equipped with the inner product $f, g \in V \mapsto \langle f, g \rangle$ and let $||f|| = \langle f, f \rangle^{1/2}$ be the induced norm. In addition, let U be a finite dimensional vector subspace of this pre-Hilbert space.

For any given element $f \in V$, there exists a unique best approximation $\hat{f} \in U$ of f. We now consider a useful characterization of this best approximation.

Proposition 6.4 (Characterization)

 $\hat{f} \in U$ is the best approximation of $f \in V$ if and only if

 $\langle f - \hat{f}, g \rangle = 0 \quad \text{for all } g \in U.$

Polynomial of best uniform approximation

Proposition 6.5

Consider a function $f \in C[a, b]$. Then for each integer $n \in \mathbb{N}$, there exists a unique polynomial q_n of degree less than or equal to n such that

$$||f - q_n|| = \min_{p \in \mathbb{R}_n[x]} ||f - p||.$$

This polynomial q_n is called the polynomial of best uniform approximation of f of order n.

Proposition 6.6 (Weierstrass)

The space of polynomials $\mathbb{R}[x]$ is dense in the space C[a, b] endowed with the uniform norm. As a result, for any $\epsilon > 0$ there exists an integer $n \in \mathbb{N}$ and a polynomial $p \in \mathbb{R}_n[x]$ such that $||f - p|| < \epsilon$.

Minimization of a positive definite quadratic form —

Introduction

2) The best approximation problem

Minimization of a positive definite quadratic form

- 4 Over-determined linear systems
- 3 Numerical implementation and QR factorization
- 6 Curve fitting
- D Linear regression
- 8 Parametric approximation

Minimization of a positive definite quadratic form —

Positive definite matrices

A symmetric *n* square real matrix *A* is said to be *positive semi-definite* if and only if

 $\forall x \in \mathbb{R}^n, \quad x^T A x \ge 0.$

A symmetric *n* square real matrix *A* is said to be *positive definite* if and only if

$$\forall x \in \mathbb{R}^n, x \neq 0, \quad x^T A x > 0.$$

Proposition 6.7

In this proposition, matrices A and B are assumed to be real symmetric n square matrices.

- Matrix A is positive semi-definite if and only if all its eigenvalues are positive. Matrix A is positive definite if and only if all its eigenvalues are strictly positive.
- If A is positive semi-definite and invertible, then A is positive definite.
- If A is positive definite, then A⁻¹ is positive definite.
- Matrix A is positive definite if and only if there exists an invertible n square matrix G such that $A = G^T G$.
- For any real matrix H of size (p, n), the matrix $H^T H$ is (a n square) symmetric positive semi-definite.
- If A is positive definite, then α A is positive definite for any real $\alpha > 0$.
- If A and B are positive semi-definite and if one of the two matrices A or B is invertible, then A + B is definite positive.
- From the Gerschgorin-Hadamard theorem we deduce immediately the two following results.
 a) A symmetric diagonally dominant real matrix A with non negative diagonal entries is positive semi-definite.
 b) A symmetric strictly diagonally dominant real matrix A with non negative diagonal entries is positive definite.

Minimization of a positive definite quadratic form —

Minimization : main result

We consider the problem of minimizing a positive definite quadratic form $q: \mathbb{R}^n \to \mathbb{R}$ defined by

$$q(x) = x^T A x - 2 b^T x + c \tag{1}$$

where *A* is a symmetric *n* square real positive definite matrix, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Proposition 6.8

The positive definite quadratic form (1) is strictly convex, which means that

$$\forall x, y \in \mathbb{R}^n, \ \forall t \in]0, 1[, q((1-t)x + ty) < (1-t)q(x) + tq(y)$$

and the minimization problem

find
$$\tilde{x} \in \mathbb{R}^n$$
 such that $q(\tilde{x}) = \min_{x \in \mathbb{R}^n} q(x)$

admits a unique global solution \bar{x} on \mathbb{R}^n defined as the unique solution of the linear system

$$A x = b$$
.

