## Introduction -

## Chapter 6

## Least squares approximation

## Introduction -

(1) Introduction

(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Introduction - Least squares approximation

- Method of least squares $\rightarrow$ standard approach to approximate solution of over-determined systems (systems of equations in which there are more equations than unknowns).
- "Least squares" $\rightarrow$ means that the overall solution minimizes the sum of the squares of the errors made in the results of every single equation.
- A major application consists in data fitting.





## Introduction

## What is a good approximation?

As an example, assume we want to approximate the function $f(x)=x^{2}$ over the interval $[0,1]$ by a simple function, e.g. by a polynomial of degree one : $p(x)=a x+b$.
Of course we need a tool to measure this approximation, i.e. the distance (the error) between $f$ and $p$ on $[0,1]$. Consider the following three cases.

- Continuous least squares - The minimization of

$$
\int_{0}^{1}(f(x)-p(x))^{2} \mathrm{~d} x=\int_{0}^{1}\left(x^{2}-(a x+b)\right)^{2} \mathrm{~d} x \quad \text { leads to } \quad p(x)=x-\frac{1}{6}
$$

- Discrete least squares - Considering the 3 points $x_{0}=0, x_{1}=1 / 2, x_{2}=1$, the minimization of

$$
\sum_{i=0}^{2}\left(f\left(x_{i}\right)-p\left(x_{i}\right)\right)^{2}=\sum_{i=0}^{2}\left(x_{i}^{2}-\left(a x_{i}+b\right)\right)^{2} \quad \text { leads to } \quad p(x)=x-\frac{1}{12}
$$

- Absolute values - Considering the 3 points $x_{0}=0, x_{1}=1 / 2, x_{2}=1$, the minimization of

$$
\sum_{i=0}^{2}\left|f\left(x_{i}\right)-p\left(x_{i}\right)\right|=\sum_{i=0}^{2}\left|x_{i}^{2}-\left(a x_{i}+b\right)\right| \quad \text { leads to } p(x)=x
$$

Consequently, one can see that the choice of the tool (the norm) for measuring the error (the approximation level) is therefore essential.

## Introduction

## Analysis \& implementation

Then, after choosing an approximation criterion, we must consider the following questions.

- Is there a solution? i.e., does such a polynomial $p$ exist?
- Uniqueness?
- How can we characterize this solution $p$ ?
- How can we calculate this solution $p$ ?


## Introduction - An example

Problem 1: Linear system.
Consider the linear system

$$
\left(\begin{array}{ll}
1 & 1 \\
4 & 1 \\
7 & 1
\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{l}
2 \\
2 \\
5
\end{array}\right)
$$

that can be written in the matrix form $A x=b$.
This linear system does not admit an exact solution.

We propose to minimize the quantity $\|A x-b\|^{2}$ which can be written as the quadratic form
$x^{T}\left(A^{T} A\right) x-2\left(A^{T} b\right)^{T} x+b^{T} b$.

Problem 2 : Projection in an Euclidean space.
Consider the vector Given the three points $v=(2,2,5) \in \mathbb{R}^{3}(1,2),(4,2),(7,5)$, and the 2D linear space $\Pi$ of $\mathbb{R}^{3}$ spanned by the two vectors $u_{1}=(1,4,7)$ and $u_{2}=(1,1,1)$.
We are looking for a vector $\hat{v}=\alpha u_{1}+\beta u_{2} \in \Pi$ which minimizes the distance between $v$ and $\Pi$.

The solution consists in the orthogonal projection of $v$ in the plane $\Pi$ characterized by $v-\hat{v} \perp u_{1}$ and $v-\hat{v} \perp u_{2}$, i.e.,
$\left\langle v-\hat{v}, u_{1}\right\rangle=0$ and
$\left\langle v-\hat{v}, u_{2}\right\rangle=0$.

Problem 3 : Curve fitting.
we are looking for a straight line $Y=\alpha X+\beta$ which passes (as close as possible) through these 3 points.


For this purpose, we minimize the sum of the square of the errors $\epsilon_{i}$, i.e., the quantity $\sum \epsilon_{i}^{2}$.

The best approximation problem -

## (1) Introduction

(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## The best approximation problem

## In a normed vector space

Let $(V,\|\|$.$) a normed vector space and T \subset V$ an arbitrary subset. Given an element $v \in V$ we look for an element $u \in T$ which is as close as possible of $v$. Precisely, $\hat{u} \in T$ is called a best approximation of $v$ in $T$ if

$$
\|v-\hat{u}\|=\inf _{u \in T}\|v-u\|
$$



Proposition 6.1
Let $T \subset V$ be a compact subset, then for every $v \in V$ there exists a best approximation $\hat{u} \in T$ of $v$.

Proposition 6.2 (Uniqueness)
Let $T \subset V$ be a compact and strictly convex subset of a normed vector space $V$. Then for every $v \in V$, there exists a unique best approximation $\hat{u} \in T$ of $v$.

Proposition 6.3
Let $U$ be a finite dimensional vector subspace of a normed vector space $V$. Then for every $v \in V$, there exists at least one best approximation $\hat{u} \in U$ of $v$.

## The best approximation problem -

## In a pre-Hilbert space

Let $V$ be a vector space equipped with the inner product $f, g \in V \mapsto\langle f, g\rangle$ and let $\|f\|=\langle f, f\rangle^{1 / 2}$ be the induced norm. In addition, let $U$ be a finite dimensional vector subspace of this pre-Hilbert space.
For any given element $f \in V$, there exists a unique best approximation $\hat{f} \in U$ of $f$. We now consider a useful characterization of this best approximation.

Proposition 6.4 (Characterization)
$\hat{f} \in U$ is the best approximation of $f \in V$ if and only if

$$
\langle f-\hat{f}, g\rangle=0 \quad \text { for all } g \in U
$$



## The best approximation problem -

## Polynomial of best uniform approximation

## Proposition 6.5

Consider a function $f \in C[a, b]$. Then for each integer $n \in \mathbb{N}$, there exists a unique polynomial $q_{n}$ of degree less than or equal to $n$ such that

$$
\left\|f-q_{n}\right\|=\min _{p \in \mathbb{R}_{n}[x]}\|f-p\| .
$$

This polynomial $q_{n}$ is called the polynomial of best uniform approximation of $f$ of order $n$.

Proposition 6.6 (Weierstrass)
The space of polynomials $\mathbb{R}[x]$ is dense in the space $C[a, b]$ endowed with the uniform norm. As a result, for any $\epsilon>0$ there exists an integer $n \in \mathbb{N}$ and a polynomial $p \in \mathbb{R}_{n}[x]$ such that $\|f-p\|<\epsilon$.

Minimization of a positive definite quadratic form -
(1) Introduction
(C) The best approximation problem
(3) Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Minimization of a positive definite quadratic form

## Positive definite matrices

## A symmetric $n$ square real matrix $A$ is said to be positive semi-definite if and only if

$$
\forall x \in \mathbb{R}^{n}, \quad x^{T} A x \geq 0
$$

A symmetric $n$ square real matrix $A$ is said to be positive definite if and only if

$$
\forall x \in \mathbb{R}^{n}, x \neq 0, \quad x^{T} A x>0
$$

Proposition 6.7
In this proposition, matrices $A$ and $B$ are assumed to be real symmetric $n$ square matrices.

- Matrix A is positive semi-definite if and only if all its eigenvalues are positive. Matrix $A$ is positive definite if and only if all its eigenvalues are strictly positive.
- If A is positive semi-definite and invertible, then A is positive definite.
- If A is positive definite, then $A^{-1}$ is positive definite.
- Matrix $A$ is positive definite if and only if there exists an invertible $n$ square matrix $G$ such that $A=G^{T} G$.
- For any real matrix $H$ of size ( $p, n$ ), the matrix $H^{T} H$ is (a $n$ square) symmetric positive semi-definite.
- If $A$ is positive definite, then $\alpha A$ is positive definite for any real $\alpha>0$.
- If A and B are positive semi-definite and if one of the two matrices $A$ or $B$ is invertible, then $A+B$ is definite positive.
- From the Gerschgorin-Hadamard theorem we deduce immediately the two following results.
a) A symmetric diagonally dominant real matrix $A$ with non negative diagonal entries is positive semi-definite.
b) A symmetric strictly diagonally dominant real matrix $A$ with non negative diagonal entries is positive definite.