Over-determined linear systems ----

Introduction

- 2 The best approximation problem
- 3 Minimization of a positive definite quadratic form
- Over-determined linear systems
 - 3 Numerical implementation and QR factorization
- 6 Curve fitting
- D Linear regression
- 8 Parametric approximation

Over-determined linear systems —

Problem

We are concerned here by the resolution of the linear system

$$A x = b$$
, $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $x \in \mathbb{R}^p$, $b \in \mathbb{R}^n$, $n > p$.

Usually *n* is much greater than *p*.

In general, such a linear system does not admit an exact solution. We are therefore looking for an *approximated* solution. Precisely, we replace the resolution of this linear system by the following optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^{p}} ||A\mathbf{x} - b|| \tag{2}$$

where ||.|| is the classical Euclidean norm of \mathbb{R}^n .

In the following, a vector of \mathbb{R}^k is identified with the column matrix of its components in the canonical basis. As an example, the inner product of two vectors *x* and *y* is written in the matrix form $x^T y$.

Over-determined linear systems —

Weighted inner product

Consider the vector space \mathbb{R}^n equipped with the inner product

$$(u,v) \in \mathbb{R}^n \times \mathbb{R}^n \quad \mapsto \quad \langle u,v \rangle_{\Omega} = u^T \Omega v = \sum_{i=1}^n w_i u_i v_i$$

where Ω is the diagonal matrix

$$\Omega = \begin{pmatrix} w_1 & & & \\ & w_2 & & \\ & & \ddots & \\ & & & & w_n \end{pmatrix} \quad \text{with } w_i > 0, \ i = 1, \dots, n,$$

which induces the norm

$$u \in \mathbb{R}^n \quad \mapsto \quad \parallel u \parallel_{\Omega} = \left(\langle u, u \rangle_{\Omega} \right)^{\frac{1}{2}} = \left(\sum_{i=1}^n w_i u_i^2 \right)^{\frac{1}{2}}.$$

We now consider the following optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^p} ||A\mathbf{x} - b||_{\Omega} \tag{3}$$

which allows to weight separately equations of the initial linear system with weights w_i .

 \rightarrow Minimizing the norm $||Ax - b||_{\Omega}$ is equivalent to minimize the squared norm $||Ax - b||_{\Omega}^2$.

Over-determined linear systems ----

Least squares approximation

The following proposition is the main result about least squares approximation.

We will give two proofs of this result.

- An algebraic proof.
- A simpler proof, using projection in an Euclidean space and proposition 6.4

Proposition 6.9

If matrix A has maximal rank p (which means that its columns are linearly independent), then the optimization problem

$$\min_{x\in\mathbb{R}^p}||Ax-b||_{\Omega}^2$$

admits a unique solution x^* defined by

$$A^T \Omega A x^* = A^T \Omega b$$

Equations (4) are called the normal equations.

(4)

Over-determined linear systems ----

Algebraic proof of proposition 6.9

We first prove that the symmetric matrix $\hat{A} = A^T \Omega A$ of order p is positive definite

$$\forall z \in \mathbb{R}^{p}, \ z \neq 0, \quad z^{T} \hat{A} z = z^{T} (A^{T} \Omega A) z = (Az)^{T} \Omega (A z) = ||A z||_{\Omega}^{2} > 0$$

since $ker(A) = \{0\}$ as A is of rank p.

Finally, we just need to remark that the application $x \mapsto ||Ax - b||_{\Omega}^2$ is a positive definite quadratic form. Precisely, for $x \in \mathbb{R}^p$ we have

$$\|Ax - b\|_{\Omega}^{2} = (Ax - b)^{T} \Omega (Ax - b)$$
$$= x^{T} (A^{T} \Omega A) x - 2 (A^{T} \Omega b)^{T} x + b^{T} \Omega b$$
$$= x^{T} \hat{A} x - 2 v^{T} x + c$$

with $v = A^T \Omega b \in \mathbb{R}^p$ and $c = b^T \Omega b \in \mathbb{R}$, which concludes the proof by proposition 6.8.