Minimization of a positive definite quadratic form

## Minimization : main result

We consider the problem of minimizing a positive definite quadratic form $q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
q(x)=x^{T} A x-2 b^{T} x+c \tag{1}
\end{equation*}
$$

where $A$ is a symmetric $n$ square real positive definite matrix, $b \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.

## Proposition 6.8

The positive definite quadratic form (1) is strictly convex, which means that

$$
\left.\forall x, y \in \mathbb{R}^{n}, \forall t \in\right] 0,1[, \quad q((1-t) x+t y)<(1-t) q(x)+t q(y)
$$

and the minimization problem

$$
\text { find } \tilde{x} \in \mathbb{R}^{n} \quad \text { such that } \quad q(\tilde{x})=\min _{x \in \mathbb{R}^{n}} q(x)
$$

admits a unique global solution $\bar{x}$ on $\mathbb{R}^{n}$ defined as the unique solution of the linear system

$$
A x=b
$$

## Over-determined linear systems

## (1) Introduction

(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Over-determined linear systems

## Problem

We are concerned here by the resolution of the linear system

$$
A x=b, \quad A \in \mathcal{M}_{n, p}(\mathbb{R}), x \in \mathbb{R}^{p}, b \in \mathbb{R}^{n}, n>p .
$$

Usually $n$ is much greater than $p$.
In general, such a linear system does not admit an exact solution. We are therefore looking for an approximated solution. Precisely, we replace the resolution of this linear system by the following optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}}| | A x-b \| \tag{2}
\end{equation*}
$$

where $\|$.$\| is the classical Euclidean norm of \mathbb{R}^{n}$.
In the following, a vector of $\mathbb{R}^{k}$ is identified with the column matrix of its components in the canonical basis. As an example, the inner product of two vectors $x$ and $y$ is written in the matrix form $x^{T} y$.

## Over-determined linear systems

## Weighted inner product

Consider the vector space $\mathbb{R}^{n}$ equipped with the inner product

$$
(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \quad \mapsto \quad\langle u, v\rangle_{\Omega}=u^{T} \Omega v=\sum_{i=1}^{n} w_{i} u_{i} v_{i}
$$

where $\Omega$ is the diagonal matrix

$$
\Omega=\left(\begin{array}{cccc}
w_{1} & & & \\
& w_{2} & & \\
& & \ddots & \\
& & & w_{n}
\end{array}\right) \quad \text { with } w_{i}>0, i=1, \ldots, n
$$

which induces the norm

$$
u \in \mathbb{R}^{n} \quad \mapsto \quad\|u\|_{\Omega}=\left(\langle u, u\rangle_{\Omega}\right)^{\frac{1}{2}}=\left(\sum_{i=1}^{n} w_{i} u_{i}^{2}\right)^{\frac{1}{2}}
$$

We now consider the following optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}}\|A x-b\|_{\Omega} \tag{3}
\end{equation*}
$$

which allows to weight separately equations of the initial linear system with weights $w_{i}$.
$\rightarrow$ Minimizing the norm $\|A x-b\|_{\Omega}$ is equivalent to minimize the squared norm $\|A x-b\|_{\Omega}^{2}$.

## Over-determined linear systems

## Least squares approximation

The following proposition is the main result about least squares approximation.
We will give two proofs of this result.

- An algebraic proof.
- A simpler proof, using projection in an Euclidean space and proposition 6.4


## Proposition 6.9

If matrix A has maximal rank $p$ (which means that its columns are linearly independent), then the optimization problem

$$
\min _{x \in \mathbb{R}^{p}}\|A x-b\|_{\Omega}^{2}
$$

admits a unique solution $x^{*}$ defined by

$$
\begin{equation*}
A^{T} \Omega A x^{*}=A^{T} \Omega b \tag{4}
\end{equation*}
$$

Equations (4) are called the normal equations.