Over-determined linear systems —

Proof using projections in the Euclidean space $(\mathbb{R}^n, \langle ., . \rangle_{\Omega})$

We introduce the vector subspace U defined by

$$U = \{Ax, x \in \mathbb{R}^p\} = \operatorname{Im}(A).$$

so that, our optimization problem can be rewritten as follows

$$\min_{y \in U} ||y - b||_{\Omega}.$$

By proposition 6.4, the vector $\hat{y} \in U$ which minimizes the norm $||y - b||_{\Omega}$ is the orthogonal projection of *b* on *U*, and is characterized by

$$\begin{array}{ll} \langle \hat{y} - b, y \rangle_{\Omega} &= 0, \quad \forall y \in U, \\ \langle A\hat{x} - b, Ax \rangle_{\Omega} &= 0, \quad \forall x \in \mathbb{R}^{p}, \quad \text{with } \hat{y} = A\hat{x} \text{ and } y = Ax \\ (Ax)^{T} \Omega \left(A\hat{x} - b \right) &= 0, \quad \forall x \in \mathbb{R}^{p}, \\ x^{T} \left[A^{T} \Omega (A\hat{x} - b) \right] &= 0, \quad \forall x \in \mathbb{R}^{p}, \\ A^{T} \Omega A \hat{x} &= A^{T} \Omega b, \end{array}$$

which shows that an optimal solution \hat{x} of the optimization problem verify the normal equations (4).

The projection \hat{y} of vector *b* on the subspace *U* is unique. The unicity of the solution then depends on the rank of the matrix *A*, i.e., is a consequence of the injectivity of the linear map $x \mapsto Ax$.

Introduction

- 2 The best approximation problem
- 3 Minimization of a positive definite quadratic form
- 4 Over-determined linear systems

S Numerical implementation and QR factorization

- 6 Curve fitting
- 7 Linear regression
- 8 Parametric approximation

Objective

We consider the numerical resolution of the normal equations

$$A^T A x = A^T b \,,$$

with $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $x \in \mathbb{R}^p$ and $b \in \mathbb{R}^n$, where $n \ge p$, which requires a specific treatment in order to avoid the propagation of numerical rounding errors.

If the matrix A has maximal rank p, the symmetric matrix $A^{T}A$ is positive definite, so that the normal equations $A^{T}A x = A^{T} b$ can be solved through the *Cholesky factorization* :

$$A^T A = L L^T$$

where L is a lower triangular matrix with positive diagonal.

However, such a factorization has the major drawback of propagating the rounding errors. For this reason, the QR factorization is preferred.

The QR factorization reduces the minimization of the norm

$$||Ax - b||_2$$

to the resolution of a triangular linear system.

QR minimization

Proposition 6.10 (rectangular case)

Given a matrix $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $n \ge p$, with maximal rank p, there exists an orthogonal matrix $Q \in \mathcal{M}_n(\mathbb{R})$ and a unique upper triangular matrix $R \in \mathcal{M}_{n,p}(\mathbb{R})$ with positive diagonal elements, such that

$$A = QR.$$

We return to the optimization problem

$$\min_{\alpha \in \mathbb{R}^p} ||Ax - b||_2 \tag{5}$$

with $b \in \mathbb{R}^n$ and where $A \in \mathcal{M}_{n,p}(\mathbb{R})$, $n \ge p$, is of maximal rank p.

We consider the factorization A = QR and we introduce the following notations :

$$R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix}, \text{ where } R_1 \text{ is an upper } p\text{-square triangular matrix with positive diagonal,}$$
$$Q^T b = \begin{pmatrix} (Q^T b)_1 \\ (Q^T b)_2 \end{pmatrix}, \text{ with } (Q^T b)_1 \in \mathbb{R}^p \text{ and } (Q^T b)_2 \in \mathbb{R}^{n-p},$$
$$||.||_{2,r} \text{ is the usual Euclidean norm in } \mathbb{R}^r \text{ (by default } ||.||_2 = ||.||_{2,n}).$$