## Over-determined linear systems

## Algebraic proof of proposition 6.9

We first prove that the symmetric matrix $\hat{A}=A^{T} \Omega A$ of order $p$ is positive definite

$$
\forall z \in \mathbb{R}^{p}, z \neq 0, \quad z^{T} \hat{A} z=z^{T}\left(A^{T} \Omega A\right) z=(A z)^{T} \Omega(A z)=\|A z\|_{\Omega}^{2}>0
$$

since $\operatorname{ker}(A)=\{0\}$ as $A$ is of rank $p$.
Finally, we just need to remark that the application $x \mapsto\|A x-b\|_{\Omega}^{2}$ is a positive definite quadratic form. Precisely, for $x \in \mathbb{R}^{p}$ we have

$$
\begin{aligned}
\|A x-b\|_{\Omega}^{2} & =(A x-b)^{T} \Omega(A x-b) \\
& =x^{T}\left(A^{T} \Omega A\right) x-2\left(A^{T} \Omega b\right)^{T} x+b^{T} \Omega b \\
& =x^{T} \hat{A} x-2 v^{T} x+c
\end{aligned}
$$

with $v=A^{T} \Omega b \in \mathbb{R}^{p}$ and $c=b^{T} \Omega b \in \mathbb{R}$, which concludes the proof by proposition 6.8.

## Over-determined linear systems

## Proof using projections in the Euclidean space $\left(\mathbb{R}^{n},\langle., .\rangle_{\Omega}\right)$

We introduce the vector subspace $U$ defined by

$$
U=\left\{A x, x \in \mathbb{R}^{p}\right\}=\operatorname{Im}(A)
$$

so that, our optimization problem can be rewritten as follows

$$
\min _{y \in U}\|y-b\|_{\Omega} .
$$

By proposition 6.4 , the vector $\hat{y} \in U$ which minimizes the norm $\|y-b\|_{\Omega}$ is the orthogonal projection of $b$ on $U$, and is characterized by

$$
\begin{aligned}
\langle\hat{y}-b, y\rangle_{\Omega} & =0, \quad \forall y \in U, \\
\langle A \hat{x}-b, A x\rangle_{\Omega} & =0, \quad \forall x \in \mathbb{R}^{p}, \quad \text { with } \hat{y}=A \hat{x} \text { and } y=A x \\
(A x)^{T} \Omega(A \hat{x}-b) & =0, \quad \forall x \in \mathbb{R}^{p}, \\
x^{T}\left[A^{T} \Omega(A \hat{x}-b)\right] & =0, \quad \forall x \in \mathbb{R}^{p}, \\
A^{T} \Omega A \hat{x} & =A^{T} \Omega b,
\end{aligned}
$$

which shows that an optimal solution $\hat{x}$ of the optimization problem verify the normal equations (4).
The projection $\hat{y}$ of vector $b$ on the subspace $U$ is unique.
The unicity of the solution then depends on the rank of the matrix $A$, i.e., is a consequence of the injectivity of the linear map $x \mapsto A x$.

Numerical implementation and QR factorization -
(1) Introduction
(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Numerical implementation and QR factorization -

## Objective

We consider the numerical resolution of the normal equations

$$
A^{T} A x=A^{T} b,
$$

with $A \in \mathcal{M}_{n, p}(\mathbb{R}), x \in \mathbb{R}^{p}$ and $b \in \mathbb{R}^{n}$, where $n \geq p$, which requires a specific treatment in order to avoid the propagation of numerical rounding errors.

If the matrix $A$ has maximal rank $p$, the symmetric matrix $A^{T} A$ is positive definite, so that the normal equations $A^{T} A x=A^{T} b$ can be solved through the Cholesky factorization :

$$
A^{T} A=L L^{T}
$$

where $L$ is a lower triangular matrix with positive diagonal.
However, such a factorization has the major drawback of propagating the rounding errors. For this reason, the $Q R$ factorization is preferred.

The $Q R$ factorization reduces the minimization of the norm

$$
\|A x-b\|_{2}
$$

to the resolution of a triangular linear system.