QR minimization

Then, for any vector $x \in \mathbb{R}^p$, we have

$$||A x - b||_{2}^{2} = ||QR x - b||_{2}^{2}$$

$$= ||Q^{T}(QR x - b)||_{2}^{2} \quad \text{since } Q^{T} \text{ is orthogonal}$$

$$= ||R x - Q^{T}b||_{2}^{2}$$

$$= ||\binom{R_{1}x}{0} - \binom{(Q^{T}b)_{1}}{(Q^{T}b)_{2}}||_{2}^{2}$$

$$= ||R_{1}x - (Q^{T}b)_{1}||_{2,p}^{2} + ||(Q^{T}b)_{2}||_{2,n-p}^{2} \quad \text{since } R_{1}x - (Q^{T}b)_{1} \perp (Q^{T}b)_{2}$$

Finally, the norm $||A x - b||_2$, $x \in \mathbb{R}^p$, is minimal for $||R_1 x - (Q^T b)_1||_{2,p} = 0$, from which we deduce the following proposition.

Proposition 6.11

With the previous hypotheses, the norm $||A x - b||_2$ is minimal for

 $\hat{x} = R_1^{-1} \left(Q^T b \right)_1$

and the minimal value of the norm $||Ax - b||_2$ is $||(Q^Tb)_2||_{2,n-p}$.

Introduction

- 2 The best approximation problem
- Minimization of a positive definite quadratic form
- 4 Over-determined linear systems
- 3 Numerical implementation and QR factorization

6 Curve fitting

- 7 Linear regression
- 8 Parametric approximation

Objective

Curve fitting is the process of constructing a curve (a mathematical function) that has the best fit to a series of data points.

Example :

We consider the problem of modeling the link between two variables X and Y for which we have a sample of n measurements

 $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Precisely, we desire to model the dependance between X and Y by the following relation

$$Y = a_1 f_1(X) + a_2 f_2(X) + \dots + a_p f_p(X)$$
(6)

with *p* elementary functions f_k (e.g., x^{α} , $\ln x$, $\exp x$, $\sin x$, $\cos x$, ...) (p < n) assumed to be linearly independent. Coefficients a_k are the unknown *parameters* of the model and will have to be estimated.

Objective

25/37

Problem modelling

Fitting the previous model (6)

$$Y = a_1 f_1(X) + a_2 f_2(X) + \dots + a_p f_p(X)$$

to the measurement data leads to the *n* relations (n > p)

$$\begin{cases} a_{1}f_{1}(x_{1}) + a_{2}f_{2}(x_{1}) + \dots + a_{p}f_{p}(x_{1}) &= y_{1} + \epsilon_{1} \\ a_{1}f_{1}(x_{2}) + a_{2}f_{2}(x_{2}) + \dots + a_{p}f_{p}(x_{2}) &= y_{2} + \epsilon_{2} \\ \vdots \\ a_{1}f_{1}(x_{i}) + a_{2}f_{2}(x_{i}) + \dots + a_{p}f_{p}(x_{i}) &= y_{i} + \epsilon_{i} \\ \vdots \\ a_{1}f_{1}(x_{n}) + a_{2}f_{2}(x_{n}) + \dots + a_{p}f_{p}(x_{n}) &= y_{n} + \epsilon_{n} \end{cases}$$
(7)

where each ϵ_i represents the error of the model on the measurement (x_i, y_i) . We then express these *n* linear equations in matrix form

$$\begin{pmatrix} f_1(x_1) & f_2(x_1) & \cdots & f_p(x_1) \\ f_1(x_2) & f_2(x_2) & \cdots & f_p(x_2) \\ \vdots & & & \vdots \\ f_1(x_i) & f_2(x_i) & \cdots & f_p(x_i) \\ \vdots & & & \vdots \\ f_1(x_n) & f_2(x_n) & \cdots & f_p(x_n) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \quad \Leftrightarrow \mathbf{A} \mathbf{u} = \mathbf{b} + \boldsymbol{\epsilon} \quad (8)$$

Problem modelling

In order to estimate parameters a_i of the model (6) we introduce a global error E defined by

$$E(a_1,\ldots,a_p) = \sum_{i=1}^n \epsilon_i^2 = \sum_{i=1}^n \left[a_1 f_1(x_i) + a_2 f_2(x_i) + \cdots + a_p f_p(x_i) - y_i \right]^2$$

= $||\epsilon||^2 = ||A u - b||^2$,

where ||.|| denotes the classical Euclidean norm.