## Numerical implementation and QR factorization -

## $Q R$ minimization

Proposition 6.10 (rectangular case)
Given a matrix $A \in \mathcal{M}_{n, p}(\mathbb{R}), n \geq p$, with maximal rank $p$, there exists an orthogonal matrix $Q \in \mathcal{M}_{n}(\mathbb{R})$ and a unique upper triangular matrix $R \in \mathcal{M}_{n, p}(\mathbb{R})$ with positive diagonal elements, such that

$$
A=Q R .
$$

We return to the optimization problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{p}}\|A x-b\|_{2} \tag{5}
\end{equation*}
$$

with $b \in \mathbb{R}^{n}$ and where $A \in \mathcal{M}_{n, p}(\mathbb{R}), n \geq p$, is of maximal rank $p$.
We consider the factorization $A=Q R$ and we introduce the following notations :
$R=\binom{R_{1}}{0}$, where $R_{1}$ is an upper $p$-square triangular matrix with positive diagonal,
$Q^{T} b=\binom{\left(Q^{T} b\right)_{1}}{\left(Q^{T} b\right)_{2}}$, with $\left(Q^{T} b\right)_{1} \in \mathbb{R}^{p}$ and $\left(Q^{T} b\right)_{2} \in \mathbb{R}^{n-p}$,
$\|\cdot\|_{2, r}$ is the usual Euclidean norm in $\mathbb{R}^{r}$ (by default $\|\cdot\|_{2}=\|\cdot\| \|_{2, n}$ ).

## Numerical implementation and QR factorization -

## $Q R$ minimization

Then, for any vector $x \in \mathbb{R}^{p}$, we have

$$
\begin{array}{rlr}
\|A x-b\|_{2}^{2} & =\|Q R x-b\|_{2}^{2} & \\
& =\left\|Q^{T}(Q R x-b)\right\|_{2}^{2} & \text { since } Q^{T} \text { is orthogonal } \\
& =\left\|R x-Q^{T} b\right\|_{2}^{2} & \\
& =\left\|\binom{R_{1} x}{0}-\binom{\left(Q^{T} b\right)_{1}}{\left(Q^{T} b\right)_{2}}\right\|_{2}^{2} & \\
& =\left\|R_{1} x-\left(Q^{T} b\right)_{1}\right\|_{2, p}^{2}+\left\|\left(Q^{T} b\right)_{2}\right\|_{2, n-p}^{2} & \text { since } R_{1} x-\left(Q^{T} b\right)_{1} \perp\left(Q^{T} b\right)_{2}
\end{array}
$$

Finally, the norm $\|A x-b\|_{2}, x \in \mathbb{R}^{p}$, is minimal for $\left\|R_{1} x-\left(Q^{T} b\right)_{1}\right\|_{2, p}=0$, from which we deduce the following proposition.

Proposition 6.11
With the previous hypotheses, the norm $\|A x-b\|_{2}$ is minimal for

$$
\hat{x}=R_{1}^{-1}\left(Q^{T} b\right)_{1}
$$

and the minimal value of the norm $\|A x-b\|_{2}$ is $\left\|\left(Q^{T} b\right)_{2}\right\|_{2, n-p}$.

## Curve fitting

(1) Introduction
(2) The best approximation problem

3 Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Curve fitting

## Objective

Curve fitting is the process of constructing a curve (a mathematical function) that has the best fit to a series of data points.

Example :
We consider the problem of modeling the link between two variables $X$ and $Y$ for which we have a sample of $n$ measurements

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

Precisely, we desire to model the dependance between $X$ and $Y$ by the following relation

$$
\begin{equation*}
Y=a_{1} f_{1}(X)+a_{2} f_{2}(X)+\cdots+a_{p} f_{p}(X) \tag{6}
\end{equation*}
$$

with $p$ elementary functions $f_{k}$ (e.g., $\left.x^{\alpha}, \ln x, \exp x, \sin x, \cos x, \ldots\right)(p<n)$ assumed to be linearly independent. Coefficients $a_{k}$ are the unknown parameters of the model and will have to be estimated.

## Curve fitting

## Objective



## Curve fitting

## Problem modelling

Fitting the previous model (6)

$$
Y=a_{1} f_{1}(X)+a_{2} f_{2}(X)+\cdots+a_{p} f_{p}(X)
$$

to the measurement data leads to the $n$ relations $(n>p)$

$$
\left\{\begin{align*}
a_{1} f_{1}\left(x_{1}\right)+a_{2} f_{2}\left(x_{1}\right)+\cdots+a_{p} f_{p}\left(x_{1}\right) & =y_{1}+\epsilon_{1}  \tag{7}\\
a_{1} f_{1}\left(x_{2}\right)+a_{2} f_{2}\left(x_{2}\right)+\cdots+a_{p} f_{p}\left(x_{2}\right) & =y_{2}+\epsilon_{2} \\
& \vdots \\
& \\
a_{1} f_{1}\left(x_{i}\right)+a_{2} f_{2}\left(x_{i}\right)+\cdots+a_{p} f_{p}\left(x_{i}\right) & =y_{i}+\epsilon_{i} \\
& \vdots \\
a_{1} f_{1}\left(x_{n}\right)+a_{2} f_{2}\left(x_{n}\right)+\cdots+a_{p} f_{p}\left(x_{n}\right) & =y_{n}+\epsilon_{n}
\end{align*}\right.
$$

where each $\epsilon_{i}$ represents the error of the model on the measurement $\left(x_{i}, y_{i}\right)$. We then express these $n$ linear equations in matrix form

$$
\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \cdots & f_{p}\left(x_{1}\right)  \tag{8}\\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \cdots & f_{p}\left(x_{2}\right) \\
\vdots & & & \vdots \\
f_{1}\left(x_{i}\right) & f_{2}\left(x_{i}\right) & \cdots & f_{p}\left(x_{i}\right) \\
\vdots & & & \vdots \\
f_{1}\left(x_{n}\right) & f_{2}\left(x_{n}\right) & \cdots & f_{p}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{p}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\\
\vdots \\
y_{n}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\vdots \\
\epsilon_{n}
\end{array}\right) \Leftrightarrow \mathbf{A} \mathbf{u}=\mathbf{b}+\boldsymbol{\epsilon}
$$

## Curve fitting

## Problem modelling

In order to estimate parameters $a_{j}$ of the model (6) we introduce a global error $E$ defined by

$$
\begin{aligned}
E\left(a_{1}, \ldots, a_{p}\right) & =\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left[a_{1} f_{1}\left(x_{i}\right)+a_{2} f_{2}\left(x_{i}\right)+\cdots+a_{p} f_{p}\left(x_{i}\right)-y_{i}\right]^{2} \\
& =\|\epsilon\|^{2}=\|A u-b\|^{2}
\end{aligned}
$$

where ||.|| denotes the classical Euclidean norm.
Finally, we need to consider the minimization problem

$$
\min _{a_{1}, \ldots, a_{p}} E\left(a_{1}, \ldots, a_{p}\right)=\min _{u}\|A u-b\|^{2}
$$

The function

$$
\begin{array}{ccc}
E: & \mathbb{R}^{p} & \rightarrow \mathbb{R} \\
\left(a_{1}, \ldots, a_{p}\right) & \mapsto E\left(a_{1}, \ldots, a_{p}\right)
\end{array}
$$

is polynomial, quadratic and therefore of class $C^{2}$. Therefore, this minimization problem can be considered in two equivalent ways :

- as an over-determined linear system : minimization of a quadratic form
- as the minimization of a function of several variables (the coefficients $a_{k}$ ) with tools of section 4 of chapter on Prerequisitesin Maths. We will consider this last approach.


## Curve fitting

Minimization: $\min _{a_{1}, \ldots, a_{p}} E\left(a_{1}, \ldots, a_{p}\right)$
Determination of the critical points $\Rightarrow$ system of $p$ linear equations