Finally, we need to consider the minimization problem

$$\min_{a_1,\ldots,a_p} E(a_1,\ldots,a_p) = \min_u ||Au-b||^2$$

The function

$$E: \begin{array}{ccc} \mathbb{R}^p & \to & \mathbb{R} \\ (a_1, \dots, a_p) & \mapsto & E(a_1, \dots, a_p) \end{array}$$

is polynomial, quadratic and therefore of class C^2 . Therefore, this minimization problem can be considered in two equivalent ways :

- as an over-determined linear system : minimization of a quadratic form
- as the minimization of a function of several variables (the coefficients *a_k*) with tools of section 4 of chapter on *Prerequisitesin Maths*. We will consider this last approach.

⇔

⇔

Minimization : $\min_{a_1,\ldots,a_p} E(a_1,\ldots,a_p)$

Determination of the *critical points* \Rightarrow system of *p* linear equations

$$\begin{cases} \frac{\partial E}{\partial a_1}(a_1, \dots, a_p) &= 2 \sum_{i=1}^n f_1(x_i) \left[a_1 f_1(x_i) + \dots + a_p f_p(x_i) - y_i \right] = 0 \\ \vdots \\ \frac{\partial E}{\partial a_p}(a_1, \dots, a_p) &= 2 \sum_{i=1}^n f_p(x_i) \left[a_1 f_1(x_i) + \dots + a_p f_p(x_i) - y_i \right] = 0 \end{cases}$$

$$\begin{pmatrix} \sum_{i=1}^n f_1^2(x_i) & \sum_{i=1}^n f_1(x_i) f_2(x_i) & \dots & \sum_{i=1}^n f_1(x_i) f_p(x_i) \\ \sum_{i=1}^n f_2(x_i) f_1(x_i) & \sum_{i=1}^n f_2^2(x_i) & \dots & \sum_{i=1}^n f_2(x_i) f_p(x_i) \\ \vdots & \ddots & \vdots \\ \sum_{i=1}^n f_p(x_i) f_1(x_i) & \sum_{i=1}^n f_p(x_i) f_2(x_i) & \dots & \sum_{i=1}^n f_p^2(x_i) \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_p \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n y_i f_1(x_i) \\ \sum_{i=1}^n y_i f_2(x_i) \\ \vdots \\ \sum_{i=1}^n y_i f_p(x_i) \end{pmatrix}$$

$$(A^T A) u = A^T b$$

Minimization

We thus get the normal equations

$$\left(A^{T}A\right)u = A^{T}b$$

- If the rank of matrix A is maximum, that is equal to p, this linear system possesses a unique solution : the critical point $\hat{a} = (\hat{a}_1, \dots, \hat{a}_p)$, which defines a strict global minimum of the error function E.
- For the critical point $\hat{a} = (\hat{a}_1, \dots, \hat{a}_p)$, the global error $E(\hat{a}_1, \dots, \hat{a}_p)$ is called *residual error* and the value

$$\left[\frac{1}{n}E(\hat{a})\right]^{\frac{1}{2}} = \left[\frac{1}{n}\sum_{i=1}^{n}\epsilon_{i}^{2}\right]^{\frac{1}{2}}$$

is named the residual standard deviation.

Two regression models can be compared for a same data set by means of their residual standard deviations.

Example : residual standard deviation

Given a set of data points, we apply the least squares method so as to determine the best polynomial approximation for degree d = 1, 2, ..., 6.