$$
\begin{aligned}
& \left\{\begin{array}{ccc}
\frac{\partial E}{\partial a_{1}}\left(a_{1}, \ldots, a_{p}\right) & = & 2 \sum_{i=1}^{n} f_{1}\left(x_{i}\right)\left[a_{1} f_{1}\left(x_{i}\right)+\cdots+a_{p} f_{p}\left(x_{i}\right)-y_{i}\right]=0 \\
\vdots & \\
\frac{\partial E}{\partial a_{p}}\left(a_{1}, \ldots, a_{p}\right) & = & 2 \sum_{i=1}^{n} f_{p}\left(x_{i}\right)\left[a_{1} f_{1}\left(x_{i}\right)+\cdots+a_{p} f_{p}\left(x_{i}\right)-y_{i}\right]=0
\end{array}\right. \\
& \Leftrightarrow\left(\begin{array}{cccc}
\sum_{i=1}^{n} f_{1}^{2}\left(x_{i}\right) & \sum_{i=1}^{n} f_{1}\left(x_{i}\right) f_{2}\left(x_{i}\right) & \cdots & \sum_{i=1}^{n} f_{1}\left(x_{i}\right) f_{p}\left(x_{i}\right) \\
\sum_{i=1}^{n} f_{2}\left(x_{i}\right) f_{1}\left(x_{i}\right) & \sum_{i=1}^{n} f_{2}^{2}\left(x_{i}\right) & \ldots & \sum_{i=1}^{n} f_{2}\left(x_{i}\right) f_{p}\left(x_{i}\right) \\
\vdots & \ddots & \vdots \\
\sum_{i=1}^{n} f_{p}\left(x_{i}\right) f_{1}\left(x_{i}\right) & \sum_{i=1}^{n} f_{p}\left(x_{i}\right) f_{2}\left(x_{i}\right) & \cdots & \sum_{i=1}^{n} f_{p}^{2}\left(x_{i}\right)
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
\vdots \\
a_{p}
\end{array}\right)=\left(\begin{array}{l}
\sum_{i=1}^{n} y_{i} f_{1}\left(x_{i}\right) \\
\sum_{i=1}^{n} y_{i} f_{2}\left(x_{i}\right) \\
\vdots \\
\sum_{i=1}^{n} y_{i} f_{p}\left(x_{i}\right)
\end{array}\right) \\
& \Leftrightarrow
\end{aligned}
$$

## Curve fitting

## Minimization

We thus get the normal equations

$$
\left(A^{T} A\right) u=A^{T} b
$$

- If the rank of matrix $A$ is maximum, that is equal to $p$, this linear system possesses a unique solution : the critical point $\hat{a}=\left(\hat{a}_{1}, \ldots, \hat{a}_{p}\right)$, which defines a strict global minimum of the error function $E$.
- For the critical point $\hat{a}=\left(\hat{a}_{1}, \ldots, \hat{a}_{p}\right)$, the global error $E\left(\hat{a}_{1}, \ldots, \hat{a}_{p}\right)$ is called residual error and the value

$$
\left[\frac{1}{n} E(\hat{a})\right]^{\frac{1}{2}}=\left[\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i}^{2}\right]^{\frac{1}{2}}
$$

is named the residual standard deviation.
Two regression models can be compared for a same data set by means of their residual standard deviations.

## Curve fitting

## Example : residual standard deviation

Given a set of data points, we apply the least squares method so as to determine the best polynomial approximation for degree $d=1,2, \ldots, 6$.




In each case, we evaluate the residual standard deviation $R S D(d)$.
Of course, the function $\operatorname{RSD}(d)$ is decreasing with the degree, but we can see a gap for a certain degree in each case.

```
degree 1 RSD = 3.259601566
degree 2 RSD = 0.639429602
degree 3 RSD = 0.639135969
degree 4 RSD = 0.567980553
degree 5 RSD = 0.563194887
degree 6 RSD = 0.545339539
```

```
degree 1 RSD = 3.803313672
degree 2 RSD = 3.669523335
degree 3 RSD = 0.774789466
degree 4 RSD = 0.768156302
degree 5 RSD = 0.764840727
degree 6 RSD = 0.741644575
```

```
degree 1 RSD = 3.381303542
degree 2 RSD = 3.305089256
degree 3 RSD = 3.189389063
degree 4 RSD = 0.914385591
degree 5 RSD = 0.812359858
degree 6 RSD = 0.804901415
```


## Linear regression -

## (1) Introduction

(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Linear regression

## Fitting a straight line

We desire to fit a straight line (the model) with equation $Y=\alpha X+\beta$ to the data $\left(x_{i}, y_{i}\right)$, which leads to the linear system

$$
\left(\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right)\binom{\alpha}{\beta}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right) \quad \Leftrightarrow \quad A u=b+\epsilon
$$

The normal equations $A^{T} A u=A^{T} b$ admits a unique solution, $\hat{\alpha}, \hat{\beta}$ given by

$$
\hat{\alpha}=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i} y_{i}-\bar{x} \bar{y}}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad \text { and } \quad \hat{\beta}=\bar{y}-\hat{\alpha} \bar{x} \quad \text { with } \quad \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \text { and } \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

The straight line $Y=\hat{\alpha} X+\hat{\beta}$ is the line of linear regression of (or associated with) data points $\left(x_{i}, y_{i}\right)$.

Note that the line of linear regression goes through the barycenter $(\bar{x}, \bar{y})$ of data points $\left(x_{i}, y_{i}\right)$

## Linear regression

## Linear correlation

With data points $\left(x_{i}, y_{i}\right)$ we define

$$
\begin{array}{rlr}
\operatorname{var}(\mathrm{X}) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \text { the empirical variance of } X \\
\operatorname{var}(\mathrm{Y}) & =\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} & \text { the empirical variance of } Y \\
\operatorname{cov}(\mathrm{X}, \mathrm{Y}) & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \text { the empirical covariance between } X \text { and } Y
\end{array}
$$

so that the line of linear regression $Y=\hat{\alpha} X+\hat{\beta}$ is defined by

$$
\hat{\alpha}=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\operatorname{var}(\mathrm{X})} \quad \text { and } \quad \hat{\beta}=\bar{y}-\hat{\alpha} \bar{x}
$$

Pearson's correlation coefficient :

$$
r=\operatorname{corr}(\mathrm{X}, \mathrm{Y})=\frac{\operatorname{cov}(\mathrm{X}, \mathrm{Y})}{\sqrt{\operatorname{var}(\mathrm{X})} \sqrt{\operatorname{var}(\mathrm{Y})}}, \quad-1 \leq \mathrm{r} \leq 1
$$

$\rightarrow$ informally, correlation is synonymous with dependence
$\rightarrow$ sensitive only to a linear relationship between two variables

## Linear regression

## Linear correlation



Parametric approximation -
(1) Introduction
(2) The best approximation problem
(3) Minimization of a positive definite quadratic form
(4) Over-determined linear systems
(5) Numerical implementation and QR factorization
(6) Curve fitting
(7) Linear regression
(8) Parametric approximation

## Parametric approximation -

## Objective

Given a sequence of points $M_{i}=\left(x_{i}, y_{i}\right), 1 \leq i \leq N$, we look for a parametric polynomial curve of prescribed degree which approximates these data points, that is which passes as close as possible to each point $\left(x_{i}, y_{i}\right)$ for some prescribed parameter $t_{i}$.

Precisely, we look for a parametric polynomial curve

$$
\begin{array}{cccc} 
& {[a, b] \in \mathbb{R}} & \longrightarrow & \mathbb{R}^{2} \\
s: & t & \longmapsto & \longmapsto(t)=\binom{s_{x}(t)}{s_{y}(t)}
\end{array}
$$

such that

$$
s\left(t_{i}\right) \simeq M_{i} \quad \Leftrightarrow \quad\left\{\begin{array}{l}
s_{x}\left(t_{i}\right) \simeq x_{i} \\
s_{y}\left(t_{i}\right) \simeq y_{i}
\end{array}, \quad 1 \leq i \leq N\right.
$$

with a sequence of nodes $a=t_{1}<t_{2}<\cdots<t_{N}=b$, and where $s_{x}(t)$ and $s_{y}(t)$ are polynomials of prescribed degree.
$\rightarrow$ we are therefore reduced to solve two separate least squares approximation problems.
$\rightarrow$ we consider the uniform and the chordal parameterizations.

## Parametric approximation -

## Examples




Least squares approximation of a polygon by parametric polynomial curves of degree 5 and 8 , with uniform and chordal parameterization.