In each case, we evaluate the residual standard deviation RSD(d). Of course, the function RSD(d) is decreasing with the degree, but we can see a gap for a certain degree in each case.

degree 1 RSD = 3.259601566	degree 1 RSD = 3.803313672	degree 1 RSD = 3.381303542
degree 2 RSD = 0.639429602	degree 2 RSD = 3.669523335	degree 2 RSD = 3.305089256
degree 3 RSD = 0.639135969	degree 3 RSD = 0.774789466	degree 3 RSD = 3.189389063
degree 4 RSD = 0.567980553	degree 4 RSD = 0.768156302	degree 4 RSD = 0.914385591
degree 5 RSD = 0.563194887	degree 5 RSD = 0.764840727	degree 5 RSD = 0.812359858
degree 6 RSD = 0.545339539	degree 6 RSD = 0.741644575	degree 6 RSD = 0.804901415

Introduction

- 2 The best approximation problem
- Minimization of a positive definite quadratic form
- 4 Over-determined linear systems
- 3 Numerical implementation and QR factorization
- 6 Curve fitting
- D Linear regression
- Parametric approximation

Fitting a straight line

We desire to fit a straight line (the model) with equation $Y = \alpha X + \beta$ to the data (x_i, y_i) , which leads to the linear system

$$\begin{pmatrix} x_1 & 1 \\ x_2 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \qquad \Leftrightarrow \quad A \, u = b + \epsilon$$

The normal equations $A^T A u = A^T b$ admits a unique solution, $\hat{\alpha}$, $\hat{\beta}$ given by

$$\hat{\alpha} = \frac{\frac{1}{n} \sum_{i=1}^{n} x_i y_i - \bar{x} \bar{y}}{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \quad \text{and} \quad \hat{\beta} = \bar{y} - \hat{\alpha} \, \bar{x} \quad \text{with} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

The straight line $Y = \hat{\alpha} X + \hat{\beta}$ is the *line of linear regression* of (or associated with) data points (x_i, y_i) .

Note that the line of linear regression goes through the barycenter (\bar{x}, \bar{y}) of data points (x_i, y_i)

Linear correlation

With data points (x_i, y_i) we define

$$\operatorname{var}(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \qquad \text{the empirical variance of } X$$
$$\operatorname{var}(\mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \qquad \text{the empirical variance of } Y$$
$$\operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \qquad \text{the empirical covariance between } X \text{ and } Y$$

so that the line of linear regression $Y = \hat{\alpha} X + \hat{\beta}$ is defined by

$$\hat{\alpha} = \frac{\operatorname{cov}(\mathbf{X}, \mathbf{Y})}{\operatorname{var}(\mathbf{X})}$$
 and $\hat{\beta} = \bar{y} - \hat{\alpha} \bar{x}.$

Pearson's correlation coefficient :

$$r = \operatorname{corr}(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}}, \qquad -1 \le r \le 1$$

 \rightarrow informally, *correlation* is synonymous with dependence \rightarrow sensitive only to a *linear* relationship between two variables

Linear correlation

Parametric approximation —

Introduction

- 2 The best approximation problem
- 3 Minimization of a positive definite quadratic form
- 4 Over-determined linear systems
- 5 Numerical implementation and QR factorization
- 6 Curve fitting
- 7 Linear regression
- Parametric approximation

Parametric approximation —

Objective

Given a sequence of points $M_i = (x_i, y_i)$, $1 \le i \le N$, we look for a parametric polynomial curve of prescribed degree which approximates these data points, that is which passes as close as possible to each point (x_i, y_i) for some prescribed parameter t_i .

Precisely, we look for a parametric polynomial curve

$$s : \begin{bmatrix} a, b \end{bmatrix} \in \mathbb{R} \longrightarrow \mathbb{R}^2$$
$$s : t \longmapsto s(t) = \begin{pmatrix} s_x(t) \\ s_y(t) \end{pmatrix}$$

such that

$$s(t_i) \simeq M_i \quad \Leftrightarrow \quad \left\{ \begin{array}{l} s_x(t_i) \simeq x_i \\ s_y(t_i) \simeq y_i \end{array} , \quad 1 \le i \le N \end{array} \right.$$

with a sequence of nodes $a = t_1 < t_2 < \cdots < t_N = b$, and where $s_x(t)$ and $s_y(t)$ are polynomials of prescribed degree.

 \rightarrow we are therefore reduced to solve two separate least squares approximation problems. \rightarrow we consider the *uniform* and the *chordal* parameterizations.

Parametric approximation —

Examples

Least squares approximation of a polygon by parametric polynomial curves of degree 5 and 8, with uniform and chordal parameterization.